Геохимия, 2022, T. 67, № 10, стр. 942-960

Фракционирование стабильных изотопов в Сa–Mg карбонатах: расчет β-факторов методом “замороженных фононов”

Д. П. Крылов *

Институт геологии и геохронологии докембрия РАН
199034 Санкт-Петербург, наб. Макарова, 2, Россия

* E-mail: dkrylov@dk1899.spb.edu

Поступила в редакцию 04.02.2022
После доработки 04.04.2022
Принята к публикации 12.04.2022

Аннотация

Методом “замороженных фононов” теории функционала плотности в гармоническом и квазигармоническом приближениях определены температурные зависимости β-факторов (от 0 до 1500°С с шагом 10°C) кислорода, углерода, магния и кальция Ca-Mg карбонатов (кальцита, магнезита, доломита, арагонита). Для кальцита с переменным содержанием магния температурная зависимость β‑факторов для изотопного фракционирования кислорода и углерода описывается уравнениями: 103ln β18Ocal = (11.61731 + Δa)x – (0.35444 + Δb)x2 + (0.00908 + Δc)x3, 103ln β13Ccal = (24.74146 + Δa)x – – (1.08996 + Δb)x2 + (0.03178 + Δc)x3, где x = 106/T2 (K–2); Δa, Δb и Δc – рассчитанные отдельно для изотопных замещений 18O/16O и 13C/12C изменения соответствующих коэффициентов полинома в зависимости от содержания магния. Проведен расчет влияния давления на величину β-факторов кислорода и углерода в карбонатах. Оценки, полученные в рамках квазигармонического приближения, не превышают 1‰ в интервале давлений, характерных для условий Земной коры.

Ключевые слова: β-факторы, кальцит, магнезит, доломит, арагонит, фракционирование изотопов, геотермометрия

Список литературы

  1. Поляков В.Б. (2008) Равновесные факторы фракционирование изотопов кальцита. В сб. Экспериментальные исследования эндогенных процессов: Памяти академика В.А. Жарикова. (Под ред. Рябчикова И.Д., Шаповалова Ю.Б., Осадчего Е.Г.) Черноголовка. Редакционно-издательский отдел ИПХФ РАН, 20-16.

  2. Поляков В.Б., Мироненко М.В., Аленина М.В. (2021) Совместный расчет химических и изотопных равновесий в программном комплексе GEOCHEQ_ISOTOPE: изотопы кислорода. Геохимия. 66(11), 1050-1066.

  3. Polyakov V.B., Mironenko M.V., Alenina M.V. (2021) Simultaneous Calculation of Chemical and Isotope Equilibria Using the GEOCHEQ_Isotope Software: Oxygen Isotopes. Geochem. Int. 59(11), 1090-1105.

  4. Поляков В.Б., Осадчий Е.Г., Воронин М.В., Осадчий В.О., Сипавина Л.В., Чареев Д.А., Тюрин А.В., Гуревич В.М., Гавричев К.С. (2019) Изотопные факторы железа и серы для пирита по данным экспериментальных гамма-резонансных исследований и теплоёмкости. Геохимия. 64(4), 372-386.

  5. Polyakov V.B., Osadchii, E.G., Voronin, M.V., Osadchii V.O., Sipavina L.V., Chareev D.A., Tyurin A.V., Gurevich V.M., Gavrichev K.S. (2019) Iron and Sulfur Isotope Factors of Pyrite: Data from Experimental Mössbauer Spectroscopy and Heat Capacity. Geochem. Int. 57(4), 369-383.

  6. Bebout G.E. (1995) The impact of subduction-zone metamorphism on mantle-ocean chemical cycling. Chem. Geol. 126(2), 191-218.

  7. Bigeleisen J., Mayer M.G. (1947) Calculation of Equilibrium Constants for Isotopic Exchange Reactions. J. Chem. Phys. 15(5), 261-267.

  8. Bottinga Y. (1968) Carbon isotope fractionation between graphite, diamond and carbon dioxide. Earth Planet. Sci. Lett. 5, 301-307.

  9. Carteret C., De La Pierre M., Dossot M., Pascale F., Erba A., Dovesi R. (2013) The vibrational spectrum of CaCO3 aragonite: A combined experimental and quantum-mechanical investigation. J. Chem. Phys. 138(14), 014201.

  10. Chacko T., Deines P. (2008) Theoretical calculation of oxygen isotope fractionation factors in carbonate systems. Geochim. Cosmochim. Acta. 72(15), 3642-3660.

  11. Chacko T., Mayeda T.K., Clayton R.N., Goldsmith J.R. (1991) Oxygen and carbon isotope fractionations between CO2 and calcite. Geochim. Cosmochim. Acta. 55(10), 2867-2882.

