Генетика, 2023, T. 59, № 9, стр. 981-1001

Клеточные и эпигенетические аспекты программирования тренированного иммунитета и перспективы создания универсальных вакцин в преддверии учащающихся пандемий

И. В. Алексеенко 12, Р. Г. Василов 1, Л. Г. Кондратьева 12*, С. В. Костров 1, И. П. Чернов 2, Е. Д. Свердлов 1**

1 Национальный исследовательский центр Курчатовский институт,
123182 Москва, Россия

2 Институт биоорганической химии им. академиков М.М. Шемякина и Ю.А. Овчинникова Российской академии наук
117997 Москва, Россия

* E-mail: liakondratyeva@yandex.ru
** E-mail: edsverd@gmail.com

Поступила в редакцию 14.04.2023
После доработки 19.04.2023
Принята к публикации 20.04.2023

Аннотация

Неизбежность вспышек пандемических болезней вызывает острую необходимость чрезвычайных мер, направленных на создание эффективных технологий снижения их вреда для человеческой популяции в промежуток времени от появления эпидемии до разработки соответствующих вакцин и организации их производства. В данном обзоре мы обсуждаем возможность создания универсальных вакцин, которые, используя неспецифический антипатогенный потенциал врожденного иммунитета, позволяли бы при появлении неидентифицированного патогена вакцинировать популяцию, в которой произошла вспышка болезни, и снижать ее остроту до появления специфических к данному патогену вакцин. В целом имеются убедительные доказательства того, что живые бактериальные или вирусные вакцины, например, от туберкулеза (БЦЖ), кори и полиомиелита, оказывают гетерологичное защитное воздействие против неродственных патогенов. Это связано со способностью врожденной иммунной системы хранить память о прошлых инфекциях и использовать ее для выработки иммунной защиты против новых. Этот эффект получил название “обученного” или “тренированного” иммунитета. Использование тренированного иммунитета также может представлять собой важный новый подход к улучшению существующих вакцин или к разработке новых вакцин, которые сочетают в себе индукцию классической адаптивной иммунной памяти и врожденной иммунной памяти. Такие подходы могут быть усилены с помощью генетических технологий и могут оказаться чрезвычайно полезными в борьбе с будущими пандемиями.

Ключевые слова: БЦЖ, врожденная иммунная система, мостовые вакцины, тренированный иммунитет, TLR.

Список литературы

  1. Garcia D. Redirect military budgets to tackle climate change and pandemics // Nature. 2020. V. 584. № 7822. P. 521–523. https://doi.org/10.1038/d41586-020-02460-9

  2. Steffen W., Richardson K., Rockstrom J. et al. Sustainability. Planetary boundaries: guiding human development on a changing planet // Science. 2015. V. 347. № 6223. https://doi.org/10.1126/science.1259855

  3. Vora N.M., Hannah L., Lieberman S. et al. Want to prevent pandemics? Stop spillovers // Nature. 2022. V. 605. № 7910. P. 419–422. https://doi.org/10.1038/d41586-022-01312-y

  4. Lennan M., Morgera E. The glasgow climate conference (COP26) // The Intern. J. of Marine and Coastal Law. 2022. V. 37. № 1. P. 137–151. https://doi.org/10.1163/15718085-bja10083

  5. Schiermeier Q. The US has left the Paris climate deal – what’s next? // Nature. 2020. https://doi.org/10.1038/d41586-020-03066-x

  6. Rounce D.R., Hock R., Maussion F. et al. Global glacier change in the 21st century: Every increase in temperature matters // Science. 2023. V. 379. № 6627. P. 78–83. https://doi.org/10.1126/science.abo1324

  7. Phelan A.L., Carlson C.J. A treaty to break the pandemic cycle // Science. 2022. V. 377. № 6605. P. 475–477. https://doi.org/10.1126/science.abq5917

  8. A Pandemic Era // Lancet Planet Health. 2021. V. 5. № 1. P. e1. https://doi.org/10.1016/s2542-5196(20)30305-3

  9. Fisher D., Suri S., Carson G. et al. What comes next in the COVID-19 pandemic? // Lancet. 2022. V. 399. № 10336. P. 1691–1692. https://doi.org/10.1016/S0140-6736(22)00580-3

  10. Baker R.E., Mahmud A.S., Miller I.F. et al. Infectious disease in an era of global change // Nat. Rev. Microbiol. 2022. V. 20. № 4. P. 193–205. https://doi.org/10.1038/s41579-021-00639-z

  11. Mulder W.J.M., Ochando J., Joosten L.A.B. et al. Therapeutic targeting of trained immunity // Nat. Rev. Drug Discov. 2019. V. 18. № 7. P. 553–566. https://doi.org/10.1038/s41573-019-0025-4

  12. Old L.J., Clarke D.A., Benacerraf B. Effect of Bacillus Calmette-Guerin infection on transplanted tumours in the mouse // Nature. 1959. V. 184 (Suppl. 5). P. 291–292. https://doi.org/10.1038/184291a0

