Генетика, 2023, T. 59, № 6, стр. 659-669

Анализ генетических факторов спорадических случаев шизофрении в семейных трио с использованием метода полногеномного секвенирования

Т. В. Андреева 12*, Ф. А. Афанасьев 2, Ф. Е. Гусев 23, А. Д. Патрикеев 2, С. С. Кунижева 23, Е. И. Рогаев 345**

1 Центр генетики и генетических технологий, Московский государственный университет им. М.В. Ломоносова
119234 Москва, Россия

2 Институт общей генетики им. Н.И. Вавилова Российской академии наук
119991 Москва, Россия

3 Центр генетики и наук о жизни, Научно-технологический университет “Сириус”
354340 пгт. Сириус, Краснодарский край, Россия

4 Московский государственный университет им. М.В. Ломоносова
119234 Москва, Россия

5 Медицинская школа Чан Массачусетского университета, департамент психиатрии
MA 01545 Шрусбери, США

* E-mail: an_tati@vigg.ru
** E-mail: evgeny.rogaev@umassmed.edu

Поступила в редакцию 07.12.2022
После доработки 03.02.2023
Принята к публикации 06.02.2023

Аннотация

Шизофрения – распространенное психическое заболевание, наследственная природа которого подтверждена многочисленными исследованиями. В настоящее время выявлено более сотни генетических локусов, ассоциированных с шизофренией, также идентифицированы редкие варианты в генах и хромосомные перестройки, связанные с семейными случаями заболевания. Однако не всегда удается определить наследственную природу патологии, многие случаи шизофрении являются спорадическими, а генетическая причина таких случаев остается неизвестна. С использованием данных полногеномного секвенирования трех семейных трио российского происхождения со спорадическими формами шизофрении мы провели поиск редких потенциально патогенных вариантов в кодирующих и регуляторных локусах генома, включая de novo и компаундные мутации. Также провели оценку полигенного риска развития шизофрении с использованием распространенных полиморфных маркеров. В результате проведенного анализа были показаны генетическая гетерогенность спорадических форм шизофрении, а также потенциальный вклад редких замен в генах, связанных с метаболизмом глутамата и инозитолфосфата, в развитие спорадических случаев шизофрении.

Ключевые слова: шизофрения, полногеномное секвенирование, полигенный риск, de novo варианты.

Список литературы

  1. Owen M.J., Sawa A., Mortensen P.B. Schizophrenia // Lancet (London, England). 2016. V. 388. № 10039. P. 86. https://doi.org/10.1016/S0140-6736(15)01121-6

  2. Ripke S., Neale B.M., Corvin A. et al. Biological insights from 108 schizophrenia-associated genetic loci // Nature. 2014. V. 511. № 7510. P. 421–427. https://doi.org/10.1038/nature13595

  3. Goes F.S., Mcgrath J., Avramopoulos D. et al. Genome-wide association study of schizophrenia in Ashkenazi Jews // Am. J. Med. Genet. B. Neuropsychiatr. Genet. 2015. V. 168. № 8. P. 649–659. https://doi.org/10.1002/AJMG.B.32349

  4. Ikeda M., Takahashi A., Kamatani Y. et al. Genome-wide association study detected novel susceptibility genes for schizophrenia and shared trans-populations diseases genetic effect // Schizophr. Bull. 2019. V. 45. № 4. P. 824–834. https://doi.org/10.1093/SCHBUL/SBY140

  5. Li Z., Chen J., Yu H. et al. Genome-wide association analysis identifies 30 new susceptibility loci for schizophrenia // Nat. Genet. 2017. V. 49. № 11. P. 1576–1583. https://doi.org/10.1038/NG.3973

  6. Martin A.R., Daly M.J., Robinson E.B. et al. Predicting polygenic risk of psychiatric disorders // Biol. Psychiatry. 2019. V. 86. № 2. P. 97–109. https://doi.org/10.1016/J.BIOPSYCH.2018.12.015

  7. Kendler K.S. The schizophrenia polygenic risk score: to what does it predispose in adolescence? // JAMA Psychiatry. 2016. V. 73. № 3. P. 193–194. https://doi.org/10.1001/JAMAPSYCHIATRY.2015.2964

  8. Kato H., Kimura H., Kushima I. et al. The genetic architecture of schizophrenia: Review of large-scale genetic studies // J. Hum. Genet. 2023. V. 68. P. 175–182. https://doi.org/10.1038/S10038-022-01059-4

