Геохимия, 2022, T. 67, № 12, стр. 1233-1258
Новые данные о возрасте и генезисе карбонатитового комплекса Невания, Раджастан (Индия)
Н. В. Сорохтина a, *, Б. В. Беляцкий b, **, В. А. Зайцев a, ***, Ш. Г. Виладкар c, ****, Н. Н. Кононкова a, *****, А. Гхатак c, ******
a Институт геохимии и аналитической химии им. В.И. Вернадского РАН (ГЕОХИ РАН)
119334 Москва, ул. Косыгина, 19, Россия
b Всероссийский научно-исследовательский геологический институт (ВСЕГЕИ)
199106 Санкт-Петербург, Средний проспект, 74, Россия
c Indian Institute of Science Education and Research Bhopal Department of Earth and Environmental Sciences Bhopal
462066 Bhopal, Bhauri, By-pass Road, India
* E-mail: nat_sor@rambler.ru
** E-mail: bbelyatsky@mail.ru
*** E-mail: va_zaitsev@inbox.ru
**** E-mail: sviladkar@gmail.com
***** E-mail: nnzond@geokhi.ru
****** E-mail: arundhutighatak@iiserb.ac.in
Поступила в редакцию 10.09.2021
После доработки 18.05.2022
Принята к публикации 02.06.2022
- EDN: CMEHXP
- DOI: 10.31857/S001675252212007X
Полные тексты статей выпуска доступны в ознакомительном режиме только авторизованным пользователям.
Аннотация
Представлены новые геохимические данные по карбонатитам интрузивного комплекса Невания (Индия) и содержащемуся в них фторапатиту. Предложена магмато-метаморфическая гипотеза его образования. Карбонатиты Невании сопоставимы с интрузивными ферро- и магнезиокарбонатитами Мира по содержанию основных петрогенных компонентов и обеднены в отношении Ba, Ta, Zr, Th и REE. Главными концентраторами Sr, Th и REE являются фторапатит и монацит-(Се), урана – U-обогащенный пирохлор. Эволюция состава фторапатита подчиняется типичной схеме изоморфного замещения: REE3+ + Na+ ↔ 2Ca2+. Содержание ThO2 в минерале не превышает 0.2 мас. %, U ниже 1–2 мкг/г, содержание LREE варьирует от 1000 до 5000 мкг/г (Ce > Nd > La), тяжелых – не превышает 300 мкг/г. При перекристаллизации раннего магматического фторапатита проходило перераспределение REE и Th, и образование монацита-(Се). Поздние генерации фторапатита и магнетита, Fe-обогащенный доломит, сидерит, монацит-(Ce), U-обогащенный пирохлор, кальцит и графит могли формироваться в условиях метаморфизма амфиболитовой фации и температурах около 600°C. Согласно датировкам фторапатита и циркона, доломитовые карбонатиты внедрились в архейские гранито-гнейсы 2120 млн лет назад. 900 млн лет назад произошло преобразование их минеральных парагенезисов, кристаллизовались вторичные минералы, включая U-обогащенный пирохлор.
Полные тексты статей выпуска доступны в ознакомительном режиме только авторизованным пользователям.
Список литературы
Афанасьев Б.В. (2011) Минеральные ресурсы щелочно-ультраосновных массивов Кольского полуострова. СПб.: Роза ветров, 224.
Капустин Ю.Л. (1971) Минералогия карбонатитов. М.: Наука, 286 с.
Колотов В.П., Жилкина А.В., Широкова В.И., Догадкинa Н.Н., Громяк И.Н., Догадкин Д.Н., Зыбинский А.М., Тюрин Д.А. (2020) Новый подход к минерализации образцов в открытой системе для анализа геологических образцов методом масс-спектрометрии с индуктивно связанной плазмой с улучшенными метрологическими характеристиками. Журн. аналитической химии. 75(5), 394-407.
Сафонов О.Г., Бутвина В.Г., Лиманов Е.В., Косова С.А. (2019) Минеральные индикаторы реакций с участием солевых компонентов флюидов в глубокой литосфере. Петрология. 27(5), 525-556.
Фор Г. (1989) Основы изотопной геологии. М.: Мир, 590.
Шацкий А.Ф., Литасов К.Д., Пальянов Ю.Н. (2015) Фазовые взаимоотношения в карбонатных системах: обзор экспериментальных данных. Геология и геофизика. 56(1–2), 149-187.