  13. Gong W., An H., Wang J. et al. The natural effect of BCG vaccination on COVID-19: The debate continues // Front. Immunol. 2022. V. 13. https://doi.org/10.3389/fimmu.2022.953228

  14. Gonzalez-Perez M., Sanchez-Tarjuelo R., Shor B. et al. The BCG vaccine for COVID-19: First verdict and future directions // Front. Immunol. 2021. V. 12. https://doi.org/10.3389/fimmu.2021.632478

  15. Carlson C.J., Phelan A.L. A choice between two futures for pandemic recovery // Lancet Planet Health. 2020. V. 4. № 12. P. e545–e546. https://doi.org/10.1016/S2542-5196(20)30245-X

  16. Hernandez J., Meisner J., Bardosh K., Rabinowitz P. Prevent pandemics and halt climate change? Strengthen land rights for Indigenous peoples // Lancet Planet Health. 2022. V. 6. № 5. P. e381–e382. https://doi.org/10.1016/S2542-5196(22)00069-9

  17. Jones M., Mills D., Gray R. Expecting the unexpected? Improving rural health in the era of bushfires, novel coronavirus and climate change // Aust. J. Rural Health. 2020. V. 28. № 2. P. 107–109. https://doi.org/10.1111/ajr.12623

  18. The Lancet Global collaboration for health: rhetoric versus reality // Lancet. 2020. V. 396. № 10253. P. 735. https://doi.org/10.1016/S0140-6736(20)31900-0

  19. Murdoch D.R., Crengle S., Frame B. et al. We have been warned–preparing now to prevent the next pandemic // N.Z. Med. J. 2021. V. 134. № 1536. P. 8–11.

  20. Selin N.E. Lessons from a pandemic for systems-oriented sustainability research // Sci. Adv. 2021. V. 7. № 22.https://doi.org/10.1126/sciadv.abd8988

  21. Folke C., Polasky S., Rockstrom J. et al. Our future in the Anthropocene biosphere // Ambio. 2021. V. 50. № 4. P. 834–869. https://doi.org/10.1007/s13280-021-01544-8

  22. Cousins T., Pentecost M., Alvergne A. et al. The changing climates of global health // BMJ Glob Health. 2021. V. 6. № 3. https://doi.org/10.1136/bmjgh-2021-005442

  23. Sleepwalking into the next pandemic // Nat. Med. 2022. V. 28. № 7. P. 1325. https://doi.org/10.1038/s41591-022-01918-9

  24. Meyer C.U., Zepp F. Principles in immunology for the design and development of vaccines // Methods Mol. Biol. 2022. V. 2410. P. 27–56. https://doi.org/10.1007/978-1-0716-1884-4_2

  25. Arico E., Bracci L., Castiello L. et al. Exploiting natural antiviral immunity for the control of pandemics: Lessons from Covid-19 // Cytokine Growth Factor Rev. 2022. V. 63. P. 23–33. https://doi.org/10.1016/j.cytogfr.2021.12.001

  26. Yan N., Chen Z.J. Intrinsic antiviral immunity // Nat. Immunol. 2012. V. 13. № 3. P. 214–222. https://doi.org/10.1038/ni.2229

  27. Netea M.G., Dominguez-Andres J., Barreiro L.B. et al. Defining trained immunity and its role in health and disease // Nat. Rev. Immunol. 2020. V. 20. № 6. P. 375–388. https://doi.org/10.1038/s41577-020-0285-6

  28. Netea M.G., Giamarellos-Bourboulis E.J., Dominguez-Andres J. et al. Trained immunity: A tool for reducing susceptibility to and the severity of SARS-CoV-2 infection // Cell. 2020. V. 181. № 5. P. 969–977. https://doi.org/10.1016/j.cell.2020.04.042

  29. Paul S., Hmar E.B., Sharma H.K. Strengthening immunity with immunostimulants: a review // Curr. Trends Pharm. Res. 2020. V. 7. № 1.

  30. Anaeigoudari A., Mollaei H.R., Arababadi M.K., Nosratabadi R. Severe acute respiratory syndrome coronavirus 2: The role of the main components of the innate immune system // Inflammation. 2021. V. 44. № 6. P. 2151–2169. https://doi.org/10.1007/s10753-021-01519-7

  31. Fraschilla I., Amatullah H., Jeffrey K.L. One genome, many cell states: epigenetic control of innate immunity // Curr. Opin. Immunol. 2022. V. 75. https://doi.org/10.1016/j.coi.2022.102173

  32. Ong G.H., Lian B.S.X., Kawasaki T., Kawai T. Exploration of pattern recognition receptor agonists as candidate adjuvants // Front. Cell. Infect. Microbiol. 2021. V. 11. https://doi.org/10.3389/fcimb.2021.745016

  33. Labarrere C.A., Kassab G.S. Pattern recognition proteins: First line of defense against coronaviruses // Front. Immunol. 2021. V. 12. https://doi.org/10.3389/fimmu.2021.652252

