Геохимия, 2022, T. 67, № 4, стр. 303-317

Постшпинелевые фазы в мантии Земли

А. В. Искрина ab*, А. В. Бобров abc, А. В. Спивак b

a Московский государственный университет им. М.В. Ломоносова Геологический факультет
119991 Москва, Ленинские Горы, 1, Россия

b Федеральное государственное бюджетное учреждение науки Институт экспериментальной минералогии им. академика Д.С. Коржинского Российской академии наук
142432 Московская обл., Черноголовка, ул. Академ. Осипьяна, 4, Россия

c Федеральное государственное бюджетное учреждение науки Ордена Ленина и Ордена Октябрьской Революции Институт геохимии и аналитической химии им. В.И. Вернадского Российской академии наук (ГЕОХИ РАН)
119991 Москва, ул. Косыгина, 19, Россия

* E-mail: iskrina@iem.ac.ru

Поступила в редакцию 22.05.2021
После доработки 04.10.2021
Принята к публикации 04.10.2021

Аннотация

К постшпинелевым фазам относятся соединения со стехиометрией ${{A}^{{2 + }}}B_{2}^{{3 + }}{{{\text{O}}}_{4}}$$\left( {A_{2}^{{2 + }}{{B}^{{4 + }}}{{{\text{O}}}_{4}}} \right)$ и структурами кальциоферрита CaFe2O4, кальциотитаната CaTi2O4 и марокита CaMn2O4. Внутри этого семейства родственных по топологии структур с “марокитовым” каналом, образованным шестью октаэдрами, выделяются структуры с центрированной Cmcm (Bbmm) и с примитивными Pnma (Pmcn), Pbcm (Pmab) ячейками. Позиции A и B заняты различными катионами, в частности, Cr, Al, Mg, Fe, Ca, Ti, Fe, Na, Si, что предполагает формирование твердых растворов широкого диапазона составов. В природе подобные фазы высокого давления были обнаружены в метеоритах, в качестве включений в кристаллах алмаза и в некоторых метаморфических комплексах. В данном обзоре приводится характеристика природных минералогических находок, результатов экспериментального изучения постшпинелевых фаз различного состава и их твердых растворов, а также кристаллохимического моделирования и оценки возможных составов и областей стабильности соединений с “марокитовым” каналом. Несоответствие между результатами отдельных исследований свидетельствует о необходимости уточнения параметров стабильности и возможных изоструктурных переходов, а, в конечном итоге, усовершенствования классификации постшпинелевых фаз.

Ключевые слова: постшпинелевые фазы, алюминаты, титанаты, манганаты, структура, "марокитовый" канал, высокие давления, фазовая диаграмма, мантия Земли

Список литературы

  1. Марченко Е.И., Еремин Н.Н., Бычков А.Ю., Гречановский А.Е. (2017) Ca- и Mg-Перовскитовые фазы мантии Земли как возможный резервуар Al по данным компьютерного моделирования. Вестн. Моск. Ун-та. Сер. 4. Геология. 4, 3-7.

  2. Марченко Е.И. (2019) Диссертация на соискание ученой степени кандидата химических наук. Москва, МГУ.

  3. gee C. B., Li J., Shannon M.C., Circone S. (1995) Pressure-temperature phase diagram for the Allende meteorite. J. Geophys. Res. 100, 17725-17740.

  4. Akaogi M., Hamada Y., Suzuki T., Kobayashi M., Okada M. (1999) High pressure transitions in the system MgAl2O4–CaAl2O4: A new hexagonal aluminous phase with implication for the lower mantle. Phys. Earth Planet. Inter. 115, 67-77.

  5. Andrault D., Casanova N.B. (2001) High-pressure phase transitions in the MgFe2O4 and Fe2O3–MgSiO3 systems. Phys. Chem. Miner. 28, 211-217.

  6. Arévalo-López Á.M., Dos Santos-García A.J., Castillo-Martínez E., Durán A., Alario-Franco M.Á. (2010) Spinel to CaFe2O4 transformation: Mechanism and properties of β-CdCr2O4. Inorg. Chem. 49, 2827-2833.

  7. Asbrink S., Waśkowska A., Gerward L., Olsen J.S., Talik E. (1999) High-pressure phase transition and properties of spinel ZnMn2O4. Phys. Rev. 60, 12651.

  8. Bassett W.A., Takahashi T., Stook P.W. (1967) X-ray diffraction and optical observations on crystalline solids up to 300 kbar. Rev. Sci. Instrum. 38, 37-42.

