Генетика, 2023, T. 59, № 8, стр. 914-928

Экспрессия генов биогенеза каротиноидов в процессе длительного холодового хранения клубней картофеля

А. В. Кулакова 1*, А. В. Щенникова 1, Е. З. Кочиева 1

1 Федеральный исследовательский центр “Фундаментальные основы биотехнологии” Российской академии наук
119071 Москва, Россия

* E-mail: kulakova_97@mail.ru

Поступила в редакцию 24.01.2023
После доработки 06.03.2023
Принята к публикации 09.03.2023

Аннотация

Каротиноиды представляют собой вторичные метаболиты, которые синтезируются и откладываются во всех типах пластид растений. Данные пигменты играют значимую роль в защите от оксидативного стресса, а также в окраске цветков и запасающих органов растений. Клубни картофеля Solanum tuberosum L. синтезируют каротиноиды, в том числе в процессе послеуборочного хранения. В данном исследовании был проведен анализ экспрессии генов пути биогенеза каротиноидов (PSY1, PSY2, PSY3, PDS, ZDS, Z-ISO, CRTISO, LCYB1, LCYB2, LCYE, VDE, ZEP, NSY, NCED1, NCED2 и NCED6), а также генов предполагаемой инициации дифференцировки хромопластов (OR1 и OR2) в динамике длительного холодового хранения (сентябрь, февраль, апрель) клубней картофеля сортов Барин, Красавчик, Утро, Северное сияние и Надежда. Было показано, что мРНК OR1 и OR2 присутствует в клубнях всех сортов на всех этапах хранения. Для всех анализируемых генов ферментов пути биосинтеза каротиноидов профиль экспрессии по мере хранения клубней характеризовался существенным снижением уровней транскриптов в феврале в сравнении с сентябрем, за некоторыми исключениями. В период с февраля по апрель уровень транскриптов генов менялся несущественно. Проведенный биохимический анализ содержания каротиноидов в динамике холодового хранения показал, что в момент сбора урожая самое высокое содержание каротиноидов в клубнях сорта Утро; клубни остальных сортов характеризовались сходной суммой каротиноидов. По мере хранения с сентября по апрель суммарное содержание каротиноидов изменялось генотип-зависимым образом без какой-либо общей для сортов тенденции. В целом в работе впервые была охарактеризована активность большинства генов пути метаболизма каротиноидов в процессе длительного холодового хранения клубней, что существенно дополняет известные данные по экспрессионному ответу этих генов на абиотический стресс.

Ключевые слова: Solanum tuberosum, сорта картофеля, хранение клубней, биосинтез каротиноидов, хромопласты, экспрессия гена.

Список литературы

  1. Howitt C.A., Pogson B.J. Carotenoid accumulation and function in seeds and non-green tissues // Plant, Cell and Environment. 2006. V. 29. P. 435–445. https://doi.org/10.1111/j.1365-3040.2005.01492.x

  2. Lopez A.B., Van Eck J., Conlin B.J. et al. Effect of the cauliflower Or transgene on carotenoid accumulation and chromoplast formation in transgenic potato tubers // J. Exp. Bot. 2008. V. 59. № 2. P. 213–223. https://doi.org/10.1093/jxb/erm299

  3. Wurtzel E.T. Chapter five genomics, genetics, and biochemistry of maize carotenoid biosynthesis // Recent Adv. Phytochemistry. 2004. V. 38. P. 85–110. https://doi.org/10.1016/S0079-9920(04)80006-6

  4. Brown C.R., Culley C., Yang C.P. et al. Variation of anthocyanin and carotenoid contents and associated antioxidant values in potato breeding lines // J. Am. Soc. Horticultural Sci. 2005. V. 130. P. 174–180. https://doi.org/10.21273/JASHS.130.2.174

  5. Rosas-Saavedra C., Stange C. Biosynthesis of carotenoids in plants: enzymes and color // Subcell. Biochem. 2016. V. 79. P. 35–69. https://doi.org/10.1007/978-3-319-39126-7_2

  6. Dhar M.K., Mishra S., Bhat A. et al. Plant carotenoid cleavage oxygenases: structure-function relationships and role in development and metabolism // Brief Funct. Genomics. 2020. V. 19. № 1. P. 1–9. https://doi.org/10.1093/bfgp/elz037

  7. Huang X., Shi H., Hu Z. et al. ABA is involved in regulation of cold stress response in Bermudagrass // Front. Plant Sci. 2017. V. 8. https://doi.org/10.3389/fpls.2017.01613