  34. Marshall J.S., Warrington R., Watson W., Kim H.L. An introduction to immunology and immunopathology // Allergy Asthma Clin. Immunol. 2018. V. 14. Suppl. 2. P. 49. https://doi.org/10.1186/s13223-018-0278-1

  35. Chen L., Deng H., Cui H. et al. Inflammatory responses and inflammation-associated diseases in organs // Oncotarget. 2018. V. 9. № 6. P. 7204–7218. https://doi.org/10.18632/oncotarget.23208

  36. Jentho E., Weis S. DAMPs and Innate Immune Training // Front. Immunol. 2021. V. 12. https://doi.org/10.3389/fimmu.2021.699563

  37. Zhang J.M., An J. Cytokines, inflammation, and pain // Int. Anesthesiol. Clin. 2007. V. 45. № 2. P. 27–37. https://doi.org/10.1097/AIA.0b013e318034194e

  38. Lazzaro B.P., Tate A.V. Balancing sensitivity, risk, and immunopathology in immune regulation // Curr. Opin. Insect. Sci. 2022. V. 50. https://doi.org/10.1016/j.cois.2022.100874

  39. McDaniel M.M., Meibers H.E., Pasare C. Innate control of adaptive immunity and adaptive instruction of innate immunity: bi-directional flow of information // Curr. Opin. Immunol. 2021. V. 73. P. 25–33. https://doi.org/10.1016/j.coi.2021.07.013

  40. Vincenzo B., Asif I.J., Nikolaos P., Francesco M. Adaptive immunity and inflammation // Int. J. Inflam. 2015. V. 2015. https://doi.org/10.1155/2015/575406

  41. Kiss A. Inflammation in focus: The beginning and the end // Pathol. Oncol. Res. 2021. V. 27. https://doi.org/10.3389/pore.2021.1610136

  42. Tercan H., Riksen N.P., Joosten L.A.B. et al. Trained immunity: Long-term adaptation in innate immune responses // Arterioscler. Thromb. Vasc. Biol. 2021. V. 41. № 1. P. 55–61. https://doi.org/10.1161/ATVBAHA.120.314212

  43. Ziogas A., Netea M.G. Trained immunity-related vaccines: innate immune memory and heterologous protection against infections // Trends Mol. Med. 2022. V. 28. № 6. P. 497–512. https://doi.org/10.1016/j.molmed.2022.03.009

  44. Barton G.M. A calculated response: Control of inflammation by the innate immune system // J. Clin. Invest. 2008. V. 118. № 2. P. 413–420. https://doi.org/10.1172/JCI34431

  45. Sun L., Yang X., Yuan Z., Wang H. Metabolic reprogramming in immune response and tissue inflammation // Arterioscler. Thromb. Vasc. Biol. 2020. V. 40. № 9. P. 1990–2001. https://doi.org/10.1161/ATVBAHA.120.314037

  46. Domínguez-Andrés J., van Crevel R., Divangahi M., Netea M. G. Designing the next generation of vaccines: Relevance for future pandemics // MBio. 2020. V. 11. № 6. https://doi.org/10.1128/mBio.02616-20

  47. Netea M.G., Joosten L.A., Latz E. et al. Trained immunity: A program of innate immune memory in health and disease // Science. 2016. V. 352. № 6284. https://doi.org/10.1126/science.aaf1098

  48. Kopf M., Nielsen P.J. Training myeloid precursors with fungi, bacteria and chips // Nat. Immunol. 2018. V. 19. № 4. P. 320–322. https://doi.org/10.1038/s41590-018-0073-7

  49. Larenas-Linnemann D., Rodriguez-Perez N., Arias-Cruz A. et al. Enhancing innate immunity against virus in times of COVID-19: Trying to untangle facts from fictions // World Allergy Organ. J. 2020. V. 13. № 11. https://doi.org/10.1016/j.waojou.2020.100476

  50. Geckin B., Konstantin Fohse F., Dominguez-Andres J., Netea M.G. Trained immunity: implications for vaccination // Curr. Opin. Immunol. 2022. V. 77. https://doi.org/10.1016/j.coi.2022.102190

  51. Dominguez-Andres J., Netea M.G. Long-term reprogramming of the innate immune system // J. Leukoc. Biol. 2019. V. 105. № 2. P. 329–338. https://doi.org/10.1002/JLB.MR0318-104R

  52. De Zuani M., Fric J. Train the trainer: Hematopoietic stem cell control of trained immunity // Front. Immunol. 2022. V. 13. https://doi.org/10.3389/fimmu.2022.827250

  53. Arneth B. Trained innate immunity // Immunol. Res. 2021. V. 69. № 1. P. 1–7. https://doi.org/10.1007/s12026-021-09170-y

  54. Bekkering S., Blok B.A., Joosten L.A. et al. In vitro experimental model of trained innate immunity in human primary monocytes // Clin. Vaccine Immunol. 2016. V. 23. № 12. P. 926–933. https://doi.org/10.1128/CVI.00349-16

