Геохимия, 2022, T. 67, № 1, стр. 69-83

Причины образования кислых дренажных вод в отвалах сульфидсодержащих пород

В. А. Алексеев *

Институт геохимии и аналитической химии им. В.И. Вернадского РАН
119991 Москва, ул. Косыгина, 19, Россия

* E-mail: alekseyev-v@geokhi.ru

Поступила в редакцию 23.09.2020
После доработки 17.03.2021
Принята к публикации 22.03.2021

Аннотация

Выполнен критический анализ экспериментальных и расчетных исследований по актуальной экологической проблеме образования кислых дренажных вод в отвалах сульфидсодержащих пород. Упор сделан на оценку причин изменения скорости окисления пирита (r), самого распространенного сульфида. Зависимости r от температуры, рН, содержаний О2 и Fe3+ в растворе оказались чуть ли не единственными, выраженными в виде уравнений. Медленная стадия окисления Fe2+ в кислых растворах не может контролировать r в природных условиях, т.к. она ускоряется железоокисляющими бактериями. Величина r изменяется также в зависимости от вида и содержания изоморфных примесей в пирите, уменьшается под влиянием некоторых лигандов, других сульфидов (гальванический эффект), а также с течением времени. Влияние времени обычно объясняется образованием поверхностного протектирующего слоя продуктов реакции, но может иметь и другое объяснение, а именно, растворение (исчезновение) поверхностных дефектов. В зависимости от содержания и активности минералов, производящих и нейтрализующих кислоту, выветривание отвалов может протекать с образованием кислых или близнейтральных растворов. Тот или иной сценарий прогнозируется с помощью статических и кинетических тестов, которые имеют существенные недостатки, связанные с различиями лабораторных и полевых условий. Привлечение для этой цели математического моделирования перспективно, но пока ограничено вследствие упрощения моделей и погрешностей расчетов. Тем не менее, моделирование убедительно показало, что величина r в отвалах определяется скоростью доставки О2, которая в свою очередь зависит от размера пор, степени заполнения пор водой, градиентов температуры и давления. Для предотвращения и рекультивации кислых дренажных вод используют материалы, которые изолируют отдельные зерна сульфидов (микроинкапсуляция) или весь отвал от проникноверия О2, щелочные материалы, нейтрализующие кислоту, бактерициды, понижающие активность железоокисляющих бактерий, а также биореакторы, где под действием сульфат-редуцирующих бактерий происходит осаждение сульфидов металлов.

Ключевые слова: кислый дренаж пород, отвалы сульфидсодержащих пород, скорость окисления пирита, влияющие параметры

Список литературы

  1. Алексеев В.А., Кочнова Л.Н., Бычкова Я.В., Кригман Л.В. (2011) Экспериментальное исследование извлечения нормируемых элементов водой из загрязненных пород. Геохимия. (12), 1317-1342.

  2. Alekseyev V.A., Kochnova L.N., Bychkova Ya.V., Krigman L.V. (2011) Extraction of hazardous elements by water from contaminated rocks: An experimental study. Geochem. Int. 49 (12), 1239-1262.

  3. Алексеев В.А., Рыженко Б.Н., Шварцев С.Л., Зверев В.П., Букаты М.Б., Мироненко М.В., Чарыкова М.В., Чудаев О.В. (2005) Геологическая эволюция и самоорганизация системы вода–порода. Т. I: Система вода–порода в земной коре: взаимодействие, кинетика, равновесие, моделирование. Новосибирск, СО РАН, 244с.

  4. Гаськова О.Л., Бортникова С.Б. (2007) К вопросу о количественном определении нейтрализующего потенциала вмещающих пород. Геохимия. (4), 461-464.

  5. Gas’kova O.L., Bortnikova S.B. (2007) On the quantitative evaluation of the neutralizing potential of host rocks. Geochem. Int. 45(4), 409-412.

  6. Замана Л.В., Чечель Л.П. (2014) Геохимия дренажных вод горнорудных объектов вольфрамового месторождения Бом-Горхон (Забайкалье). Химия в интересах устойчивого развития. 22, 267-273.

  7. Рыбникова Л.С., Рыбников П.А. (2019) Закономерности формирования качества подземных вод на отработанных медноколчеданных рудниках Левихинского рудного поля (Средний Урал, Россия). Геохимия. 64(3), 282-299.

