Генетика, 2023, T. 59, № 11, стр. 1203-1211

Гены рецепторов гормонов, влияющих на яичную продуктивность и воспроизводительные качества кур

Е. И. Куликов 1*, Л. Г. Коршунова 1, Р. В. Карапетян 1, А. С. Комарчев 1, А. К. Кравченко 1, Д. М. Дмитренко 1, В. А. Попов 1, В. Н. Мартынова 1, Л. И. Малахеева 1, Д. Н. Ефимов 1

1 Федеральный научный центр “Всероссийский научно-исследовательский и технологический институт птицеводства” Российской академии наук
141311 Сергиев Посад, Московская область, Россия

* E-mail: kulikovegor33@yandex.ru

Поступила в редакцию 29.03.2023
После доработки 18.05.2023
Принята к публикации 02.06.2023

Аннотация

Яичная продуктивность кур носит сложный полигенный тип наследования, контролируется многими генами, и является результатом сложного процесса, регулируемого гипоталамо-гипофизарно-гонадальной системой. В обзоре обобщена информация о влиянии полиморфизмов генов рецепторов гормонов: фолликулостимулирующего (FSHR), лютеинизирующего (LHCGR), прогестерона (PR) и пролактина (PRLR) на яичную продуктивность и воспроизводительные качества кур. Представленные данные показывают, что полиморфизмы этих генов являются перспективными для использования в селекционных программах с целью улучшения яичной продуктивности и воспроизводительных качеств кур.

Ключевые слова: ген, гормон, рецептор, полиморфизм, куры, яйценоскость.

Список литературы

  1. Алтухов Ю.П., Салменкова Е.А. Полиморфизм ДНК в популяционной генетике // Генетика. 2002. Т. 38. № 9. С. 1173–1195.

  2. Новгородова И.П. Взаимосвязь яичной продуктивности кур и перепелов с локусами количественных признаков // Эффективное животноводство. 2018. № 7(146). С. 24–26.

  3. Kulibaba R.A. Polymorphism of growth hormone, growth hormone receptor, prolactin and prolactin receptor genes in connection with egg production in Poltava clay chicken // Agricultural Biology. 2015. V. 50. № 2. P. 198–207. https://doi.org/10.15389/agrobiology.2015.2.198eng

  4. Ling-B.L., Di-Yan L., Xiao-Ling et al. Polymorphism of prolactin receptor gene and its association with egg production traits in erlang mountainous chicken // Asian J. of Animal and Veterinary Adv. 2012. № 7. P. 1183–1190.

  5. Bole-Feysot C., Goffin V., Edery M. et al. Prolactin (PRL) and its receptor: Actions, signal transduction pathways and phenotypes observed in PRL receptor knockout mice // Endocr Rev. 1998. V. 19. № 3. P. 225–268. https://doi.org/10.1210/edrv.19.3.0334

  6. Wilkanowska A., Mazurowski A., Mroczkowski S., Kokoszyčski D. Prolactin (PRL) and prolactin receptor (PRLR) genes and their role in poultry production traits // Folia Biologica. 2014. V. 62. № 1. P. 1–8.

  7. Leclerc B., Zadworny D., Bédécarrats G., Kuhnlein U. Development of a real-time (Q) PCR assay to measure variation in expression of prolactin receptor mRNA in the hypothalamus and pituitary gland during late embryogenesis in turkeys and chickens // Gen. Comp. Endocrinol. 2007. V. 150. № 2. P. 319–325. https://doi.org/10.1016/j.ygcen.2006.08.007

  8. Leclerc B., Zadworny D., Bédécarrats G., Kühnlein U. Ontogenesis of the expression of prolactin receptor messenger ribonucleic acid during late embryogenesis in turkeys and chickens // Poult Sci. 2007. V. 86. № 6. P. 1174–1179. https://doi.org/10.1093/ps/86.6.1174

  9. Hiyama G., Kansaku N., Kinoshita M. et al. Changes in post-translational modifications of prolactin during development and reproductive cycles in the chicken // Gen. Comp. Endocrinol. 2009. V. 161. P. 238–245.