  55. Ciarlo E., Heinonen T., Theroude C. et al. Trained immunity confers broad-spectrum protection against bacterial infections // J. Infect. Dis. 2020. V. 222. № 11. P. 1869–1881. https://doi.org/10.1093/infdis/jiz692

  56. Dominguez-Andres J., Arts R.J.W., Bekkering S. et al. In vitro induction of trained immunity in adherent human monocytes // STAR Protoc. 2021. V. 2. № 1. https://doi.org/10.1016/j.xpro.2021.100365

  57. Drummer C.V., Saaoud F., Shao Y. et al. Trained immunity and reactivity of macrophages and endothelial cells // Arterioscler. Thromb. Vasc. Biol. 2021. V. 41. № 3. P. 1032–1046. https://doi.org/10.1161/ATVBAHA.120.315452

  58. Hellinga A.H., Tsallis T., Eshuis T. et al. In vitro induction of trained innate immunity by bIgG and whey protein extracts // Int. J. Mol. Sci. 2020. V. 21. № 23. https://doi.org/10.3390/ijms21239077

  59. Mourits V.P., Arts R.J.W., Novakovic B. et al. The role of Toll-like receptor 10 in modulation of trained immunity // Immunology. 2020. V. 159. № 3. P. 289–297. https://doi.org/10.1111/imm.13145

  60. Netea M.G., Schlitzer A., Placek K. et al. Innate and adaptive immune memory: An evolutionary continuum in the host’s response to pathogens // Cell Host Microbe. 2019. V. 25. № 1. P. 13–26. https://doi.org/10.1016/j.chom.2018.12.006

  61. Pasco S.T., Anguita J. Lessons from Bacillus calmette-guerin: Harnessing trained immunity for vaccine development // Cells. 2020. V. 9. № 9. https://doi.org/10.3390/cells9092109

  62. Peignier A., Parker D. Trained immunity and host-pathogen interactions // Cell. Microbiol. 2020. V. 22. № 12. https://doi.org/10.1111/cmi.13261

  63. Locht C., Lerm M. Good old BCG – what a century-old vaccine can contribute to modern medicine // J. Intern. Med. 2020. V. 288. № 6. P. 611–613. https://doi.org/10.1111/joim.13195

  64. Moulson A.J., Av-Gay Y. BCG immunomodulation: From the “hygiene hypothesis” to COVID-19 // Immunobiology. 2021. V. 226. № 1. https://doi.org/10.1016/j.imbio.2020.152052

  65. Taks E.J.M., Moorlag S., Netea M.G., van der Meer J.W.M. Shifting the immune memory paradigm: Trained immunity in viral infections // Annu. Rev. Virol. V. 9. № 1. P. 469–489. https://doi.org/10.1146/annurev-virology-091919-072546

  66. Alsulaiman J.W., Khasawneh A.I., Kheirallah K.A. Could “trained immunity” be induced by live attenuated vaccines protect against COVID-19? Review of available evidence // J. Infect. Dev. Ctries. 2020. V. 14. № 9. P. 957–962. https://doi.org/10.3855/jidc.12805

  67. Chumakov K., Avidan M.S., Benn C.S. et al. Old vaccines for new infections: Exploiting innate immunity to control COVID-19 and prevent future pandemics // Proc. Natl Acad. Sci. USA. 2021. V. 118. № 21. https://doi.org/10.1073/pnas.2101718118

  68. Bekkering S., Dominguez-Andres J., Joosten L.A.B. et al. Trained immunity: Reprogramming innate immunity in health and disease // Annu. Rev. Immunol. 2021. V. 39. P. 667–693. https://doi.org/10.1146/annurev-immunol-102119-073855

  69. Bindu S., Dandapat S., Manikandan R. et al. Prophylactic and therapeutic insights into trained immunity: A renewed concept of innate immune memory // Hum. Vaccin. Immunother. 2022. V. 18. № 1. https://doi.org/10.1080/21645515.2022.2040238

  70. Sherwood E.R., Burelbach K.R., McBride M.A. et al. Innate immune memory and the host response to infection // J. Immunol. 2022. V. 208. № 4. P. 785–792. https://doi.org/10.4049/jimmunol.2101058

  71. Marin-Hernandez D., Nixon D.F., Hupert N. Heterologous vaccine interventions: boosting immunity against future pandemics // Mol. Med. 2021. V. 27. № 1. P. 54. https://doi.org/10.1186/s10020-021-00317-z

  72. Hu Z., Lu S.H., Lowrie D.B., Fan X.Y. Trained immunity: A Yin-Yang balance // MedComm. 2022. V. 3. № 1. https://doi.org/10.1002/mco2.121

  73. Ross E.A., Devitt A., Johnson J.R. Macrophages: The Good, the Bad, and the Gluttony // Front. Immunol. 2021. V. 12. https://doi.org/10.3389/fimmu.2021.708186