  8. Rybnikova L.S., Rybnikov P.A. (2019) Regularities in the evolution of groundwater quality at abandoned copper sulfide mines at the Levikha ore field, Central Urals, Russia. Geochem. Int. 57 (3), 298-314.

  9. Халезов Б.Д. (2009) Исследования и разработка технологии кучного выщелачивания медных и медно-цинковых руд. Автореферат дис. … докт. технич. наук. Екатеринбург: Ин-т металлургии и материаловедения им. А.А. Байкова РАН, 53 с.

  10. Яхонтова Л.К., Грудев А.П. (1978) Зона гипергенеза рудных месторождений. М.: Изд. МГУ. 229 с.

  11. Aachib M., Mbonimpa M., Aubertin M. (2004) Measurement and prediction of the oxygen diffusion coefficient in unsaturated media, with applications to soil covers. Water, Air, Soil Pollut. 156(1–4), 163-193.

  12. Abraitis P.K., Pattrick R.A.D., Vaughan D.J. (2004) Variations in the compositional, textural and electrical properties of natural pyrite: a review. Int. J. Miner. Process. 74(1–4), 41-59.

  13. Ačai P., Sorrenti E., Gorner T., Polakovič M., Kongolo M., de Donato P. (2009) Pyrite passivation by humic acid investigated by inverse liquid chromatography. Colloids Surf. A. 337, 39-46.

  14. Acero P., Cama J., Ayora C. (2007a) Sphalerite dissolution kinetics in acidic environment. Appl. Geochem. 22(9), 1872-1883.

  15. Acero P., Cama J., Ayora C. (2007b) Rate law for galena dissolution in acidic environment. Chem. Geol. 245(3–4), 219-229.

  16. Amos R.T., Blowes D.W., Smith L., Sego D.C. (2009), Measurement of wind-induced pressure gradients in a waste rock pile. Vadose Zone J. 8, 953-962.

  17. Anbeek C., Van Breemen N., Meijer E.L., Van Der Plas L. (1994) The dissolution of naturally weathered feldspar and quartz. Geochim. Cosmochim. Acta. 58(21), 4601-4613.

  18. Anterrieu O., Chouteau M., Aubertin M. (2010) Geophysical characterization of the largescale internal structure of a waste rock pile from a hard rock mine. Bull. Geol. Eng. Environ. 69, 533-548.

  19. Aubertin M., Ricard J.-F., Chapuis R.P. (1998) A predictive model for the water retention curve: application to tailings from hard-rock minesю Can. Geotech. J. 35, 55-69 (with Erratum 36, 401).

  20. Binning P.J., Postma D., Russell T.F., Wesselingh J.A., Boulin P.F. (2007) Advective and diffusive contributions to reactive gas transport during pyrite oxidation in the unsaturated zone. Water Resour. Res. 43(2), art. no. W02414.

  21. Blackmore S., Vriens B., Sorensen M., Power I.M., Smith L., Hallam S.J., Mayer K.U., Beckie R.D. (2018) Microbial and geochemical controls on waste rock weathering and drainage quality. Sci. Total Env. 640–641, 1004-1014.

  22. Bouchemella S., Seridi A., Alimi-Ichola I. (2015) Numerical simulation of water flow in unsaturated soils: Comparative study of different forms of Richards’s equation. Eur. J. Env. Civil Eng. 19(1), 1-26.

  23. Bouffard S.C., Rivera-Vasquez B.F., Dixon D.G. (2006) Leaching kinetics and stoichiometry of pyrite oxidation from a pyrite-marcasite concentrate in acid ferric sulfate media. Hydrometallurgy. 84(3-4), 225-238.

  24. Bowell R.J., Williams K.P., Connelly R.J., Sadler P.J.K., Dodds J.E. (1999) Chemical containment of mine waste. Geol. Soc. Special Publ. 157, 213-240.

  25. Brookfield A.E., Blowes D.W., Mayer K.U. (2006) Integration of field measurements and reactive transport modelling to evaluate contaminant transport at a sulfide mine tailings impoundment. J. Contam. Hydrol. 88(1–2), 1-22.