Antoine C., Bruand E., Guitreau M., Devidal J.-L. (2020) Understanding preservation of primary signatures in apatite by comparing matrix and zircon-hosted crystals from the Eoarchean Acasta Gneiss Complex (Canada). Geochemistry, Geophysics, Geosystems. 21, e2020GC008923. https://doi.org/10.1029/2020GC008923
Antignano A., Manning C.E. (2008) Fluorapatite solubility in H2O and H2O–NaCl at 700 to 900°C and 0.7 to 2.0 GPa. Chem. Geol. 251, 112-119.
Banerjee A., Satish–Kumar M., Chakrabarti R. (2021) Sulfur, carbon and oxygen isotopic compositions of Newania carbonatites of India: implications for the mantle source characteristics. J. Mineral. Petrol. Sci. 116(3), 121-128.
Beccaluva L., Bianchini G., Natali C., Siena F. (2017) The alkaline-carbonatite complex of Jacupiranga (Brazil): magma genesis and mode of emplacement. Gondwana Research. 44, 157-177.
Bell K. (1989) Carbonatites: Genesis and Evolution. London: Unwin Hyman, 618.
Bell K., Rukhlov A.S. (2004) Carbonatites from the Kola Alkaline Province: origin, evolution and source characteristics. Phoscorites and Carbonatites from Mantle to Mine: the Key Example of the Kola Alkaline Province (Eds. Wall F., Zaitsev A.N.). London: Mineralogical Society Series. 10, 433-468.
Belousova E.A., Griffin W.L., O’Reilly S.Y., Fisher N.I. (2002) Apatite as an indicator mineral for mineral exploration: trace-element compositions and their relationship to host rock type. J. Geochem. Explor. 76, 45-69.
Black L.P., Kamo S.L., Allen C.M., Davis D.W., Aleinikoff J.N., Valley J.W., Mundil R., Campbell I.H., Korsch R.J., Williams I.S., Foudoulis C. (2004) Improved 206Pb/238U microprobe geochronology by the monitoring of a trace-element-related matrix effect; SHRIMP, ID-TIMS, ELA-ICP-MS and oxygen isotope documentation for a series of zircon standards. Chemical Geology. 205, 115-140.
Bucher K., Grapes M. (2011) Petrogenesis of metamorphic rocks. Springer-Verlag Berlin Heidelberg, 428.
Chakhmouradian A.R., Reguir E.P., Zaitsev A.N., Couëslan C., Xue C., Kynický J., Mumin A.H., Yang P. (2017) Apatite in carbonatitic rocks: compositional variation, zoning, element partitioning and petrogenetic significance. Lithos. 274–275, 188-213.
Chen W., Simonetti A. (2014) Evidence for the multistage petrogenetic history of the Oka carbonatite complex (Quebec, Canada) as recorded by perovskite and apatite. Minerals. 4, 437-476.
Chen W., Honghui H., Bai T., Jiang S. (2017) Geochemistry of monazite within carbonatite related REE deposits. Resources. 6, 51.
Choudhary A.K., Gopalan K., Sastry C.A. (1984) Present status of geochronology of the Precambrian rocks of Rajasthan. Tectonophysics. 105, 131-140.
Cochrane R., Spikings R. A., Chew D., Wotzlaw J.-F., Chiaradia M., Tyrrell S., Schaltegger U., van der Lelij R. (2014) High temperature (>350°C) thermochronology and mechanisms of Pb loss in apatite. Geochimica et Cosmochimica Acta. 127, 39-56.
Crawford A.R. (1970) The Precambrian geochronology of Rajasthan and Bundelkhand, northern India. Canadian J. Earth Sciences. 7, 91-110.
Deans T., Powell J.L. (1968) Trace elements and strontium isotopes in carbonatites, fluorites and limestones from India and Pakistan. Nature. 218, 750-752.
Doroshkevich A.G., Ripp G., Viladkar S. (2010) Newania carbonatite, western India: example of mantle derived magnesium carbonatites. Mineral. Petrol. 98(1–4), 283-295.
Ireland T.R., Williams I.S. (2003) Considerations in zircon geochronology by SIMS. Reviews in Mineralogy and Geochemistry. 53, 215-241.
Golani P., Pandit M. (1999) Evidence of epithermal activity and gold mineralization Newania carbonatite, Udaipur district, Rajasthan. J. Ggeological Society of India. 54, 251-257.