  8. Nambara E., Marion-Poll A. Abscisic acid biosynthesis and catabolism // Annu. Rev. Plant Biol. 2005. V. 56. P. 165–185. https://doi.org/10.1146/annurev.arplant.56.032604.144046

  9. Cutler S.R., Rodriguez P.L., Finkelstein R.R. et al. Abscisic acid: emergence of a core signaling network // Annu. Rev. Plant Biol. 2010. V. 61. P. 651–679. https://doi.org/10.1146/annurev-arplant-042809-112122

  10. Fujisawa M., Watanabe M., Choi S.K. et al. Enrichment of carotenoids in flaxseed (Linum usitatissimum) by metabolic engineering with introduction of bacterial phytoene synthase gene crtB // J. Biosci. Bioeng. 2008. V. 105. № 6. P. 636–641. https://doi.org/10.1263/jbb.105.636

  11. Maass D., Arango J., Wüst F. et al. Carotenoid crystal formation in Arabidopsis and carrot roots caused by increased phytoene synthase protein levels // PLoS One. 2009. V. 4. https://doi.org/10.1371/journal.pone.0006373

  12. Naqvi S., Zhu C., Farre G. et al. Transgenic multivitamin corn through biofortification of endosperm with three vitamins representing three distinct metabolic pathways // PNAS. 2009. V. 106. № 19. P. 7762–7767. https://doi.org/10.1073/pnas.0901412106

  13. Ampomah-Dwamena C., Tomes S., Thrimawithana A.H. et al. Overexpression of PSY1 increases fruit skin and flesh carotenoid content and reveals associated transcription factors in apple (Malus × domestica) // Front. Plant Sci. 2022. V. 13. https://doi.org/10.3389/fpls.2022.967143

  14. Fraser P.D., Romer S., Shipton C.A. et al. Evaluation of transgenic tomato plants expressing an additional phytoene synthase in a fruit-specific manner // PNAS. 2002. V. 99. № 2. P. 1092–1097. https://doi.org/10.1073/pnas.241374598

  15. Ducreux L.J., Morris W.L., Hedley P.E. et al. Metabolic engineering of high carotenoid potato tubers containing enhanced levels of beta-carotene and lutein // J. Exp. Bot. 2005. V. 56. № 409. P. 81–89. https://doi.org/10.1093/jxb/eri016

  16. Diretto G., Tavazza R., Welsch R. et al. Metabolic engineering of potato tuber carotenoids through tuber-specific silencing of lycopene epsilon cyclase // BMC Plant Biol. 2006. V. 6. https://doi.org/10.1186/1471-2229-6-13

  17. Harjes C.E., Rocheford T.R., Bai L. et al. Natural genetic variation in lycopene epsilon cyclase tapped for maize biofortification // Science. 2008. V. 319. № 5861. P. 330–333. https://doi.org/10.1126/science.1150255

  18. Yu B., Lydiate D.J., Young L.W. et al. Enhancing the carotenoid content of Brassica napus seeds by downregulating lycopene epsilon cyclase // Transgenic Res. 2008. V. 17. № 4. P. 573–585. https://doi.org/10.1007/s11248-007-9131-x

  19. Zunjare R.U., Chhabra R., Hossain F. et al. Molecular characterization of 5' UTR of the lycopene epsilon cyclase (lcyE) gene among exotic and indigenous inbreds for its utilization in maize biofortification // 3 Biotech. 2018. V. 8. № 1. https://doi.org/10.1007/s13205-018-1100-y

  20. Zhu K., Zheng X., Ye J. et al. Building the synthetic biology toolbox with enzyme variants to expand opportunities for biofortification of provitamin A and other health-promoting carotenoids // J. Agric. Food Chem. 2020. V. 68. № 43. P. 12048–12057. https://doi.org/10.1021/acs.jafc.0c04740

  21. Ye X., Al-Babili S., Klöti A. et al. Engineering the provitamin A (beta-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm // Science. 2000. V. 287. № 5451. P. 303–305. https://doi.org/10.1126/science.287.5451.303

  22. Paine J.A., Shipton C.A., Chaggar S. et al. Improving the nutritional value of Golden Rice through increased pro-vitamin A content // Nat. Biotechnol. 2005. V. 23. № 4. P. 482–487. https://doi.org/10.1038/nbt1082

  23. D’Ambrosio C., Giorio G., Marino I. et al. Virtually complete conversion of lycopene into β-carotene in fruits of tomato plants transformed with the tomato lycopene β‑cyclase (tlcy-b) cDNA // Plant Science. 2004. V. 166. P. 207–214. https://doi.org/10.1016/j.plantsci.2003.09.015