  26. Caldeira C.L., Ciminelli V.S.T., Osseo-Asare K. (2010) The role of carbonate ions in pyrite oxidation in aqueous systems. Geochim. Cosmochim. Acta. 74(6), 1777-1789.

  27. Chandra A.P., Gerson A.R. (2010) The mechanisms of pyrite oxidation and leaching: A fundamental perspective. Surf. Sci. Rep. 65(9), 293-315.

  28. Chopard A., Plante B., Benzaazoua M., Bouzahzah H., Marion P. (2017) Geochemical investigation of the galvanic effects during oxidation of pyrite and base-metals sulfides. Chemosphere. 166, 281-291.

  29. Demers I., Mbonimpa M., Benzaazoua M., Bouda M., Awoh S., Lortie S., Gagnon M. (2017) Use of acid mine drainage treatment sludge by combination with a natural soil as an oxygen barrier cover for mine waste reclamation: Laboratory column tests and intermediate scale field tests. Minerals Eng. 107, 43-52.

  30. Diao Z., Shi T., Wang S., Huang X., Zhang T., Tang Y., Zhang X., Qiu R. (2013) Silane-based coatings on the pyrite for remediation of acid mine drainage. Water Res. 47(13), 4391-4402.

  31. Dockrey J.W., Lindsay M.B.J., Mayer K.U., Beckie R.D., Norlund K.L.I., Warren L.A., Southam G. (2014) Acidic microenvironments in waste rock characterized by neutral drainage: Bacteria–mineral interactions at sulfide surfaces. Minerals. 4(1), 170-190.

  32. Dold B. (2017) Acid rock drainage prediction: A critical review. J. Geochem. Explor. 172, 120-132.

  33. Duxson P., Provis J.L., Lukey G.C., van Deventer J.S.J. (2007) The role of inorganic polymer technology in the development of ‘green concrete’. Cement Concr. Res. 37(12), 1590-1597.

  34. Elbefling B., Nicholson R.V. (1996) Field determination of sulphide oxidation rates in mine tailings. Water Resour. Res. 32(6), 1773-1784.

  35. Elsetinow A.R., Borda M.J., Schoonen M.A.A., Strongin D.R. (2003) Suppression of pyrite oxidation in acidic aqueous environments using lipids having two hydrophobic tails. Adv. Env. Res. 7(4), 969-974.

  36. Erguler G.K., Erguler Z.A., Akcakoca H., Ucar A. (2014) The effect of column dimensions and particle size on the results of kinetic column test used for acid mine drainage (AMD) prediction. Miner. Eng. 55, 18-29.

  37. Evangelou V.P., Zhang Y.L. (1995) A review: Pyrite oxidation mechanisms and acid mine drainage prevention. Crit. Rev. Env. Sci. Technol. 25(2), 141-199.

  38. Fala O., Molson J., Aubertin M., Bussière B. (2005) Numerical modelling of flow and capillary barrier effects in unsaturated waste rock piles. Mine Water Environ. 24(4), 172-185.

  39. Fala O., Molson J., Aubertin M., Dawood I., Bussière B., Chapuis R.P. (2013) A numerical modelling approach to assess long-term unsaturated flow and geochemical transport in a waste rock pile. Int. J. Mining, Reclamation and Environment. 27(1), 38-55.

  40. Fan R., Short M.D., Zeng S.-J., Qian G., Li J., Schumann R.C., Kawashima N., Smart R.S.C., Gerson A.R. (2017) The formation of silicate-stabilized passivating layers on pyrite for reduced acid rock drainage. Environ. Sci. Technol. 51(19), 11317-11325.

  41. Gautier J.-M., Oelkers E.H., Schott J. (2001) Are quartz dissolution rates proportional to B.E.T. surface areas? Geochim. Cosmochim. Acta. 65(7), 1059–1070.

  42. Gerke H.H., Molson J.W., Frind, E.O. (1998) Modelling the effect of chemical heterogeneity on acidification and solute leaching in overburden mine spoils. J. Hydrol. 209, 166-185.

  43. Ghorbani Y., Becker M., Mainza A., Franzidis J.-P., Petersen J. (2011) Large particle effects in chemical/biochemical heap leach processes – A review. Miner. Eng. 24, 1172-1184.