  9. Farrell M., Dietterich T.E., Harner M.K. et al. Increased prevalence of rare copy number variants in treatment-resistant psychosis // Schizophr. Bull. 2022. https://doi.org/10.1093/SCHBUL/SBAC175

  10. Wu Y., Liu X., Luo H. et al. Advanced paternal age increases the risk of schizophrenia and obsessive-compulsive disorder in a Chinese Han population // Psychiatry Res. 2012. V. 198. № 3. P. 353. https://doi.org/10.1016/J.PSYCHRES.2012.01.020

  11. Khachadourian V., Zaks N., Lin E. et al. Advanced paternal age and risk of schizophrenia in offspring–review of epidemiological findings and potential mechanisms // Schizophr. Res. 2021. V. 233. P. 72. https://doi.org/10.1016/J.SCHRES.2021.06.016

  12. Li H., Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform // Bioinformatics. 2009. V. 25. № 14. P. 1754–1760. https://doi.org/10.1093/bioinformatics/btp324

  13. McKenna A., Hanna M., Banks E. et al. The genome analysis toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data // Genome Res. 2010. V. 20. № 9. P. 1297–1303. https://doi.org/10.1101/gr.107524.110

  14. McLaren W., Gil L., Hunt S.E. et al. The ensembl variant effect predictor // Genome Biol. 2016. V. 17. № 1. P. 1–14. https://doi.org/10.1186/S13059-016-0974-4

  15. Adzhubei I.A., Schmidt S., Peshkin L. et al. A method and server for predicting damaging missense mutations // Nat. Methods. 2010. V. 7. № 4. P. 248–249. https://doi.org/10.1038/nmeth0410-248

  16. Kumar P., Henikoff S., Ng P.C. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm // Nat. Protoc. 2009. V. 4. № 7. P. 1073–1081. https://doi.org/10.1038/nprot.2009.86

  17. Chiang C., Layer R.M., Faust G.G. et al. SpeedSeq: Ultra-fast personal genome analysis and interpretation // Nat. Methods. 2015. V. 12. № 10. P. 966–968. https://doi.org/10.1038/nmeth.3505

  18. Michaelson J.J., Sebat J. ForestSV: Structural variant discovery through statistical learning // Nat. Methods. 2012. V. 9. № 8. P. 819–821. https://doi.org/10.1038/nmeth.2085

  19. Antaki D., Brandler W.M., Sebat J. SV2: Accurate structural variation genotyping and de novo mutation detection from whole genomes // Bioinformatics. 2018. V. 34. № 10. P. 1774–1777. https://doi.org/10.1093/BIOINFORMATICS/BTX813

  20. Sanchez J.J., Phillips C., Børsting C. et al. A multiplex assay with 52 single nucleotide polymorphisms for human identification // Electrophoresis. 2006. V. 27. № 9. P. 1713–1724. https://doi.org/10.1002/elps.200500671

  21. Buniello A., Macarthur J.A.L., Cerezo M. et al. The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019 // Nucl. Acids Res. 2019. V. 47. № D1. P. D1005–D1012. https://doi.org/10.1093/NAR/GKY1120

  22. Sudmant P.H., Rausch T., Gardner E.J. et al. An integrated map of structural variation in 2,504 human genomes // Nature. 2015. V. 526. № 7571. P. 75–81. https://doi.org/10.1038/nature15394

  23. Purcell S.M., Moran J.L., Fromer M. et al. A polygenic burden of rare disruptive mutations in schizophrenia // Nature. 2014. V. 506. № 7487. P. 185–190. https://doi.org/10.1038/nature12975

  24. Roach J.C., Glusman G., Smit A.F.A. et al. Analysis of genetic inheritance in a family quartet by whole genome sequencing // Science. 2010. V. 328. № 5978. P. 636. https://doi.org/10.1126/SCIENCE.1186802

  25. Brandler W.M., Antaki D., Gujral M. et al. Frequency and complexity of de novo structural mutation in autism // Am. J. Hum. Genet. 2016. V. 98. № 4. P. 667–679. https://doi.org/10.1016/J.AJHG.2016.02.018

  26. Robinson P., Zemo jtel T. Integrative genomics viewer (IGV): Visualizing alignments and variants // Computational Exome and Genome Analysis. 2018. P. 233–245. https://doi.org/10.1201/9781315154770-17