  74. Prame Kumar K., Nicholls A.J., Wong C.H.Y. Partners in crime: neutrophils and monocytes/macrophages in inflammation and disease // Cell Tissue Res. 2018. V. 371. № 3. P. 551–565. https://doi.org/10.1007/s00441-017-2753-2

  75. Rawat S., Vrati S., Banerjee A. Neutrophils at the crossroads of acute viral infections and severity // Mol. Aspects Med. 2021. V. 81. https://doi.org/10.1016/j.mam.2021.100996

  76. Schulz C., Petzold T., Ishikawa-Ankerhold H. Macrophage regulation of granulopoiesis and neutrophil functions // Antioxid. Redox Signal. 2021. V. 35. № 3. P. 182–191. https://doi.org/10.1089/ars.2020.8203

  77. Acevedo O.A., Berrios R.V., Rodriguez-Guilarte L. et al. Molecular and cellular mechanisms modulating trained immunity by various cell types in response to pathogen encounter // Front. Immunol. 2021. V. 12. https://doi.org/10.3389/fimmu.2021.745332

  78. Eiz-Vesper B., Schmetzer H.M. Antigen-presenting cells: potential of proven und new players in immune therapies // Transfus. Med. Hemother. 2020. V. 47. № 6. P. 429–431. https://doi.org/10.1159/000512729

  79. Arango Duque G., Descoteaux A. Macrophage cytokines: Involvement in immunity and infectious diseases // Front. Immunol. 2014. V. 5. https://doi.org/10.3389/fimmu.2014.00491

  80. Yu S., Ge H., Li S., Qiu H.J. Modulation of macrophage polarization by viruses: turning off/on host antiviral responses // Front. Microbiol. 2022. V. 13. https://doi.org/10.3389/fmicb.2022.839585

  81. Banete A., Barilo J., Whittaker R., Basta S. The activated macrophage – A tough fortress for virus invasion: How viruses strike back // Front. Microbiol. 2021. V. 12. https://doi.org/10.3389/fmicb.2021.803427

  82. Patel S., Werstuck G.H. Macrophage function and the role of GSK3 // Int. J. Mol. Sci. 2021. V. 22. № 4. P. 2206. https://doi.org/10.3390/ijms22042206

  83. Su D.L., Lu Z.M., Shen M.N. et al. Roles of pro- and anti-inflammatory cytokines in the pathogenesis of SLE // J. Biomed. Biotechnol. 2012. V. 2012. https://doi.org/10.1155/2012/347141

  84. Sanchez-Paulete A.R., Teijeira A., Cueto F.J. et al. Antigen cross-presentation and T-cell cross-priming in cancer immunology and immunotherapy // Ann. Oncol. 2017. V. 28. Suppl. 12. P. xii44–xii55. https://doi.org/10.1093/annonc/mdx237

  85. Thaiss C.A., Semmling V., Franken L. et al. Chemo-kines: A new dendritic cell signal for T-cell activation // Front. Immunol. 2011. V. 2. https://doi.org/10.3389/fimmu.2011.00031

  86. Kurts C., Robinson B.W., Knolle P.A. Cross-priming in health and disease // Nat. Rev. Immunol. 2010. V. 10. № 6. P. 403–414. https://doi.org/10.1038/nri2780

  87. Kumar V. Innate lymphoid cell and adaptive immune cell cross-talk: A talk meant not to forget // J. Leukoc. Biol. 2020. V. 108. № 1. P. 397–417. https://doi.org/10.1002/JLB.4MIR0420-500RRR

  88. Bennstein S.B., Uhrberg M. Biology and therapeutic potential of human innate lymphoid cells // FEBS J. 2022. V. 289. № 14. P. 3967–3981. https://doi.org/10.1111/febs.15866

  89. Pelletier A., Stockmann C. The Metabolic Basis of ILC Plasticity // Front. Immunol. 2022. V. 13. https://doi.org/10.3389/fimmu.2022.858051

  90. Favaro R.R., Phillips K., Delaunay-Danguy R. et al. Emerging concepts in innate lymphoid cells, memory, and reproduction // Front. Immunol. 2022. V. 13. https://doi.org/10.3389/fimmu.2022.824263

  91. Cobb L.M., Verneris M.R. Therapeutic manipulation of innate lymphoid cells // JCI Insight. 2021. V. 6. № 6. https://doi.org/10.1172/jci.insight.146006

  92. Yin G., Zhao C., Pei W. Crosstalk between macrophages and innate lymphoid cells (ILCs) in diseases // Int. Immunopharmacol. 2022. V. 110. https://doi.org/10.1016/j.intimp.2022.108937

  93. Verma D., Verma M., Mishra R. Stem cell therapy and innate lymphoid cells // Stem Cells Int. 2022. V. 2022. https://doi.org/10.1155/2022/3530520

  94. Mitroulis I., Ruppova K., Wang B. et al. Modulation of myelopoiesis progenitors is an integral component of trained immunity // Cell. 2018. V. 172. № 1–2. P. 147–161 e12. https://doi.org/10.1016/j.cell.2017.11.034