  44. Hakkou R., Benzaazoua M., Bussière B. (2009) Laboratory Evaluation of the Use of Alkaline Phosphate Wastes for the Control of Acidic Mine Drainage. Mine Water and the Environment. 28(3), 206.

  45. Heidel C., Tichomirowa M., Junghans M. (2013) Oxygen and sulfur isotope investigations of the oxidation of sulfide mixtures containing pyrite, galena, and sphalerite. Chem. Geol. 342, 29-43.

  46. Huang X., Evangelou, V.P. (1992) Abatement of Acid Mine Drainage by Encapsulation of Acid Producing Geologic Materials. U.S. Department of the Interior, Bureau of Mines, Contact No. J0309013.

  47. Igarashi T., Saito R., Sarashina M., Asakura K. (2006) Impoundment of excavated pyrite-bearing rock using silty covering soil. Clay Sci. 12, 143-148.

  48. Jaynes D.B., Rogowski A.S., Pionke H. B. (1984) Acid mine drainage from reclaimed coal strip mines. I. Model description. Water Resour. Res. 20(2), 233-242.

  49. Jerz J.K., Rimstidt J.D. (2004) Pyrite oxidation in moist air. Geochim. Cosmochim. Acta. 68(4), 701-714.

  50. Jha R.K.T., Satur J., Hiroyoshi N., Ito M., Tsunekawa M. (2012) Suppression of pyrite oxidation by carrier microencapsulation using silicon and catechol. Miner. Process. Extr. Metal. Rev. 33(2), 89-98.

  51. Jiang C.L., Wang X.H., Parekh B.K. (2000) Effect of sodium oleate on inhibiting pyrite oxidation. Int. J. Miner. Process. 58, 305-318.

  52. Kargbo D.M., Atallah G., Chatterjee S. (2004) Inhibition of pyrite oxidation by a phospholipid in the presence of silicate. Environ. Sci. Technol. 38, 3432-3441.

  53. Kimball B.E., Rimstidt J.D., Brantley S.L. (2010) Chalcopyrite dissolution rate laws. Appl. Geochem. 25(7), 972-983.

  54. Kiventerӓ J., Lancellotti I., Catauro M., Poggetto F.D., Leonelli C., Illikainen M. (2018) Alkali activation as new option for gold mine tailings inertization. J. Clean. Prod. 187, 76-84.

  55. Kohfahl C., Greskowiak J., Pekdeger A. (2007) Effective diffusion and microbiologic activity as constraints describing pyrite oxidation in abandoned lignite mines. Appl. Geochem. 22(1), 1-16.

  56. Kollias K., Mylona E., Papassiopi N., Xenidis A. (2015) Conditions favoring the formation of iron phosphate coatings on the pyrite surface. Desalin. Water Treat. 56(5), 1274-1281.

  57. Lefebvre R., Hockley D., Smolensky J., Gélinas P. (2001a) Multiphase transfer processes in waste rock piles producing acid mine drainage: 1. Conceptual model and system characterization. J. Contam. Hydrol. 52(3–4), 137-164.

  58. Lefebvre R., Hockley D., Smolensky J., Lamontagne A. (2001b) Multiphase transfer processes in waste rock piles producing acid mine drainage: 2. Applications of numerical simulation. J. Contam. Hydrol. 52(3–4), 165-186.

  59. León E.A., Rate A.W., Hinz C., Campbell G.D. (2004) Weathering of sulphide minerals at circum-neutral-pH in semi-arid/arid environments: Influence of water content. SuperSoil 2004: 3rd Australian New Zealand Soils Conference, University of Australia, 7p.

  60. Liu Z.-S., Huang C., Ma L., Dy E., Xie Z., Tufa K., Fisher E.A., Zhou J., Morin K., Aziz M., Meints C., O’Kane M., Tallon L. (2019) The characteristic properties of waste rock piles in terms of metal leaching. J. Contam. Hydrol. 226, 103540.

  61. Lorca M.E., Mayer K.U., Pedretti D., Smith L., Beckie R.D. (2016) Spatial and temporal fluctuations of pore-gas composition in sulfidic mine waste rock. Vadose Zone J. 15(10), 1-13.

  62. McKibben M.A., Barnes H.L. (1986) Oxidation of pyrite in low temperature acidic solutions: Rate laws and surface textures. Geochim. Cosmochim. Acta. 50(7), 1509-1520.