  27. Zhou J., Troyanskaya O.G. Predicting effects of noncoding variants with deep learning-based sequence model // Nat. Methods. 2015. V. 12. № 10. P. 931–934. https://doi.org/10.1038/nmeth.3547

  28. Kulakovskiy I.V., Vorontsov I.E., Yevshin I.S. et al. HOCOMOCO: Expansion and enhancement of the collection of transcription factor binding sites models // Nucl. Acids Res. 2016. V. 44. № D1. P. D116–D125. https://doi.org/10.1093/NAR/GKV1249

  29. Rosen N., Chalifa-Caspi V., Shmueli O. et al. GeneLoc: Exon-based integration of human genome maps // Bioinformatics. 2003. V. 19. Suppl. 1. https://doi.org/10.1093/BIOINFORMATICS/BTG1030

  30. Carbon S., Dietze H., Lewis S.E. et al. Expansion of the gene ontology knowledgebase and resources // Nucl. Acids Res. 2017. V. 45. № D1. P. D331–D338. https://doi.org/10.1093/NAR/GKW1108

  31. Rappaport N., Twik M., Plaschkes I. et al. MalaCards: An amalgamated human disease compendium with diverse clinical and genetic annotation and structured search // Nucl. Acids Res. 2017. V. 45. № D1. P. D877–D887. https://doi.org/10.1093/NAR/GKW1012

  32. Ashburner M., Ball C.A., Blake J.A. et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium // Nat. Genet. 2000. V. 25. № 1. P. 25–29. https://doi.org/10.1038/75556

  33. Lonsdale J., Thomas J., Salvatore M. et al. The Genotype-Tissue Expression (GTEx) project // Nat. Genet. 2013. V. 45. № 6. P. 580–585. https://doi.org/10.1038/NG.2653

  34. Untergasser A., Cutcutache I., Koressaar T. et al. Primer3–new capabilities and interfaces // Nucl. Acids Res. 2012. V. 40. № 15. P. e115. https://doi.org/10.1093/nar/gks596

  35. Lappalainen I., Thusberg J., Shen B., Vihinen M. Genome wide analysis of pathogenic SH2 domain mutations // Proteins. 2008. V. 72. № 2. P. 779–792. https://doi.org/10.1002/PROT.21970

  36. Glessner J.T., Reilly M.P., Kim C.E. et al. Strong synaptic transmission impact by copy number variations in schizophrenia // Proc. Natl Acad. Sci. USA. 2010. V. 107. № 23. P. 10584–10589. https://doi.org/10.1073/PNAS.1000274107/SUPPL_FILE/PNAS.201000274SI.PDF

  37. De Bruijn S.E., Verbakel S.K., De Vrieze E. et al. Homozygous variants in KIAA1549, encoding a ciliary protein, are associated with autosomal recessive retinitis pigmentosa // J. Med. Genet. 2018. V. 55. № 10. P. 705–712. https://doi.org/10.1136/JMEDGENET-2018-105364

  38. Greenwood T.A., Lazzeroni L.C., Murray S.S. et al. Analysis of 94 candidate genes and 12 endophenotypes for schizophrenia from the Consortium on the Genetics of Schizophrenia // Am. J. Psychiatry. 2011. V. 168. № 9. P. 930–946. https://doi.org/10.1176/APPI.AJP.2011.10050723

  39. Lohoff F.W. Genetic variants in the vesicular monoamine transporter 1 (VMAT1/SLC18A1) and neuropsychiatric disorders // Methods Mol. Biol. 2010. V. 637. P. 165–180. https://doi.org/10.1007/978-1-60761-700-6_9

  40. Sato D.X., Kawata M. Positive and balancing selection on SLC18A1 gene associated with psychiatric disorders and human-unique personality traits // EV. Lett. 2018. V. 2. № 5. P. 499–510. https://doi.org/10.1002/EVL3.81

  41. Schumacher J., Laje G., Jamra R.A. et al. The DISC locus and schizophrenia: Evidence from an association study in a central European sample and from a meta-analysis across different European populations // Hum. Mol. Genet. 2009. V. 18. № 14. P. 2719–2727. https://doi.org/10.1093/HMG/DDP204

  42. Nicodemus K.K., Callicott J.H., Higier R.G. et al. Evidence of statistical epistasis between DISC1, CIT and NDEL1 impacting risk for schizophrenia: Biological validation with functional neuroimaging // Hum. Genet. 2010. V. 127. № 4. P. 441–452. https://doi.org/10.1007/S00439-009-0782-Y/FIGURES/5