  9. Bindi L., Sirotkina E.A., Bobrov A.V., Irifune T. (2015) Letter. Structural and chemical characterization of Mg[(Cr,Mg)(Si,Mg)]O4, a new post-spinel phase with sixfold-coordinated silicon. Am. Mineral. 100, 1633-1636.

  10. Bindi L., Sirotkina E., Bobrov A.V., Irifune T. (2014) X-ray single-crystal structural characterization of MgCr2O4, a post-spinel phase synthesized at 23 GPa and 1600 C. J. Phys. Chem. Solids. 75, 638-641.

  11. Bindi L., Griffin W.L., Panero W.R., Sirotkina E., Bobrov A., Irifune T. (2018) Synthesis of inverse ringwoodite sheds light on the subduction history of Tibetan ophiolites. Sci. Rep. 8, 5457.

  12. Catti M. (2001) High-pressure stability, structure and compressibility of Cmcm-MgAl2O4: An ab initio study. Phys. Chem. Miner. 28, 729-736.

  13. Catti M., Freyria Fava F., Zicovich C., Dovesi R. (1999) High-pressure decomposition of MCr2O4 spinels (M = Mg, Mn, Zn) by ab initio methods. Phys. Chem. Miner. 26, 389-395.

  14. Chen M., Shu J.F., Mao H.K. (2008) Xieite, a new mineral of high-pressure FeCr2O4 polymorph. Chinese Sci. Bull. 53, 3341-3345.

  15. Chen M., Shu J., Xie X., Tan D. (2019) Maohokite, a post-spinel polymorph of MgFe2O4 in shocked gneiss from the Xiuyan crater in China. Meteorit. Planet. Sci. 54, 495-502.

  16. Choi H.C., Shim J.H., Min B.I. (2006) Electronic structures and magnetic properties of spinel ZnMn2O4 under high pressure. Phys. Rev. B – Condens. Matter Mater. Phys. 74, 4-7.

  17. Decker B.F., Kasper J.S. (1957) The structure of calcium ferrite. Acta Crystallogr. 10, 332-337.

  18. Enomoto A., Kojitani H., Akaogi M., Miura H., Yusa H. (2009) High-pressure transitions in MgAl2O4 and a new high-pressure phase of Mg2Al2O5. J. Solid State Chem. 182, 389-395.

  19. Eremin N.N., Grechanovsky A.E., Marchenko E.I. (2016) Atomistic and Ab initio modeling of CaAl2O4 high-pressure polymorphs under Earth’s mantle conditions. Crystallogr. Reports. 61, 432-442.

  20. Errandonea D., Kumar R.S., Manjón F.J., Ursaki V.V., Rusu E.V. (2009) Post-spinel transformations and equation of state in ZnGa2O4: Determination at high pressure by in situ x-ray diffraction. Phys. Rev. B – Condens. Matter Mater. Phys. 79, 1-20.

  21. Funamori N., Jeanloz R., Nguyen J.H., Kavner A., Caldwell W.A., Fujino K., Miyajima N., Shinmei T., Tomioka N. (1998) High-pressure transformations in MgAl2O4. J. Geophys. Res. Solid Earth. 103, 20813-20818.

  22. Galuskin E.V., Krüger B., Krüger H., Blass G., Widmer R., Galuskina I.O. (2016) Wernerkrauseite, ${\text{CaFe}}_{2}^{{3 + }}{\text{M}}{{{\text{n}}}^{{{\text{4 + }}}}}{{{\text{O}}}_{{\text{6}}}}{\text{:}}$ the first nonstoichiometric post-spinel mineral, from Bellerberg volcano, Eifel, Germany. Eur. J. Mineral. 28, 485-493.

  23. Galuskina I.O., Vapnik Y., Lazic B., Armbruster T., Murashko M., Galuskin E.V. (2014) Harmunite CaFe2O4: A new mineral from the Jabel Harmun, West Bank, Palestinian Autonomy, Israel. Am. Mineral. 99, 965-975.

  24. Gasparik T., Tripathi A., Parise J.B. (2000) Structure of a new Al-rich phase, [K, Na]0.9[Mg, Fe]2[Mg, Fe, Al, Si]6O12, synthesized at 24 GPa. Am. Mineral. 85, 613-618.

  25. Gaudefroy C., Jouravsky G., Permingeat F. (1963) La marokite, CaMn2O4, une nouvelle espèce minérale. Bull. la Société française Minéralogie Cristallogr. 86, 359-367.