  63. Méndez-Ortiz B.A., Carrillo-Chávez A., Monroy-Fernández M.G. (2007) Acid rock drainage and metal leaching from mine waste material (tailings) of a Pb-Zn-Ag skarn deposit: environmental assessment through static and kinetic laboratory tests. Revista Mexicana Ciencias Geológicas. 24(2), 161-169.

  64. Mielke R.E., Pace D.L., Porter T., Southam G. (2003) A critical stage in the formation of acid mine drainage: colonization of pyrite by Acidithiobacillus ferrooxidans under pH-neutral conditions. Geobiology. 1, 81-90.

  65. Millero F.J., Sotolongo S., Izaguirre M. (1987) The oxidation kinetics of Fe(II) in seawater. Geochim. Cosmochim. Acta. 51(4), 793-801.

  66. Molson J.W., Fala O., Aubertin M., Bussiere B. (2005) Numerical simulations of pyrite oxidation and acid mine drainage in unsaturated waste rock piles. J. Contam. Hydrol. 78(4), 343-371.

  67. Molson J., Aubertin M., Bussière B., Benzaazoua M. (2008) Geochemical transport modelling of drainage from experimental mine tailings cells covered by capillary barriers. Appl. Geochem. 23(1), 1-24.

  68. Moncur M.C., Ptacek C.J., Lindsay M.B.J., Blowes D.W., Jambor J.L. (2015) Long-term mineralogical and geochemical evolution of sulfide mine tailings under a shallow water cover. Appl. Geochem. 57, 178-193.

  69. Mylona E., Xenidis A., Paspaliaris I. (2000) Inhibition of acid generation from sulphidic wastes by the addition of small amounts of limestone. Miner. Eng. 13(10–11), 1161-1175.

  70. Naidu G., Ryu S., Thiruvenkatachari R., Choi Y., Jeong S., Vigneswaran S. (2019) A critical review on remediation, reuse, and resource recovery from acid mine drainage. Environ. Pollut. 247, 1110-1124.

  71. Nicholson R.V., Gillham R.W., Reardon E.J. (1990) Pyrite oxidation in carbonate-buffered solution: 2. Rate control by oxide coatings. Geochim. Cosmochim. Acta. 54(2), 395-402.

  72. Nordstrom D.K. (1985) The rate of ferrous iron oxidation in a stream receiving acid mine effluent. In: Selected Papers in the Hydrologic Sciences (ed. S. Subitzky). U.S. Geological Survey Water Supply Paper 2270, Washington, DC, 113-119.

  73. Nordstrom D.K., Blowes D.W., Ptacek C.J. (2015) Hydrogeochemistry and microbiology of mine drainage: An update. Appl. Geochem. 57, 3-16.

  74. Palandri J.L., Kharaka Y.K. (2004) A Compilation of Rate Parameters of Water-Mineral Interaction Kinetics for Application to Geochemical Modeling. Open file report 2004-1068. Menlo Park, U.S. Geological Survey.

  75. Parisi D., Horneman J., Rastogi V. (1994) Use of bactericides to control acid mine drainage from surface operations. In: Proceedings of the International Land Reclamation and Mine Drainage Conference. U.S. Bureau of Mines SP 06B-94, Pittsburgh, PA, 319-325.

  76. Park I., Tabelin C.B., Magaribuchi K., Seno K., Ito M., Hiroyoshi N. (2018a) Suppression of the release of arsenic from arsenopyrite by Carrier-microencapsulation using Ti-catechol complex. J. Hazard Mater. 344, 322-332.

  77. Park I., Tabelin C.B., Seno K., Jeon S., Ito M., Hiroyoshi N. (2018b) Simultaneous suppression of acid mine drainage formation and arsenic release by Carrier-microencapsulation using aluminum-catecholate complexes. Chemosphere 205, 414-425.

  78. Park I., Tabelin C.B., Jeon S., Li X., Seno K., Ito M., Hiroyoshi N. (2019) A review of recent strategies for acid mine drainage prevention and mine tailings recycling. Chemosphere. 219, 588-606.