  10. Lü A., Hu X., Chen H. et al. Single nucleotide polymorphisms of the prolactin receptor (PRLR) gene and its association with growth traits in chinese cattle // Mol. Biol. 2011. Rep. 38. P. 261–266. https://doi.org/10.1007/s11033-010-0103-5

  11. Wang Y., Chen Q., Liu Z. et al. Transcriptome analysis on single small yellow follicles reveals that Wnt4 is involved in chicken follicle selection // Front. Endocrinol. 2017. V. 8. https://doi.org/10.3389/fendo.2017.00317

  12. Johnson P.A. Follicle selection in the avian ovary // Reprod. Domestic Animals. 2012. V. 47. S. 4. P. 283–287. https://doi.org/10.1111/j.1439-0531.2012.02087.x

  13. Johnson A.L., Woods D.C. Dynamics of avian ovarian follicle development: cellular mechanisms of granulosa cell differentiation // Gen. Comp. Endocrinol. 2009. V. 163. P. 12–17. https://doi.org/10.1016/j.ygcen.2008.11.012

  14. Tischkau S.A., Howell R.E., Hickok J.R. et al. The luteinizing hormone surge regulates circadian clock gene expression in the chicken ovary // Chronobiology International. 2010. V. 28. № 1. P. 10–20.

  15. Li D.Y., Zhang L., Yang M.Y. et al. Effect of luteinizing hormone/choriogonadotropin receptor (LHCGR) gene on chicken reproductive traits // Mol. Biol. Reports. 2013. V. 40. № 12. P. 7111–7116.

  16. Rashidi H., Rahimi-Mianji G., Farhadi A., Gholizadeh M. Association of prolactin and prolactin receptor gene polymorphisms with economic traits in breeder hens of indigenous chickens of Mazandaran province // Iranian J. Biotechnol. 2012. V. 10. № 2. P. 129–135.

  17. Hu S., Duggavathi R., Zadworny D. Regulatory mechanisms underlying the expression of prolactin receptor in chicken granulosa cells // PLoS One. 2017. V. 12. № 1. https://doi.org/10.1371/journal.pone.0170409

  18. Jiang R.S., Xu G.Y., Zhang X.Q., Yang N. Association of polymorphisms for prolactin and prolactin receptor genes with broody traits in chickens // Poultry Sci. 2005. V. 84. № 6. P. 839–845. https://doi.org/10.1093/ps/84.6.839

  19. Hong-Quan C., Han-Qin W., Jie Q., Hua C. The novel genetic change in 5'-untranslated region of goose prolactin gene and their distribution pattern in different goose breeds // Asian J. of Animal and Veterinary Advances. 2011. V. 6. P. 1069–1075. https://doi.org/10.3923/ajava.2011.1069.1075

  20. Pierce J.G., Parsons T.F. Glycoprotein hormones: Structure and function // Annual Rev. of Biochemistry. 1981. V. 50. P. 465–495.

  21. You S., Bridgham J.T., Foster D.N., Johnson A.L. Characterization of the chicken follicle-stimulating hormone receptor (cFSH-R) complementary deoxyribonucleic acid, and expression of cFSH-R messenger ribonucleic acid in the ovary // Biology of Reproduction. 1996. V. 55. № 5. P. 1055–1062. https://doi.org/10.1095/biolreprod55.5.1055

  22. Li X., Lu Y., Liu X. et al. Identification of chicken FSHR gene promoter and the correlations between polymorphisms and egg production in Chinese native hens // Reprod. Domest. Anim. 2019. V. 54. № 4. P. 702–711. https://doi.org/10.1111/rda.13412

  23. Kang L., Cui X., Zhang Y. et al. Identification of miRNAs associated with sexual maturity in chicken ovary by illumina small RNA deep sequencing // BMC Genomics. 2013. V. 14. https://doi.org/10.1186/1471-2164-14-352

  24. Zhong C., Liu Z., Qiao X. et al. Integrated transcriptomic analysis on small yellow follicles reveals that sosondowah ankyrin repeat domain family member A inhibits chicken follicle selection // Anim. Biosci. 2021. V. 34. № 8. P. 1290–1302.