  26. Giesber H.G., Pennington W.T., Kolis J.W. (2001) Redetermination of CaMn2O4. Acta Crystallogr. Sect. C Cryst. Struct. Commun. 57, 329-330.

  27. Greenberg E., Dubrovinsky L., Mccammon C. (2011) Pressure-induced structural phase transition of the iron end-member of ringwoodite γ-Fe2SiO4 investigated by X-ray diffraction and Mössbauer spectroscopy. Am. Mineral. 96, 833-840.

  28. Greenberg E., Rozenberg G.K., XuW., Pasternak M.P., McCammon C., Glazyrin K., Dubrovinsky L.S. (2013) Mott transition in CaFe2O4 at around 50 GPa. Phys. Rev. B – Condens. Matter Mater. Phys. 88, 2-6.

  29. Griffin W.L. et al. (2016) Mantle recycling: transition-zone metamorphism of Tibetan ophiolitic peridotites and its tectonic implications. J. Petrol. 57, 655-684.

  30. Guignot N., Andrault D. (2004) Equations of state of Na–K–Al host phases and implications for MORB density in the lower mantle. Phys. Earth Planet. Inter. 143, 107-128.

  31. Irifune T., Ringwood A.E. (1993) Phase transformations in subducted oceanic crust and buoyancy relationships at depths of 600–800 km in the mantle. Earth Planet. Sci. Lett. 117, 101-110.

  32. Ishii T., Kojitani H., Tsukamoto S., Fujino K., Mori D., Inaguma Y., Tsujino N., Yoshino T., Yamazaki D., Higo Y., Funakoshi K., Akaogi M. (2014) High-pressure phase transitions in FeCr2O4 and structure analysis of new post-spinel FeCr2O4 and Fe2Cr2O5 phases with meteoritical and petrological implications. Am. Mineral. 99, 1788-1797.

  33. Ishii T., Kojitani H., Fujino K., Yusa H., Mori D., Inaguma Y., Matsushita Y., Yamaura K., Akaogi M. (2015) High-pressure high-temperature transitions in MgCr2O4 and crystal structures of new Mg2Cr2O5 and post-spinel MgCr2O4 phases with implications for ultrahigh-pressure chromitites in ophiolites. Am. Mineral. 100, 59-65.

  34. Ishii T., Miyajima N., Sinmyo R., Kojitani H., Mori D., Inaguma Y., Akaogi M. (2020) Discovery of new-structured post-spinel MgFe2O4: Crystal structure and high-pressure phase relations. Geophysical Research Letters, 47(6), e2020GL087490.

  35. Iskrina A.V., Spivak A.V., Bobrov A.V., Eremin N.N., Marchenko E.I., Dubrovinsky L.S. (2020) Synthesis and crystal structures of new high-pressure phases CaAl2O4 and Ca2Al6O11. Lithos. 374-375, 105689.

  36. Ito S., Suzuki K., Inagaki M., Naka S. (1980) High-pressure modifications of CaAl2O4 and CaGa2O4. Mater. Res. Bull. 15, 925-932.

  37. Kaminsky F.V., Wirth R., Schreiber A. (2015) A microinclusion of lower-mantle rock and other minerals and nitrogen lower-mantle inclusions in a diamond. Can. Mineral. 53, 83-104.

  38. Kesson S.E. (1994) Phase Relations for the Former Basaltic Crust of the Slab in the Perovskitite Facies of the Lower Mantle. Mineral. Mag. 58A, 475-476.

  39. Kesson S.E., Gerald J.D.F., Shelley J.M.G. (1994) Mineral chemistry and density of subducted basaltic crust at lower-mantle pressures. 372, 767-769.

  40. Kirby S.H., Stein S., Okal E.A., Rubie D.C. (1996) Metastable mantle phase transformations and deep earthquakes in subducing oceanic lithosphere. Rev. Geophys. 34, 261-306.

  41. Kojitani H., Hisatomi R., Akaogi M. (2007) High-pressure phase relations and crystal chemistry of calcium ferrite-type solid solutions in the system MgAl2O4–Mg2SiO4. Am. Mineral. 92, 1112-1118.

  42. Kyono A., Ahart M., Yamanaka T., Gramsch S., Mao H.K., Hemley R.J. (2011) High-pressure Raman spectroscopic studies of ulvöspinel Fe2TiO4. Am. Mineral. 96, 1193-1198.

  43. Lazić B., Kahlenberg V., Konzett J., Kaindl R. (2006) On the polymorphism of CaAl2O4-structural investigations of two high pressure modifications. Solid State Sci. 8, 589-597.