  79. Pedretti, D., Mayer, K.U., Beckie, R.D. (2017) Stochastic multicomponent reactive transport analysis of low quality drainage release from waste rock piles: Controls of the spatial distribution of acid generating and neutralizing minerals. J. Contam. Hydrol. 201, 30-38.

  80. Pedretti, D., Mayer, K.U., Beckie, R.D. (2020) Controls of uncertainty in acid rock drainage predictions from waste rock piles examined through Monte-Carlo multicomponent reactive transport. Stochastic Environ. Res. Risk Assessment. 34(1), 219-233.

  81. Pérez-López R., Cama J., Nieto J.M., Ayora C., Saaltink M.W. (2009) Attenuation of pyrite oxidation with a fly ash pre-barrier: Reactive transport modelling of column experiments. Appl. Geochem. 24(9), 1712-1723.

  82. Pesic B., Oliver D.J., Wichlacz P. (1989) An electrochemical method of measuring the oxidation rate of ferrous to ferric iron with oxygen in the presence of Thiobacillus ferrooxidans. Biotechnol. Bioeng. 33, 428-439.

  83. Pozo-Antonio S., Puente-Luna I., Lagüela-López S., Veiga-Ríos M. (2014) Techniques to correct and prevent acid mine drainage: A review. DINA. 81(184), 73-80.

  84. Qiu G., Luo Y., Chen C., Lv Q., Tan W., Liu F., Liu C. (2016) Influence factors for the oxidation of pyrite by oxygen and birnessite in aqueous systems. J. Environ. Sci. 45, 164-176.

  85. Reedy B.J., Beattie J.K., Lowson R.T. (1991) A vibrational spectroscopic 18O tracer study of pyrite oxidation. Geochim. Cosmochim. Acta. 55, 1609-1614.

  86. Ren X., Zhang L., Ramey D., Waterman B., Ormsby S. (2015) Utilization of aluminum sludge (AS) to enhance mine tailings-based geopolymer. J. Mater. Sci. 50, 1370-1381.

  87. Ribet I., Ptacek C.J., Blowes D.W., Jambor J.L. (1995) The potential for metal release by reductive dissolution of weathered mine tailings. J. Contam. Hydrol. 17, 239-273.

  88. Rimstidt J.D., Vaughan D.J. (2003) Pyrite oxidation: a state-of-the-art assessment of the reaction mechanism. Geochim. Cosmochim. Acta. 67(5), 873-880.

  89. Romano C.G., Mayer K.U., Jones D.R., Ellerbroek D.A., Blowes D.W. (2003) Effectiveness of various cover scenarios on the rate of sulfide oxidation of mine tailings. J. Hydrol. 271(1–4), 171-187.

  90. Sapsford D.J., Bowell R.J., Dey M., Williams K.P. (2009) Humidity cell tests for the prediction of acid rock drainage. Miner. Eng. 22(1), 25-36.

  91. Sasaki K., Tsunekawa M., Hasebe K., Konno H. (1995) Effect of anionic ligands on the reactivity of pyrite with Fe(III) ions in acid solutions. Colloids Surf. A. 101(1), 39-49.

  92. Scharer J.M., Garga V., Smith R., Halbert B.E. (1991) Use of steady state models for assessing acid generation in pyritic mine tailings. In: The Second National Conference on the Abatement of Acidic Drainage. V. 2. Montreal, Canada, September 16 to 18, 1991, 211.

  93. Seng S., Tabelin C.B., Kojima M., Hiroyoshi N., Ito M. (2019) Galvanic microencapsulation (GME) using zero-valent aluminum and zero-valent iron to suppress pyrite oxidation. Mater. Trans. 60(2), 277-286.

  94. Sidkina E.S., Mironenko M.V., Cherkasova E.V. (2020) Application of equilibrium-kinetic modeling for predicting the chemical composition of subdump waters of the Udokan deposit (Russia). Geochem. Int. 58(13), 1419-1429.

  95. Singer P.C., Stumm W. (1970) Acid mine drainage – the rate limiting step. Science. 167(3921), 1121-1123.

  96. Skousen J.G., Ziemkiewicz P.F., McDonald L.M. (2019) Acid mine drainage formation, control and treatment: Approaches and strategies. Extr. Indust. Society. 6(1), 241-249.