  43. Cryns K., Sivakumaran T.A., Van den Ouweland J.M.W. et al. Mutational spectrum of the WFS1 gene in Wolfram syndrome, nonsyndromic hearing impairment, diabetes mellitus, and psychiatric disease // Hum. Mutat. 2003. V. 22. № 4. P. 275–287. https://doi.org/10.1002/HUMU.10258

  44. Munshani S., Ibrahim E.Y., Domenicano I., Ehrlich B.E. The impact of mutations in wolframin on psychiatric disorders // Front. Pediatr. 2021. V. 9. https://doi.org/10.3389/FPED.2021.718132

  45. Zhao Q., Li T., Zhao X. et al. Rare CNVs and Tag SNPs at 15q11.2 are associated with schizophrenia in the Han Chinese population // Schizophr. Bull. 2013. V. 39. № 3. P. 712. https://doi.org/10.1093/SCHBUL/SBR197

  46. Kim N.S., Ringeling F.R., Zhou Y. et al. CYFIP1 dosages exhibit divergent behavioral impact via diametric regulation of NMDA receptor complex translation in mouse models of psychiatric disorders // Biol. Psychiatry. 2022. V. 92. № 10. P. 815–826. https://doi.org/10.1016/J.BIOPSYCH.2021.04.023

  47. Davenport E.C., Szulc B.R., Drew J. et al. Autism and schizophrenia-associated CYFIP1 regulates the balance of synaptic excitation and inhibition // Cell Rep. 2019. V. 26. № 8. P. 2037–2051. e6. https://doi.org/10.1016/J.CELREP.2019.01.092

  48. Cho H.P., Garcia-Barrantes P.M., Brogan J.T. et al. Chemical modulation of mutant mGlu1 receptors derived from deleterious GRM1 mutations found in schizophrenics // ACS Chem. Biol. 2014. V. 9. № 10. P. 2334–2346. https://doi.org/10.1021/CB500560H

  49. Ayoub M.A., Angelicheva D., Vile D. et al. Deleterious GRM1 mutations in schizophrenia // PLoS One. 2012. V. 7. № 3. P. c32849. https://doi.org/10.1371/JOURNAL.PONE.0032849

  50. Hirata Y., Zai C.C., Souza R.P. et al. Association study of GRIK1 gene polymorphisms in schizophrenia: case-control and family-based studies // Hum. Psychopharmacol. 2012. V. 27. № 4. P. 345–351. https://doi.org/10.1002/HUP.2233

  51. Costain G., Lionel A.C., Merico D. et al. Pathogenic rare copy number variants in community-based schizophrenia suggest a potential role for clinical microarrays // Hum. Mol. Genet. 2013. V. 22. № 22. P. 4485–4501. https://doi.org/10.1093/HMG/DDT297

  52. Hu W., Macdonald M.L., Elswick D.E., Sweet R.A. The glutamate hypothesis of schizophrenia: Evidence from human brain tissue studies // Ann. N. Y. Acad. Sci. 2015. V. 1338. № 1. P. 38–57. https://doi.org/10.1111/NYAS.12547

  53. Curtis D. Polygenic risk score for schizophrenia is more strongly associated with ancestry than with schizophrenia // Psychiatr. Genet. 2018. V. 28. № 5. P. 85–89. https://doi.org/10.1097/YPG.0000000000000206

  54. Landi I., Kaji D.A., Cotter L. et al. Prognostic value of polygenic risk scores for adults with psychosis // Nat. Med. 2021. V. 27. № 9. P. 1576–1581. https://doi.org/10.1038/s41591-021-01475-7

  55. Shimon H., Sobolev Y., Davidson M. et al. Inositol levels are decreased in postmortem brain of schizophrenic patients // Biol. Psychiatry. 1998. V. 44. № 6. P. 428–432. https://doi.org/10.1016/S0006-3223(98)00071-7

  56. Arranz B., Rosel P., San L. et al. Low baseline serotonin-2A receptors predict clinical response to olanzapine in first-episode schizophrenia patients // Psychiatry Res. 2007. V. 153. № 2. P. 103–109. https://doi.org/10.1016/J.PSYCHRES.2006.12.015

Дополнительные материалы отсутствуют.