  24. Gerjets T., Sandmann G. Ketocarotenoid formation in transgenic potato // J. Exp. Bot. 2006. V. 57. № 14. P. 3639–3645. https://doi.org/10.1093/jxb/erl103

  25. Arnoux P., Morosinotto T., Saga G. et al. A structural basis for the pH-dependent xanthophyll cycle in Arabidopsis thaliana // Plant Cell. 2009. V. 21. № 7. P. 2036–2044. https://doi.org/10.1105/tpc.109.068007

  26. Pastori G.M., Kiddle G., Antoniw J. et al. Leaf vitamin C contents modulate plant defense transcripts and regulate genes that control development through hormone signaling // Plant Cell. 2003. V. 15. № 4. P. 939–951. https://doi.org/10.1105/tpc.010538

  27. Tran B.Q., Tran L.H., Kim S.J. et al. Altered regulation of porphyrin biosynthesis and protective responses to acifluorfen-induced photodynamic stress in transgenic rice expressing Bradyrhizobium japonicum Fe-chelatase // Pestic. Biochem. Physiol. 2019. V. 159. P. 1–8. https://doi.org/10.1016/j.pestbp.2019.05.017

  28. Zita W., Bressoud S., Glauser G. et al. Chromoplast plastoglobules recruit the carotenoid biosynthetic pathway and contribute to carotenoid accumulation during tomato fruit maturation // PLoS One. 2022. V. 17. № 12. https://doi.org/10.1371/journal.pone.0277774

  29. Zhang Y.M., Wu R.H., Wang L. et al. Plastid diversity and chromoplast biogenesis in differently coloured carrots: role of the DcOR3Leu gene // Planta. 2022. V. 256(6). Article 104. https://doi.org/10.1007/s00425-022-04016-9

  30. Lu S., Van Eck J., Zhou X. et al. The cauliflower Or gene encodes a DnaJ cysteine-rich domain-containing protein that mediates high levels of beta-carotene accumulation // Plant Cell. 2006. V. 18. № 12. P. 3594–3605. https://doi.org/10.1105/tpc.106.046417

  31. Sierra J., McQuinn R.P., Leon P. The role of carotenoids as a source of retrograde signals: Impact on plant development and stress responses // J. Exp. Bot. 2022. V. 73. № 21. P. 7139–7154. https://doi.org/10.1093/jxb/erac292

  32. Eltawil M.A., Samuel D.K., Singhal O.P. Potato storage technology and store design aspects // Agricultural Engineering Intern.: CIGR J. 2006. V. VIII. № 11. P. 1–18.

  33. Brown C.R., Edwards C.G., Yang C.P. et al. Orange flesh trait in potato – inheritance and carotenoid content // J. Am. Soc. Horticultural Science. 1993. V. 118. P. 145–150. https://doi.org/10.21273/JASHS.118.1.145

  34. Payyavula R.S., Navarre D.A., Kuhl J.C. et al. Differential effects of environment on potato phenylpropanoid and carotenoid expression // BMC Plant Biol. 2012. V. 12. 39. https://doi.org/10.1186/1471-2229-12-39

  35. Fogelman E., Oren-Shamir M., Hirschberg J. et al. Nutritional value of potato (Solanum tuberosum) in hot climates: anthocyanins, carotenoids, and steroidal glycoalkaloids // Planta. 2019. V. 249. № 4. P. 1143–1155. https://doi.org/10.1007/s00425-018-03078-y

  36. Haider M.W., Nafees M., Ahmad I. et al. Postharvest dormancy-related changes of endogenous hormones in relation to different dormancy-breaking methods of potato (Solanum tuberosum L.) tubers // Front. Plant Sci. 2022. V. 13. https://doi.org/10.3389/fpls.2022.945256

  37. Wiberley-Bradford A.E., Busse J.S., Jiang J. et al. Sugar metabolism, chip color, invertase activity, and gene expression during long-term cold storage of potato (Solanum tuberosum) tubers from wild-type and vacuolar invertase silencing lines of Katahdin // BMC Res. Notes. 2014. V. 7. Article 801. https://doi.org/10.1186/1756-0500-7-801

  38. Efremov G.I., Slugina M.A., Shchennikova A.V. et al. Differential regulation of phytoene synthase PSY1 during fruit carotenogenesis in cultivated and wild tomato species (Solanum section Lycopersicon) // Plants. 2020. V. 9. № 9. https://doi.org/10.3390/plants9091169