  25. Rikha R.K., Indra L., Aditya R.E. et al. The association of follicle stimulating hormone receptor (FSHR) gene polymorphism of on egg productivity in hybrid chicken (Gallus gallus gallus, Linnaeus 1758) // Biodiv. J. of Biol. Diversity. 2021. V. 22.https://doi.org/10.13057/biodiv/d220318

  26. Kang L., Zhang N., Zhang Y. et al. Molecular characterization and identification of a novel polymorphism of 200 bp indel associated with age at first egg of the promoter region in chicken follicle-stimulating hormone receptor (FSHR) gene // Mol. Biol. Rep. 2012. V. 39. № 3. P. 2967–2973. https://doi.org/10.1007/s11033-011-1058-x

  27. Куликов Е.И., Карапетян Р.В., Коршунова Л.Г. и др. Влияние однонуклеотидной замены rs317093289 в гене рецептора фолликулостимулирующего гормона на продуктивность исходной линии породы плимутрок бройлерного кросса “Смена 9” // Птицеводство. 2022. № 11. С. 4–8. https://doi.org/10.33845/0033-3239-2022-71-11-4-8

  28. Johnson A.L., Solovieva E.V., Bridgham J.T. Relationship between steroidogenic acute regulatory protein expression and progesterone production in hen granulosa cells during follicle development // Biology of Reproduction. 2002. V. 67. № 4. P. 1313. https://doi.org/10.1095/biolreprod67.4.1313

  29. Woods D., Johnson A.L. Regulation of follicle-stimulating hormone-receptor messenger RNA in hen granulosa cells relative to follicle selection // Biology of Reproduction. 2005. V. 72. P. 643–650. https://doi.org/10.1095/biolreprod.104.033902

  30. Rui C., Jichang L., Yurou Z. et al. Association analysis between reproduction genes INHA, PGR, RARG with lamb and other traits of Liaoning cashmere goats // Animal Biotechnology. 2022. V. 27. P. 1–12. https://doi.org/10.1080/10495398.2022.2077212

  31. Peiró R., Herrler A., Santacreu M.A. et al. Expression of progesterone receptor related to the polymorphism in the PGR gene in the rabbit reproductive tract // J. of Animal Sci. 2013. V. 88. № 2. P. 421–427. https://doi.org/10.2527/jas.2009-1955

  32. Ghali R.M., Al-Mutawa M.A., Ebrahim B.H. et al. Progesterone receptor (PGR) gene variants associated with breast cancer and associated features: a case-control study // Pathol. Oncol. Res. 2020. V. 26. P. 141–147. https://doi.org/10.1007/s12253-017-0379-z

  33. Yu Y., Pang Y., Zhao H. et al. Association of a missense mutation in the luteinizing hormone/choriogonadotropin receptor gene (LHCGR) with superovulation traits in Chinese Holstein heifers // J. Anim. Sci. Biotechnol. 2012. V. 3. № 1. P. 35. https://doi.org/10.1186/2049-1891-3-35

  34. Yang W.C., Tang K.Q., Li S.J. et al. Polymorphisms of the bovine luteinizing hormone/choriogonadotropin receptor (LHCGR) gene and its association with superovulation traits // Mol. Biol. Rep. 2012. V. 39. № 3. P. 2481–2487. https://doi.org/10.1007/s11033-011-0999-4

  35. Ge S.F., Romanov M.N., Sharp P.J. et al. Mapping of the luteinizing hormone/choriogonadotropin receptor gene (LHCGR) to chicken chromosome 3 // Animal Genetics. 2008. V. 32. № 1. P. 50.

Дополнительные материалы отсутствуют.