  44. Lazor P., Shebanova O.N., Annersten H. (2004) High-pressure study of stability of magnetite by thermodynamic analysis and synchrotron X-ray diffraction. J. Geophys. Res. 109, B05201

  45. Levy D., Pavese A., Hanfland M. (2000) Phase transition of synthetic zinc ferrite spinel (ZnFe2O4) at high pressure, from synchrotron X-ray powder diffraction. Phys. Chem. Miner. 27, 638-644.

  46. Litasov K.D., Ohtani E. (2005) Phase relations in hydrous MORB at 18–28 GPa: Implications for heterogeneity of the lower mantle. Phys. Earth Planet. Inter. 150, 239-263.

  47. Liu L.G. (1977) The system enstatite-pyrope at high pressures and temperatures and the mineralogy of the Earth’s mantle. Earth Planet. Sci. Lett. 36, 237-245.

  48. Ma C., Prakapenka V. (2018) Tschaunerite, IMA 2017-032a. CNMNC NewsletterNo. 46, December 2018, page 1188. Eur. Mineral. 30, 1181-1189.

  49. Ma C., Tschauner O., Beckett J.R., Liu Y., Greenberg E., Prakapenka V.B. (2019) Chenmingite, FeCr2O4 in the CaF-e2O4-type structure, a shock-induced, high-pressure mineral in the Tissint martian meteorite. Am. Mineral. 104(10), 1521-1525.

  50. Malavasi L., Tealdi C., Amboage M., Mozzati M.C., Flor G. (2005) High pressure X-ray diffraction study of MgMn2O4 tetragonal spinel. Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms. 238, 171-174.

  51. Merlini M., Hanfland M., Gemmi M., Huotari S., Simonelli L., Strobel P. (2010) Fe3+ spin transition in CaFe2O4 at high pressure. Am. Mineral. 95, 200-203.

  52. Müller-Buschbaum H. (2003) The crystal chemistry of AM2O4 oxometallates. J. Alloys Compd. 349, 49-104.

  53. Ohgushi K., Gotou H., Yagi T., Ueda Y. (2006) High-pressure synthesis and magnetic properties of orthorhombic CuRh2O4. J. Phys. Soc. Japan. 75, 4-6.

  54. Ono A., Akaogi M., Kojitani H., Yamashita K., Kobayashi M. (2009) High-pressure phase relations and thermodynamic properties of hexagonal aluminous phase and calcium-ferrite phase in the systems NaAlSiO4–MgAl2O4 and CaAl2O4–MgAl2O4. Phys. Earth Planet. Inter. 174, 39-49.

  55. Ono S., Kikegawa T., Ohishi Y. (2006) The stability and compressibility of MgAl2O4 high-pressure polymorphs. Phys. Chem. Miner. 33, 200-206.

  56. Paris E., Ross II C.R., Olijnyk H. (1992) Mn3O4 at high pressure: a diamond-anvil cell study and a structural modelling. Eur. J. Mineral. 4, 87-94.

  57. Perrillat J., Daniel I., Fiquet G., Mezouar M., Guignot N. (2006) Phase transformations of subducted basaltic crust in the upmost lower mantle. 157, 139-149.

  58. Reid A.F., Ringwood A.E. (1969) Newly observed high pressure transformations in Mn3O4, CaAl2O4, and ZrSiO4. Earth Planet. Sci. Lett. 6, 205-208.

  59. Rogge M.P., Caldwell J.H., Ingram D.R., Green C.E., Geselbracht M.J., Siegrist T. (1998) A New Synthetic Route to Pseudo-Brookite-Type CaTi2O4. J. Solid State Chem. 141, 338-342.

  60. Schollenbruch K., Woodland A.B., Frost D.J. (2010) The stability of hercynite at high pressures and temperatures. Phys. Chem. Miner. 37, 137-143.

  61. Sharygin V.V. (2019) Orthorhombic CaCr2O4 in phosphide-bearing gehlenite-rankinite paralava from Hatrurim basin, Israel: preliminary data. In Magmatism of the Earth and related strategic metal deposits. pp. 272-276.

  62. Sirotkina E.A., Bobrov A.V., Bindi L., Irifune T. (2018) Chromium-bearing phases in the Earth’s mantle: Evidence from experiments in the Mg2SiO4–MgCr2O4 system at 10–24 GPa and 1600°C. Am. Miner. 103, 151-160.

  63. Uenver-Thiele L., Woodland A.B., Boffa Ballaran T., Miyajima N., and Frost D.J. (2017) Phase relations of Fe–Mg spinels including new high-pressure post-spinel phases and implications for natural samples. Am. Mineral. 102, 2054-2064.