  39. Filyushin M.A., Dzhos E.A., Shchennikova A.V. et al. Dependence of pepper fruit colour on basic pigments ratio and expression pattern of carotenoid and anthocyanin biosynthesis genes // Rus. J. Plant Physiol. 2020. V. 67. P. 1054–1062. https://doi.org/10.31857/S0015330320050048

  40. Lopez-Pardo R., de Galarreta J.I.R., Ritter E. Selection of housekeeping genes for qRT-PCR analysis in potato tubers under cold stress // Mol. Breeding. 2013. V. 31. № 1. P. 39–45. https://doi.org/10.1007/s11032-012-9766-z

  41. Tang X., Zhang N., Si H. et al. Selection and validation of reference genes for RT-qPCR analysis in potato under abiotic stress // Plant Methods. 2017. V. 13. № 85. https://doi.org/10.1186/s13007-017-0238-7

  42. Nesterenko S., Sink K.C. Carotenoid profiles of potato breeding lines and selected cultivars // Hortscience. 2003. V. 38. P. 1173–1177. https://doi.org/10.21273/HORTSCI.38.6.1173

  43. Morris W.L., Ducreux L., Griffiths D.W. et al. Carotenogenesis during tuber development and storage in potato // J. Exp. Bot. 2004. V. 55. № 399. P. 975–982. https://doi.org/10.1093/jxb/erh121

  44. Bartley G.E., Viitanen P.V., Bacot K.O. et al. A tomato gene expressed during fruit ripening encodes an enzyme of the carotenoid biosynthesis pathway // J. Biol. Chem. 1992. V. 267. P. 5036–5039. https://doi.org/10.1016/S0021-9258(18)42724-X

  45. Bartley G.E., Scolnik P.A. cDNA cloning, expression during development, and genome mapping of PSY2, a second tomato gene encoding phytoene synthase // J. Biol. Chem. 1993. V. 268. P. 25718–25721. https://doi.org/10.1016/S0021-9258(19)74448-2

  46. Pasare S., Wright K., Campbell R. et al. The sub-cellular localisation of the potato (Solanum tuberosum L.) carotenoid biosynthetic enzymes, CrtRb2 and PSY2 // Protoplasma. 2013. V. 250. № 6. P. 1381–1392. https://doi.org/10.1007/s00709-013-0521-z

  47. Stauder R., Welsch R., Camagna M. et al. Strigolactone levels in dicot roots are determined by an ancestral symbiosis-regulated clade of the PHYTOENE SYNTHASE gene family // Front. Plant Sci. 2018. V. 9. https://doi.org/10.3389/fpls.2018.00255

  48. Naing A.H., Kim C.K. Abiotic stress-induced anthocyanins in plants: Their role in tolerance to abiotic stresses // Physiol. Plant. 2021. V. 172. № 3. P. 1711–1723. https://doi.org/10.1111/ppl.13373

  49. Destefano-Beltrán L., Knauber D., Huckle L. et al. Effects of postharvest storage and dormancy status on ABA content, metabolism, and expression of genes involved in ABA biosynthesis and metabolism in potato tuber tissues // Plant Mol. Biol. 2006. V. 61. № 4-5. P. 687–697. https://doi.org/10.1007/s11103-006-0042-7

  50. Welsch R., Zhou X., Yuan H. et al. Clp protease and OR directly control the proteostasis of phytoene synthase, the crucial enzyme for carotenoid biosynthesis in Arabidopsis // Mol. Plant. 2018. V. 11. № 1. P. 149–162. https://doi.org/10.1016/j.molp.2017.11.003

  51. Osorio C.E. The role of Orange gene in carotenoid accumulation: manipulating chromoplasts toward a colored future // Front. Plant Sci. 2019. V. 10. https://doi.org/10.3389/fpls.2019.01235

  52. Tzuri G., Zhou X., Chayut N. et al. A ‘golden’ SNP in CmOr governs the fruit flesh color of melon (Cucumis melo) // Plant J. 2015. V. 82. P. 267–279. https://doi.org/10.1111/tpj.12814

  53. Yuan H., Owsiany K., Sheeja T.E. et al. A single amino acid substitution in an ORANGE protein promotes carotenoid overaccumulation in Arabidopsis // Plant Physiol. 2015. V. 169. № 1. P. 421–431. https://doi.org/10.1104/pp.15.00971

Дополнительные материалы отсутствуют.