Gruau G., Petibon C., Viladkar S., Fourcade S., Bernard-Griffiths J., Mace J. (1995) Extreme isotopic signatures in carbonatites from Newania, Rajasthan. Terra Nova. Abstr. Suppl. 7(1), 336.
Harlov D.E., Wirth R., Förster H.J. (2005) An experimental study of dissolution–reprecipitation in fluorapatite: fluid infiltration and the formation of monazite. Contrib. Mineral. Petrol. 150(3), 268-286.
Harlov D.E. (2011) Formation of monazite and xenotime inclusions in fluorapatite megacrysts, Gloserheia Granite Pegmatite, Froland, Bamble Sector, southern Norway. Miner. Petrol. 102, 77-86.
Harlov D.E. (2015) Apatite: a fingerprint for metasomatic processes. Elements. 11(3), 171-176.
Henrichs I.A., O’Sullivan G., Chew D.M., Mark C., Babechuka M.G., McKenna C., Emoc R. (2018) The trace element and U-Pb systematics of metamorphic apatite. Chem. Geol. 483, 218-238.
Hollocher K., Ruiz J. (1995) Major and trace element determinations on NIST glass standard reference materials 611, 612, 614 and 1834 by inductively coupled plasma-mass spectrometry. Geostandards Newsletter. 19(1), 27-34.
Hughes J.M., Rakovan J.F. (2015) Structurally robust, chemically diverse: apatite and apatite supergroup minerals. Elements. 11, 165-170.
Kennedy A.K., Crowley J.L., Schmitz M.D., Wotzlaw J. (2012) SHRIMP apatite analysis and data reduction. Australia, 6th International SHRIMP Workshop, 68-70.
Kirkland C.L., Yakymchuk C, Szilas K., Evans N., Hollis J., McDonald B., Gardiner N.J. (2018) Apatite: a U-Pb thermochronometer or geochronometer? Lithos. 318–319, 143-157.
Krishnamurthy P. (2019) Carbonatites of India. J. Geological Society of India. 94, 117-138.
Kruger J.C., Romer R.L., Kampf H. (2013) Late Cretaceous ultramafic lamprophyres and carbonatites from the Delitzsch complex, Germany. Chemical Geology. 353, 140-150.
Leelanandam C., Burke K., Ashwal L.D., Webb S.J. (2006) Proterozoic mountain building in peninsular India: analysis based primarily on alkaline rock distribution. Geol. Mag. 143, 195-212.
Le Maitre R.W., Streckeisen A., Zanettin B., Le Bas M.J., Bonin B., Bateman P., Bellieni G., Dudek A., Efremova S., Keller J., Lameyre J., Sabine P.A. (2002) Igneous rocks: a classification and glossary of terms: recommendations of the International Union of Geological Sciences, subcommission on the systematics of igneous rocks. Cambridge: Cambridge University Press, 236.
Lodders K., Palme H., Gail H.-P. (2009) Abundances of the elements in the Solar System. Landolt-Bӧrnstein – group VI astronomy and astrophysics. SpringerVerlag Berlin Heidelberg. 4B, 712-770.
Ludwig K.R. (2005) SQUID 1.13a. A user’s manual. A geochronological toolkit for microsoft excel. Berkeley Geochronology Center Special Publication. 2, 1-19.
Ludwig K.R. (2012) User’s manual for Isoplot/Ex, version 3.75. A geochronological toolkit for microsoft excel. Berkeley Geochronology Center Special Publication. 5, 1-71.
Luo Y., Hughes J.M., Rakovan J., Pan Y. (2009) Site preference of U and Th in Cl, F, and Sr apatites. Amer. Min. 94, 345-351.
McSwiggen P.L. (1993) Alternative solution model for the ternary carbonate system CaCO3–MgCO3–FeCO3 II. Calibration of a combined ordering model and mixing model. Phys. Chem. Minerals. 20(4), 55.
Millonig L.J., Gerdes A., Groat L.A. (2013) The effect of amphibolite facies metamorphism on the U-Th-Pb geochronology of accessory minerals from meta-carbonatites and associated meta-alkaline rocks. Chemical Geology. 353, 199-209.
Mitchell R.H. (2005) Carbonatites and carbonatites and carbonatites. The Canadian Mineralogist. 43, 2049-2068.
Mitchell R., Chudy Th., McFarlane C.R.M., Wu F.-Y. (2017) Trace element and isotopic composition of apatite in carbonatites from the Blue River area (British Columbia, Canada) and mineralogy of associated silicate rocks. Lithos. 286–287, 75-91.