  64. Walter M.J., Kohn S.C., Araujo D., Bulanova G.P., Smith C.B., Gaillou E., Wang J., Steele A., Shirey S.B. (2011) Deep mantle cycling of oceanic crust: Evidence from diamonds and their mineral inclusions. Science (80-.). 334, 54-57.

  65. Wang W., Xu Y., Sun D., Ni S., Wentzcovitch R., Wu Z. (2020) Velocity and density characteristics of subducted oceanic crust and the origin of lower-mantle heterogeneities. Nat. Commun., 1–8. Available at: https://doi.org/10.1038/s41467-019-13720-2

  66. Wang Z., Downs T., Pischedda V., Shetty R., Saxena K., Zha S., Zhao S., Schiferl D., Waskowska A. (2003a) High-pressure X-ray diffraction and Raman spectroscopic studies of the tetragonal spinel CoFe2O4. Phys. Rev. B – Condens. Matter Mater. Phys. 68, 2-7.

  67. Wang Z., O’Neillb H.S.C., Lazorc P., Saxena S.K. (2002a) High pressure Raman spectroscopic study of spinel MgCr2O4. J. Phys. Chem. Solids. 63, 2057-2061.

  68. Wang Z., Lazor P., Saxena S.K., Artioli G. (2002b) High-Pressure Raman Spectroscopic Study of Spinel (ZnCr2O4). J. Solid St. Chem. 165, 165-170.

  69. Wang Z., Saxena S.K., Lazor P., O’Neill H.S.C. (2003b) An in situ Raman spectroscopic study of pressure induced dissociation of spinel NiCr2O4. J. Phys. Chem. Solids. 64, 425-431.

  70. Wu Y., Wu X., Qin S. (2012) Pressure-induced phase transition of Fe2TiO4: X-ray diffraction and Mössbauer spectroscopy. J. Solid St. Chem. 185, 72-75.

  71. Yamanaka T., Kyono A., Nakamoto Y., Kharlamova S., Struzhkin V.V., Gramsch S.A., Mao H.K., Hemley R.J. (2015) New structure of high-pressure body-centered orthorhombic Fe2SiO4. Am. Mineral. 100, 1736-1743.

  72. Yamanaka T., Uchida A., Nakamoto Y. (2008) Structural transition of post-spinel phases CaMn2O4, CaFe2O4, and CaTi2O4 under high pressures up to 80 GPa. Am. Mineral. 93, 1874-1881.

  73. Yamaura, Kazunari Huang Q., Zhang L., Takada K., Baba Y., Nagai T., Matsui Y., Kosuda K., Takayama-Muromachi E. (2006) Spinel-to-CaFe2O4-Type Structural Transformation in LiMn2O4 under High Pressure. J. AM. CHEM. SOC. 128, 9448-9456.

  74. Ye L., Zhai S., Wu X., Xu C., Yang K., Higo Y. (2015) Compressibilities of MnFe2O4 polymorphs. Phys. Chem. Miner. 42, 569-577.

  75. Yong W., Botis S., Shieh S.R., Shi W., Withers A.C. (2012) Pressure- induced phase transition study of magnesiochromite (MgCr2O4) by Raman spectroscopy and X-ray diffraction. Physics of the Earth and Planetary Interiors, 196-197, 75-82.

  76. Yutani M., Yagi T., Yusa H., Irifune T. (1997) Compressibility of calcium ferrite-type MgAl2O4. Phys. Chem. Miner. 24, 340–344.

  77. Zhai S., Yin Y., Shieh S.R., Shan S., Xue W., Wang C.P., Yang K., Higo Y. (2016) High-pressure X-ray diffraction and Raman spectroscopy of CaFe2O4-type β-CaCr2O4. Phys. Chem. Miner. 43, 307-314.

  78. Zhang Y., Liu X., Shieh S. R., Bao X., Xie T., Wang F., Zhang Z., Prescher C., Prakapenka V.B. (2017) Spinel and post-spinel phase assemblages in Zn2TiO4: an experimental and theoretical study. Phys. Chem. Miner. 44, 109-123.

  79. Zhang Y., Liu X., Shieh S. R., Zhang Z., Bao X., Xie T., Wang F., Prescher C., Prakapenka V. B. (2019) Equations of state of Co2TiO4-Sp, Co2TiO4-CM, and Co2TiO4-CT, and their phase transitions: an experimental and theoretical study. Phys. Chem. Miner. 46, 571-582.

Дополнительные материалы отсутствуют.