  95. Song W.M., Colonna M. Immune training unlocks innate potential // Cell. 2018. V. 172. № 1–2. P. 3–5. https://doi.org/10.1016/j.cell.2017.12.034

  96. Fanucchi S., Dominguez-Andres J., Joosten L.A.B. et al. The intersection of epigenetics and metabolism in trained immunity // Immunity. 2021. V. 54. № 1. P. 32–43. https://doi.org/10.1016/j.immuni.2020.10.011

  97. Saeed S., Quintin J., Kerstens H.H. et al. Epigenetic programming of monocyte-to-macrophage differentiation and trained innate immunity // Science. 2014. V. 345. № 6204. https://doi.org/10.1126/science.1251086

  98. Ferreira A.V., Domiguez-Andres J., Netea M.G. The role of cell metabolism in innate immune memory // J. Innate Immun. 2022. V. 14. № 1. P. 42–50. https://doi.org/10.1159/000512280

  99. Diskin C., Palsson-McDermott E.M. Metabolic modulation in macrophage effector function // Front. Immunol. 2018. V. 9. https://doi.org/10.3389/fimmu.2018.00270

  100. Llibre A., Dedicoat M., Burel J.G. et al. Host immune-metabolic adaptations upon mycobacterial infections and associated co-morbidities // Front. Immunol. 2021. V. 12. https://doi.org/10.3389/fimmu.2021.747387

  101. Gauthier T., Chen W. Modulation of macrophage immunometabolism: a new approach to fight infections // Front. Immunol. 2022. V. 13. https://doi.org/10.3389/fimmu.2022.780839

  102. Saini A., Ghoneim H.E., Lio C.J. et al. Gene regulatory circuits in innate and adaptive immune cells // Annu. Rev. Immunol. 2022. V. 40. P. 387–411. https://doi.org/10.1146/annurev-immunol-101320-025949

  103. Topfer E., Boraschi D., Italiani P. Innate immune memory: The latest frontier of adjuvanticity // J. Immunol. Res. 2015. V. 2015. https://doi.org/10.1155/2015/478408

  104. Pei G., Dorhoi A. NOD-like receptors: guards of cellular homeostasis perturbation during infection // Int. J. Mol. Sci. 2021. V. 22. № 13. https://doi.org/10.3390/ijms22136714

  105. Duan T., Du Y., Xing C. et al. Toll-like receptor signaling and its role in cell-mediated immunity // Front. Immunol. 2022. V. 13. https://doi.org/10.3389/fimmu.2022.812774

  106. Behzadi P., Garcia-Perdomo H.A., Karpinski T.M. Toll-like receptors: general molecular and structural biology // J. Immunol. Res. 2021. V. 2021. https://doi.org/10.1155/2021/9914854

  107. Jannuzzi G.P., de Almeida J.R.F., Paulo L.N.M. et al. Intracellular PRRs activation in targeting the immune response against fungal infections // Front. Cell. Infect. Microbiol. 2020. V. 10. https://doi.org/10.3389/fcimb.2020.591970

  108. Lee B.L., Barton G.M. Trafficking of endosomal Toll-like receptors // Trends Cell. Biol. 2014. V. 24. № 6. P. 360–369. https://doi.org/10.1016/j.tcb.2013.12.002

  109. Blasius A.L., Beutler B. Intracellular toll-like receptors // Immunity. 2010. V. 32. № 3. P. 305–315. https://doi.org/10.1016/j.immuni.2010.03.012

  110. Petes C., Odoardi N., Gee K. The toll for trafficking: Toll-like receptor 7 delivery to the endosome // Front. Immunol. 2017. V. 8. https://doi.org/10.3389/fimmu.2017.01075

  111. Xia P., Wu Y., Lian S. et al. Research progress on Toll-like receptor signal transduction and its roles in antimicrobial immune responses // Appl. Microbiol. Biotechnol. 2021. V. 105. № 13. P. 5341–5355. https://doi.org/10.1007/s00253-021-11406-8

  112. Huang L., Ge X., Liu Y. et al. The role of toll-like receptor agonists and their nanomedicines for tumor immunotherapy // Pharmaceutics. 2022. V. 14. № 6. https://doi.org/10.3390/pharmaceutics14061228

  113. Diaz-Dinamarca D.A., Salazar M.L., Castillo B.N. et al. Protein-based adjuvants for vaccines as immunomodulators of the innate and adaptive immune response: Current knowledge, challenges, and future opportunities // Pharmaceutics. 2022. V. 14. № 8. https://doi.org/10.3390/pharmaceutics14081671

  114. Sartorius R., Trovato M., Manco R. et al. Exploiting viral sensing mediated by Toll-like receptors to design innovative vaccines // NPJ Vaccines. 2021. V. 6. № 1. P. 127. https://doi.org/10.1038/s41541-021-00391-8