Palme H., O’Neill H.S.C. (2014) 3.1 – Cosmochemical estimates of mantle composition. In Treatise on Geochemistry (Eds. Holland H.D., Turekian K.K.). Oxford: Elsevier, 1-39.
Pandit M.K, Golani P.R (2001) Reappraisal of the petrologic status of Newania ‘carbonatite’ of Rajasthan, western India. J. Asian Earth Sci. 19, 305-310.
Pandit M.K., Sial A.N., Saxena D., Ferreira V.P. (2000) Nonmagmatic features in carbonatitic rocks: A reexamination of Proterozoic “carbonatites” southeast Rajasthan, northwest Indian craton. Int. Geology Review. 42, 1046-1053.
Pandit M.K., Sial, A.N., Sukumaran G.B., Pimentel M.M., Ramasamy A.K., Ferreira V.P., (2002) Depleted and enriched mantle sources for Paleo-and Neoproterozoic carbonatites of southern India: Sr, Nd, C–O isotopic and geochemical constraints. Chemical Geology. 189(1–2), 69-89.
Pan Y., Fleet M.E. (2002) Compositions of the apatite-group minerals: substitution mechanisms and controlling factors. Reviews in Mineralogy and Geochemistry. 48(1), 13-49.
Paul D., Chandra J., Halder M. (2020) Proterozoic alkaline rocks and carbonatites of Peninsular India: a review. Episodes. 43(1), 249-277.
Pasero M., Kampf A.R., Ferraris C., Pekov I.V., Rakovan J., White T.J. (2010) Nomenclature of the apatite supergroup minerals. European J. Mineralogy. 22, 163-179.
Poletti J.E., Cottle J.M., Hagen-Peter G.A., Lackey J.S. (2016) Petrochronological constraints on the origin of the Mountain Pass ultrapotassic and carbonatite intrusive suite, California. J. Petrology. 57(8), 1555-1598.
Randive K., Meshram T. (2020) An overview of the carbonatites from the Indian Subcontinent. Open Geosciences. 12(1), 85-116.
Ray J.S., Shukla A.D., Dewangan L.K. (2010) Carbon and oxygen isotopic compositions of Newania dolomite carbonatites, Rajasthan, India: implications for source of carbonatites. Mineral. Petrol. 98, 269-282.
Ray J.S., Pandey K., Bhutani R., Shukla A.D., Rai V.K., Kumar A., Awasthi N., Smitha R.S., Panda D.K. (2013) Age and geochemistry of the Newania dolomite carbonatites, India: implications for the source of primary carbonatite magma. Contrib. Mineral. Petrol. 166, 1613-1632.
Rodionov N.V., Belyatsky B.V., Antonov A.V., Kapitonov I.N., Sergeev S.A. (2012) Comparative in-situ U–Th–Pb geochronology and trace element composition of baddeleyite and low-U zircon from carbonatites of the Palaeozoic Kovdor alkaline–ultramafic complex, Kola Peninsula, Russia. Gondwana Research. 21, 728-744.
Roy A.B., Jakhar S.R. (2002) Geology of Rajasthan (northwest India): Precambrian to recent. Scientific Publishers. India: Jodhpur, 421.
Simandl G.J., Paradis S. (2018) Carbonatites: related ore deposits, resources, footprint, and exploration methods. Applied Eearth Science (Trans. Inst. Min. Metall. B). 127(4), 123-152.
Schleicher H., Todt W., Viladkar S.G., Schmidt F. (1997) Pb/Pb age determinations on Newania and Sevathur carbonatites of India: evidence for multi-stage histories. Chem. Geol. 140, 261-273.
Sukheswala R.N. (1976) Carbonatite kimberlite complexes of India. J. Geological Society of India. 17(4), 429-437.
Tantkar P., Patidar R., Agrawal V. (2019) A study of fenitization around Newania carbonatite body, district Udaipur, Rajasthan. IJSRR. 8(2), 76-80.
Tappe S., Simonetti A. (2012) Combined U-Pb geochronology and Sr-Nd isotope analysis of the Ice River perovskite standard, with implications for kimberlite and alkaline rock petrogenesis. Chemical Geology. 304-305, 10-17.
Trdlicka Z., Hoffman V. (1976) Undersuchengen der chemischen zusammensetzung der gangkarbonate von Kutna Hora (CSSR). Freiberger Forschungshefte. C231, 29-81.