  97. Sobek A.A., Rastogi V., Benedetti D.A. (1990) Prevention of water pollution problems in mining: the bactericide technology. Int. J. Mine Water. 9(1–4), 133-148.

  98. Sobek A.A., Schuller W.A., Freeman J.R., Smith R.M. (1978) Field and laboratory methods applicable to overburdens and minesoils. US EPA publication: EPA-600/2–78–054. Washington. 203 p.

  99. Stumm W., Lee G.F. (1961) Oxygenation of ferrous iron. Ind. Eng. Chem. 53, 143-146.

  100. Sun H., Chen M., Zou L., Shu R., Ruan R. (2015) Study of the kinetics of pyrite oxidation under controlled redox potential. Hydrometallurgy. 155, 13-19.

  101. Tabelin C.B., Veerawattananun S., Ito M., Hiroyoshi N., Igarashi T. (2017a) Pyrite oxidation in the presence of hematite and alumina: I. Batch leaching experiments and kinetic modeling calculations. Sci. Total Environ. 580, 687-698.

  102. Tabelin C.B., Veerawattananun S., Ito M., Hiroyoshi N., Igarashi T. (2017b) Pyrite oxidation in the presence of hematite and alumina: II. Effects on the cathodic and anodic half-cell reactions, Sci. Total Environ. 581–582, 126-135.

  103. Tabelin C.B., Igarashi T., Villacorte-Tabelin M., Park I., Opiso E.M., Ito M., Hiroyoshi N. (2018) Arsenic, selenium, boron, lead, cadmium, copper, and zinc in naturally contaminated rocks: a review of their sources, modes of enrichment, mechanisms of release, and mitigation strategies. Sci. Total Environ. 645, 1522-1553.

  104. Todd E.C., Sherman D.M., Purton J.A. (2003) Surface oxidation of pyrite under ambient atmospheric and aqueous (pH = 2 to 10) conditions: electronic structure and mineralogy from X-ray absorption spectroscopy. Geochim. Cosmochim. Acta. 67(5), 881-893.

  105. Wang H., Dowd P.A., Xu C. (2019) A reaction rate model for pyrite oxidation considering the influence of water content and temperature. Miner. Eng. 134, 345-355.

  106. Williamson M. A., Rimstidt J. D. (1994) The kinetics and electrochemical rate-determining step of aqueous pyrite oxidation. Geochim. Cosmochim. Acta. 58(24), 5443-5454.

  107. Williamson M.A., Kirby C.S., Rimstidt J.D., (2006) Iron dynamics in acid mine drainage. In: 7th International Conference on Acid Rock Drainage 2006, ICARD. V. 3. American Society of Mining and Reclamation, St. Louis, 2411-2423.

  108. Wilson D., Amos R.T., Blowes D.W., Langman J.B., Ptacek C.J., Smith L., Sego D.C. (2018a) Diavik Waste Rock Project: A conceptual model for temperature and sulfide content dependent geochemical evolution of waste rock – Laboratory scale. Appl. Geochem. 89, 160-172.

  109. Wilson D., Amos R.T., Blowes D.W., Langman J.B., Smith L., Sego D.C. (2018b) Diavik Waste Rock Project: Scale-up of a reactive transport model for temperature and sulfide-content dependent geochemical evolution of waste rock. Appl. Geochem. 96, 177-190.

  110. Wunderly M.D., Blowes D.W., Frind E.O., Ptacek C.J. (1996) Sulfide mineral oxidation and subsequent reactive transport of oxidation products in mine tailings impoundments: A numerical model. Water Resour. Res. 32(10), 3173-3187.

  111. Yu J.-Y., Park M., Kim J. (2002) Solubilities of synthetic schwertmannite and ferrihydrite. Geochem. J. 36, 119-132.

  112. Zhang X., Borda M.J., Schoonen M.A.A., Strongin D.R. (2003) Adsorption of phospholipids on pyrite and their effect on surface oxidation. Langmuir. 19, 8787-8792.

  113. Zhou Y., Short M.D., Li J., Schumann R.C., Smart R.S.C., Gerson A.R., Qian G. (2017) Control of acid generation from pyrite oxidation in a highly reactive natural waste: A laboratory case study. Minerals 7, Art. 89.

Дополнительные материалы отсутствуют.