  115. Rumpret M., von Richthofen H.J., Peperzak V., Meyaard L. Inhibitory pattern recognition receptors // J. Exp. Med. 2022. V. 219. № 1. https://doi.org/10.1084/jem.20211463

  116. Mielcarska M.B., Bossowska-Nowicka M., Toka F.N. Cell surface expression of endosomal toll-like receptors-a necessity or a superfluous duplication? // Front. Immunol. 2020. V. 11. https://doi.org/10.3389/fimmu.2020.620972

  117. Turley J.L., Lavelle E.P. Resolving adjuvant mode of action to enhance vaccine efficacy // Curr. Opin. Immunol. 2022. V. 77. https://doi.org/10.1016/j.coi.2022.102229

  118. Pulendran B., Arunachalam P.S., O’Hagan D.V. Emerging concepts in the science of vaccine adjuvants // Nat. Rev. Drug. Discov. 2021. № 20. P. 454–475. https://doi.org/10.1038/s41573-021-00163-y

  119. Kumar S., Sunagar R., Gosselin E. Bacterial protein toll-like-receptor agonists: A novel perspective on vaccine adjuvants // Front. Immunol. 2019. V. 10. https://doi.org/10.3389/fimmu.2019.01144

  120. Yang J.X., Tseng J.C., Yu G.Y. et al. Recent advances in the development of toll-like receptor agonist-based vaccine adjuvants for infectious diseases // Pharmaceutics. 2022. V. 14. № 2. https://doi.org/10.3390/pharmaceutics14020423

  121. Xu Z., Moyle P.M. Bioconjugation approaches to producing subunit vaccines composed of protein or peptide antigens and covalently attached toll-like receptor ligands // Bioconjug. Chem. 2018. V. 29. № 3. P. 572–586. https://doi.org/10.1021/acs.bioconjchem.7b00478

  122. Lee W., Suresh M. Vaccine adjuvants to engage the cross-presentation pathway // Front. Immunol. 2022. V. 13. https://doi.org/10.3389/fimmu.2022.940047

  123. Kaur A., Baldwin J., Brar D. et al. Toll-like receptor (TLR) agonists as a driving force behind next-generation vaccine adjuvants and cancer therapeutics // Curr. Opin. Chem. Biol. 2022. V. 70. https://doi.org/10.1016/j.cbpa.2022.102172

  124. Farooq M., Batool M., Kim M.S., Choi S. Toll-like receptors as a therapeutic target in the era of immunotherapies // Front. Cell. Dev. Biol. 2021. V. 9. https://doi.org/10.3389/fcell.2021.756315

  125. Bogunovic D., Manches O., Godefroy E. et al. TLR4 engagement during TLR3-induced proinflammatory signaling in dendritic cells promotes IL-10-mediated suppression of antitumor immunity // Cancer Res. 2011. V. 71. № 16. P. 5467–5476. https://doi.org/10.1158/0008-5472.CAN-10-3988

  126. Goodridge H.S., Ahmed S.S., Curtis N. et al. Harnessing the beneficial heterologous effects of vaccination // Nat. Rev. Immunol. 2016. V. 16. № 6. P. 392–400. https://doi.org/10.1038/nri.2016.43

  127. Shann F. The non-specific effects of vaccines // Arch. Dis. Child. 2010. V. 95. № 9. P. 662–667. https://doi.org/10.1136/adc.2009.157537

  128. Aaby P., Roth A., Ravn H. et al. Randomized trial of BCG vaccination at birth to low-birth-weight children: Beneficial nonspecific effects in the neonatal period? // J. Infect. Dis. 2011. V. 204. № 2. P. 245–252. https://doi.org/10.1093/infdis/jir240

  129. Bagcchi S. WHO’s global tuberculosis report 2022 // The Lancet Microbe. 2023. V. 4. № 1. P. e20. https://doi.org/10.1016/S2666-5247(22)00359-7

  130. Escobar L.E., Molina-Cruz A., Barillas-Mury C. BCG vaccine protection from severe coronavirus disease 2019 (COVID-19) // Proc. Natl Acad. Sci. USA. 2020. V. 117. № 30. P. 17720–17726. https://doi.org/10.1073/pnas.2008410117

  131. Aaby P., Benn C.S. Developing the concept of beneficial non-specific effect of live vaccines with epidemiological studies // Clin. Microbiol. Infect. 2019. V. 25. № 12. P. 1459–1467. https://doi.org/10.1016/j.cmi.2019.08.011

  132. Larsen S.E., Williams B.D., Rais M. et al. It takes a village: The multifaceted immune response to Mycobacterium tuberculosis infection and vaccine-induced immunity // Front. Immunol. 2022. V. 13. https://doi.org/10.3389/fimmu.2022.840225

  133. Nieuwenhuizen N.E., Kulkarni P.S., Shaligram U. et al. The recombinant bacille calmette-guerin vaccine VPM1002: Ready for clinical efficacy testing // Front. Immunol. 2017. V. 8. https://doi.org/10.3389/fimmu.2017.01147