Van Zuilen M.A., Lepland A., Teranes J., Finarelli J., Wahlen M., Arrhenius G. (2003) Graphite and carbonates in the 3.8 Ga old Isua Supracrustal Belt, southern West Greenland. Precambrian Research. 126, 331-348.
Veksler I.V., Petibon C., Jenner G.A., Dorfman A.M., Dingwell D.B. (1998) Trace element partitioning in immiscible silicate–carbonate liquid systems: an initial experimental study using a centrifuge autoclave. J. Petrol. 39, 2095-2104.
Verma P.K., Greiling R.O. (1995) Tectonic evolution of the Aravalli Orogen (NW India): an inverted Proterozoic rift basin. Geologische Rundschau. 84(4), 683-696
Viladkar S.G. (1980) The fenitized aureole of the Newania carbonatite, Rajasthan. Geological Magazine. 117(3), 285-292.
Viladkar S.G. (1998). Carbonatite occurrences in Rajasthan, India. Petrology. 6(3), 272-283.
Viladkar S.G., Pawaskar P.B. (1989) Rare earth element abundances in carbonatites and fenites of the Newania complex, Rajasthan, India. Bulletin Geological Society of Finland. 61, 113-122.
Viladkar S.G., Bismayer U., Zietlow P. (2017) Metamict U-rich pyrochlore of Newania carbonatite, Udaipur, Rajasthan. J. Geological Society of India. 89, 133-138.
Viladkar S.G., Ghose I. (2002) U-rich pyrochlore in carbonatite of Newania, Rajasthan. Neues Jahrbuch für Mineralogie – Monatshefte. 3, 97-106.
Viladkar S.G., Kienast J.R., Fourcade S. (1993) Mineralogy of the Newania carbonatite, Rajsthan, India. IAGOD Symposium abstr. France: Orleans, 55.
Viladkar S.G., Ramesh R. (2014) Stable isotope geochemistry of some Indian carbonatites: implications for magmatic processes and post-emplacement hydrothermal alteration. Comunicaçõe Geológicas. 101(1), 55-62.
Viladkar S.G., Wimmenauer W. (1986) Mineralogy and geochemistry of the Newania carbonatite–fenite complex, Rajasthan, India. N. Jb. Mineral. Abh. 156, 1-21.
Villa I.M. (2016) Diffusion in mineral geochronometers: present and absent. Chemical Geology. 420, 1-10.
Wang W., Cawood P.A., Pandit M.K., Zhou M.-F., Chen W.T. (2017) Zircon U-Pb and Hf isotope evidence for an Eoarchaean crustal remnant and episodic crustal reworking in response to supercontinent cycles in NW India. J. Geol. Soc. 174, 759-772.
Wiedenbeck M., Alle P., Corfu F., Griffin W.L., Meier M, Oberli F., von Quadt A., Roddick J.C., Spiegel W. (1995) Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analysis. Geostandard Newsletter. 19, 1-38.
Williams J.S. (1998) U-Th-Pb geochronology by ion microprobe. Application of microanalytical techniques to understanding mineralizing processes. Rev. Econ. Geol. 7, 1-35.
Woolley A.R., Buckley H.A. (1993) Magnesite-siderite series carbonates in the Nkombwa and Newania carbonatite complexes. S.Afr.1.Geol. 96(3), 126-130.
Woolley A.R., Kempe D.R.C. (1989) Carbonatites: nomenclature, average chemical compositions and element distribution. In Carbonatites: Genesis and Evolution (Ed. Bell K.). London: Unwin Hyman, 1-14.
Woolley A.R., Kjarsgaard B.A. (2008) Paragenetic types of carbonatite as indicated by the diversity and relative abundances of associated silicate rocks: evidence from a global database. The Canadian Mineralogist. 46(4), 741-752.
Ying Y., Chen W., Lu J., Jiang Sh.-Y., Yang Yu. (2017) In situ U-Th-Pb ages of the Miaoya carbonatite complex in the South Qinling orogenic belt, central China. Lithos. 290–291, 159-171.
Zaitsev A.N., Williams T.C., Jeffries T.E., Strekopytov S., Moutte J., Ivashchenkova O.V., Spratt J., Petrov S.V., Wall F., Seltmann R., Borozdin A.P. (2015) Rare earth elements in phoscorites and carbonatites of the Devonian Kola Alkaline Province, Russia: examples from Kovdor, Khibina, Vuoriyarvi and Turiy Mys complexes. Ore Geol. Rev. 64, 477-498.
Дополнительные материалы отсутствуют.