  12. Chiba H., Chacko T. Clayton R.N., Goldsmith J.R. (1989) Oxygen isotope fractionations involving diopside, forsterite, magnetite, and calcite: Application to geothermometry. Geochim. Cosmochim. Acta 53(11), 2985-2995.

  13. Clayton R.N., Goldsmith J.R., Mayeda T.K. (1989) Oxygen isotope fractionation in quartz, albite, anorthite and calcite. Geochim. Cosmochim. Acta. 53(3), 725-733.

  14. Clayton R.N., Kieffer S.W. (1991) Oxygen isotopic thermometer calibrations. Spec. Publ. – Geochem. Soc. 3, 3-10.

  15. Dasgupta R., Hirschmann M.M., Withers A.C. (2004) Deep global cycling of carbon constrained by the solidus of anhydrous, carbonated eclogite under upper mantle conditions. Earth Planet. Sci. Lett. 227(1), 73-85.

  16. De La Rocha C. and DePaolo D.J. (2000) Isotopic evidence for variations in the marine calcium cycle over the Cenozoic. Science. 289, 1176-1178.

  17. Deines P. (2004) Carbon isotope effects in carbonate systems. Geochim. Cosmochim. Acta. 68(12), 2659-2679.

  18. DePaolo D.J. (2004) Calcium isotopic variations produced by biological, kinetic, radiogenic and nucleosynthetic processes. Rev. Mineral. Geochem. 55, 255-288.

  19. Dovesi R., Erba A., Orlando R., Zicovich-Wilson C.M., Civalleri B., Maschio L., Rerat M., Casassa S., Baima J., Salustro S., Kirtman B. (2018) Quantum-mechanical condensed matter simulations with CRYSTAL. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 8(4), e1360.

  20. Dovesi R., Ferrari A.M., De La Pierre M., Orlando R., Noel Y. (2013) Structure and vibrational spectra. In: Comprehensive Inorganic Chemistry II. From Elements to Applications. 9, 971-987.

  21. Emrich K., Ehhalt D.H., Vogel J.C. (1970) Carbon isotope fractionation during the precipitation of calcium carbonate. Earth Planet. Sci. Lett. 8(5), 363-371.

  22. Erba A. (2014) On combining temperature and pressure effects on structural properties of crystals with standard ab initio techniques. J. Chem. Phys. 141(12), 124115.

  23. Fallon T., Green, D.H. (1989) The solidus of carbonated, fertile peridotite. Earth Planet. Sci. Lett. 94(3–4), 364-370.

  24. Fiquet G., Guyot F., Kunz M., Matas J., Andrault D., Hanfland M. (2002) Structural refinements of magnesite at very high pressure. Am. Mineral. 87(8–9), 1261-1265.

  25. Gillet P., McMillan P., Schott J., Badro J., Grzechnik A. (1996) Thermodynamic properties and isotopic fractionation of calcite from vibrational spectroscopy of 18O-substituted calcite. Geochim. Cosmochim. Acta. 60(18), 3471-3485.

  26. Hammouda T. (2003) High-pressure melting of carbonated eclogite and experimental constraints on carbon recycling and storage in the mantle. Earth Planet. Sci. Lett. 214(1–2), 357-368.

  27. Hellwege K.H., Lesch W., Plihal M., Schaack G. (1970) Zwei-Phononen-Absorptionsspectrum und Dispersion der Schwingungszweige in Kristallen der Kalkspatstruktur. Z Physik. 232, 61-86.

  28. Heuser A., Eisenhauer A., Boehm F., Wallmann K., Gussone N., Pearson N., Naegler T.F., Dullo W.-C. (2005) Calcium isotope (δ44/40Ca) variations of Neogene planktonic foraminifera. Paleoceanography. 20, PA2013.

  29. Higgins J.A., Schrag D. (2010) Constraining magnesium cycling in marine sediments using magnesium isotopes. Geochim. Cosmochim. Acta. 74(17), 5039-5053.

  30. Hoffman P.F., Kaufman A.J., Halverson G.P., Schrag D. (1998) A Neoproterozoic snowball Earth. Science. 281(5381), 1342-1346.

  31. Horita J. (2014) Oxygen and carbon isotope fractionation in the system dolomite–water–CO2 to elevated temperatures. Geochim. Cosmochim. Acta. 129(1), 111-124.

  32. Horita J., Clayton R.N. (2007) Comment on the studies of oxygen isotope fractionation between calcium carbonates and water at low temperatures by Zhou and Zheng (2003; 2005). Geochim. Cosmochim. Acta. 71(12), 3131-3135.

  33. Huang J., Li S.-G., Xiao Y., Ke S., Li W.-Y., Tian Y. (2015) Origin of low δ26Mg Cenozoic basalts from South China Block and their geodynamic implications. Geochim. Cosmochim. Acta. 164, 298-317.