  134. Nieuwenhuizen N.E., Kaufmann S.H.E. Next-generation vaccines based on bacille calmette-guerin // Front. Immunol. 2018. V. 9. https://doi.org/10.3389/fimmu.2018.00121

  135. Camilli G., Bohm M., Piffer A.P. et al. beta-Glucan-induced reprogramming of human macrophages inhibits NLRP3 inflammasome activation in cryopyrinopathies // J. Clin. Invest. 2020. V. 130. № 9. P. 4561–4573. https://doi.org/10.1172/JCI134778

  136. Moorlag S., van Deuren R.P., van Werkhoven C.H. et al. Safety and COVID-19 symptoms in individuals recently vaccinated with BCG: A retrospective cohort study // Cell. Rep. Med. 2020. V. 1. № 5. https://doi.org/10.1016/j.xcrm.2020.100073

  137. Smith S.G., Kleinnijenhuis J., Netea M.G., Dockrell H.M. Whole blood profiling of bacillus calmette-guerin-induced trained innate immunity in infants identifies epidermal growth factor, IL-6, platelet-derived growth factor-AB/BB, and natural killer cell activation // Front. Immunol. 2017. V. 8. https://doi.org/10.3389/fimmu.2017.00644

  138. Lee M.H., Kim B.J. COVID-19 vaccine development based on recombinant viral and bacterial vector systems: Combinatorial effect of adaptive and trained immunity // J. Microbiol. 2022. V. 60. № 3. P. 321–334. https://doi.org/10.1007/s12275-022-1621-2

  139. Gupta P.K. New disease old vaccine: Is recombinant BCG vaccine an answer for COVID-19? // Cell. Immunol. 2020. V. 356. https://doi.org/10.1016/j.cellimm.2020.104187

  140. Kaur G., Singh S., Nanda S. et al. Fiction and facts about BCG imparting trained immunity against COVID-19 // Vaccines (Basel). 2022. V. 10. № 7. https://doi.org/10.3390/vaccines10071006

  141. Melenotte C., Silvin A., Goubet A.G. et al. Immune responses during COVID-19 infection // Oncoimmunology. 2020. V. 9. № 1. https://doi.org/10.1080/2162402X.2020.1807836

  142. Kleen T.O., Galdon A.A., MacDonald A.S., Dalgleish A.G. Mitigating coronavirus induced dysfunctional immunity for at-risk populations in COVID-19: Trained immunity, BCG and “New Old Friends” // Front. Immunol. 2020. V. 11. https://doi.org/10.3389/fimmu.2020.02059

  143. Seo S.U., Seong B.L. Prospects on repurposing a live attenuated vaccine for the control of unrelated infections // Front. Immunol. 2022. V. 13. https://doi.org/10.3389/fimmu.2022.877845

  144. Basak P., Sachdeva N., Dayal D. Can BCG vaccine protect against COVID-19 via trained immunity and tolerogenesis? // Bioessays. 2021. V. 43. № 3. https://doi.org/10.1002/bies.202000200

  145. Mysore V., Cullere X., Settles M.L. et al. Protective heterologous T cell immunity in COVID-19 induced by the trivalent MMR and Tdap vaccine antigens // Med (N.Y.). 2021. V. 2. № 9. P. 1050–1071 e7. https://doi.org/10.1016/j.medj.2021.08.004

  146. Malik Y.S., Ansari M.I., Ganesh B. et al. BCG vaccine: A hope to control COVID-19 pandemic amid crisis // Hum. Vaccin. Immunother. 2020. V. 16. № 12. P. 2954–2962. https://doi.org/10.1080/21645515.2020.1818522

  147. Jung H.E., Lee H.K. Current understanding of the innate control of toll-like receptors in response to SARS-CoV-2 infection // Viruses. 2021. V. 13. № 11. https://doi.org/10.3390/v13112132

  148. Kayesh M.E.H., Kohara M., Tsukiyama-Kohara K. An overview of recent insights into the response of TLR to SARS-CoV-2 infection and the potential of TLR agonists as SARS-CoV-2 vaccine adjuvants // Viruses. 2021. V. 13. № 11. https://doi.org/10.3390/v13112302

  149. Gong W., Aspatwar A., Wang S. et al. COVID-19 pandemic: SARS-CoV-2 specific vaccines and challenges, protection via BCG trained immunity, and clinical trials // Expert Rev. Vaccines. 2021. V. 20. № 7. P. 857–880. https://doi.org/10.1080/14760584.2021.1938550

  150. Brueggeman J.M., Zhao J., Schank M. et al. Trained immunity: An overview and the impact on COVID-19 // Front. Immunol. 2022. V. 13. https://doi.org/10.3389/fimmu.2022.837524

  151. Cox A., Cevik H., Feldman H.A. et al. Targeting natural killer cells to enhance vaccine responses // Trends Pharmacol. Sci. 2021. V. 42. № 9. P. 789–801. https://doi.org/10.1016/j.tips.2021.06.004

Дополнительные материалы отсутствуют.