  34. Huang D., Liu H., Hou M.-Q., Xie M-Y., Lu Y.-F., Liu L., Yi L., Cui Y.-J., Li Y., Deng L.-W., Du J.-G. (2017) Elastic properties of CaCO3 high pressure phases from first principles. Chin. Phys. B. 26(8), 089101.

  35. Isshiki M., Irifune T., Hirose K., Ono S., Ohishi Y.,Watanuki T., Nishibori E., Takata M., Sakata M. (2004) Stability of magnesite and its high-pressure form in the lowermost mantle. Nature. 427(6969), 60-63.

  36. Jiménez-López C., Caballero E., Huertas F.J., Romanek C.S. (2001) Chemical, mineralogical and isotope behavior, and phase transformation during the precipitation of calcium carbonate minerals from intermediate ionic solution at 25°C. Geochim. Cosmochim. Acta. 65(19), 3219-3231.

  37. Jiménez-López C., Romanek C.S., Huertas F.J., Ohmoto H., Caballero E. (2004) Oxygen isotope fractionation in synthetic magnesian calcite. Geochim. Cosmochim. Acta. 68(16), 3367-3377.

  38. Kaufman A., Knoll A. (1995) Neoproterozoic variations in the C-isotopic composition of seawater: stratigraphic and biogeochemical implications. Precambrian Res. 73(1–4), 27-49.

  39. Kim S.-T., O’Neil J.R. (1997) Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates. Geochim. Cosmochim. Acta. 61(16), 3461-3475.

  40. Kim S.-T., O’Neil J.R., Hillaire-Marcel C., Mucci A. (2007) Oxygen isotope fractionation between synthetic aragonite and water: Influence of temperature and Mg2+ concentration. Geochim. Cosmochim. Acta. 71(19), 4704-4715.

  41. Lea D.W. (2014) Elemental and isotopic proxies of past ocean temperatures. In: Holland H.D. and Turekian K.K. (eds.) Treatise on Geochemistry, Second Edition, 8, 373-397. Oxford: Elsevier.

  42. Li Y., Zou Y., Chen T., Wang X., Qi X., Chen H., Du J., Li B. (2015) P-V-T equation of state and high-pressure behavior of CaCO3 aragonite. Am. Mineral. 100(10), 2323-2329.

  43. Litasov K.D., Fei Y., Ohtani E., Kuribayashi T., Funakoshi K. (2008) Thermal equation of state of magnesite to 32 ГПa and 2073 K. Phys. Earth Planet. Inter. 168(3–4), 191-203.

  44. Litasov K.D., Shatskiy A., Gavryushkin P.N., Bekhtenova A.E., Dorogokupets P.I., Danilov B.S., Higo Y., Akilbekov A.T., Inerbaev T.M. (2017) P-V-T equation of state of CaCO3 aragonite to 29 GPa and 1673 K: In situ X-ray diffraction study. Phys. Earth Planet. Inter. 265(1), 82-91.

  45. McDermott F. (2004) Palaeo-climate reconstruction from stable isotope variations in speleothems: a review. Quat. Sci. Rev. 23(7–8), 901-918.

  46. Meyer K.M., Yu M., Lehrmann D., van de Schootbrugge B., Payne J.L. (2013) Constraints on Early Triassic carbon cycle dynamics from paired organic and inorganic carbon isotope records. Earth Planet. Sci. Lett. 361, 429-435.

  47. Mironenko M.V., Polyakov V.B., Alenina M.V. (2018) Simultaneous calculation of chemical and isotope equilibria using the GEOCHEQ_Isotope software: carbon isotopes. Geochem. Int. 56(13), 1354-1367.

  48. Monkhorst H., Pack J. (1976) Special points for Brillouin zone integrations. Phys. Rev. B. 13, 5188-5192.

  49. O’Neil J.R., Clayton R.N., Mayeda T.K. (1969) Oxygen isotope fractionation in divalent metal carbonates. J. Chem. Phys. 51(12), 5547-5558.

  50. O’Neil J.R., Epstein S. (1966) Oxygen isotope fractionation in system dolomite–calcite–carbon dioxide. Science. 152(3719), 198-201.

  51. Polyakov V.B., Kharlashina N.N. (1994) Effect of pressure on equilibrium isotopic fractionation. Geochim. Cosmochim. Acta. 58(21), 4739-4750.

  52. Polyakov V.B., Kharlashina N.N. (1995) The use of heat capacity data to calculate carbon isotope fractionation between graphite, diamond, and carbon dioxide: A new approach. Geochim. Cosmochim. Acta. 59(12), 2561-2572.

  53. Polyakov V.B. (1998) On anharmonic and pressure corrections to the equilibrium isotopic constants for minerals. Geochim. Cosmochim. Acta. 62(18), 3077-3085.

  54. Redfern S.A.T., Angel R.J. (1999) High-pressure behavior and equation of state of calcite, CaCO3. Contrib. Mineral. Petrol. 134(1), 102-106.

  55. Richet P., Bottinga Y., Javoy M. (1977) A review of hydrogen, carbon, nitrogen, oxygen, sulphur, and chlorine stable isotope fractionation among gaseous molecules. Ann. Rev. Earth Planet. Sci. 5, 65-10.

  56. Rosenbaum J.M. (1994) Stable isotope fractionation between carbon dioxide and calcite at 900°C. Geochim. Cosmochim. Acta. 58(17), 3747-3753.

  57. Romanek C.S., Grossman E.L., Morse J.W. (1992) Carbon isotopic fractionation in synthetic aragonite and calcite: Effects of temperature and precipitation rate. Geochim. Cosmochim. Acta. 56(1), 419-430.

  58. Ross N.L., Reeder R.J. (1992) High-pressure structural study of dolomite and ankerite. Am. Mineral. 77(3–4), 412-421.

  59. Rustad J.R., Casey W.H., Yin Q.-Z., Bylaska E.J., Felmy A.R., Bogatko S.A., Jackson V.E., Dixon D.A. (2010) Isotopic fractionation of Mg2+(aq), Ca2+(aq), and Fe2+(aq) with carbonate minerals. Geochim. Cosmochim. Acta. 74(22), 6301-6323.

  60. Schmidt M., Xeflide S., Botz R., Mann S. (2005) Oxygen isotope fractionation during synthesis of CaMg-carbonate and implications for sedimentary dolomite formation. Geochim. Cosmochim. Acta. 69(19), 4665-4674.

  61. Schauble E.A., Ghosh P., Eiler J.M. (2006) Preferential formation of 13C–18O bonds in carbonate minerals, estimated using first-principles lattice dynamics. Geochim. Cosmochim. Acta. 70(10), 2510-2529.

  62. Schauble E.A. (2011) First-principles estimates of equilibrium magnesium isotope fractionation in silicate, oxide, carbonate and hexaaquamagnesium(2+) crystals. Geochim. Cosmochim. Acta. 75(3), 844-869.

  63. Schauble E.A., Young E.D. (2021) Mass Dependence of Equilibrium Oxygen Isotope Fractionation in Carbonate, Nitrate, Oxide, Perchlorate, Phosphate, Silicate, and Sulfate Minerals. Rev. Mineral. Geochem. 86, 137-178.

  64. Scheele N., Hoefs J. (1992) Carbon isotope fractionation between calcite, graphite and CO2: an experimental study. Contrib. Mineral. Petrol. 112, 35-45.

  65. Sheppard S.M.F., Schwarcz H. (1970) Fractionation of carbon and oxygen isotopes and magnesium between coexisting metamorphic calcite and dolomite. Contrib. Mineral. Petrol. 26, 161-198.

  66. Shirasaka M, Takahashi E., Nishihara Y., Matsukage K., Kikegawa T. (2002) In situ X-ray observation of the reaction dolomite = aragonite + magnesite at 900–1300 K. Am. Mineral. 87(7), 922-930.

  67. Shiryaev A.A., Polyakov V.B., Rols S., Rivera A., Shtnderova O. (2020) Inelastic neutron scattering: a novel approach towards determination of equilibrium isotopic fractionation factors. Size effects on heat capacity and beta-factor of diamond. Phys. Chem. Chem. Phys. 22, 13261.

  68. Tipper E.T., Galy A., Gaillardet J., Bickle M.J., Elderfield H., Carder E.A. (2006) The magnesium isotope budget of the modern ocean: constraints from riverine magnesium isotope ratios. Earth Planet. Sci. Lett. 250(1–2), 241-253.

  69. Valenzano L, Noël Y., Orlando R., Zicovich-Wilson C.M., Ferrero M., Dovesi R. (2007) Ab initio vibrational spectra and dielectric properties of carbonates: magnesite, calcite and dolomite. Theor. Chem. Acc. 117, 991-1000.

  70. Wang W., Qin T., Zhou C., Huang S., Wua Z., Huang F. (2017) Concentration effect on equilibrium fractionation of Mg–Ca isotopes in carbonate minerals: Insights from first-principles calculations. Geochim. Cosmochim. Acta. 208, 185-197.

  71. Zhuravlev Y.N., Atuchin V.V. (2020) Comprehensive density functional theory studies of vibrational spectra of carbonates. Nanomaterials. 10(2275), 2-19.

Дополнительные материалы отсутствуют.