Геохимия, 2022, T. 67, № 4, стр. 318-338

Летучие, редкие и рудные элементы в магматических расплавах и природных флюидах по данным изучения включений в минералах. I. Средние концентрации 45 элементов в главных геодинамических обстановках Земли

В. Б. Наумов a*, В. А. Дорофеева a, А. В. Гирнис b**, В. А. Коваленкер b

a Институт геохимии и аналитической химии им. В.И. Вернадского РАН
119991 Москва, ул. Косыгина, 19, Россия

b Институт геологии рудных месторождений, петрографии, минералогии и геохимии РАН
119017 Москва, Старомонетный пер., 35, Россия

* E-mail: naumov@geokhi.ru
** E-mail: girnis@igem.ru

Поступила в редакцию 04.03.2021
После доработки 29.07.2021
Принята к публикации 28.09.2021

Аннотация

На основании обобщения опубликованных данных по составам включений в минералах и закалочных стекол пород рассчитаны средние концентрации 45 летучих, редких и рудных элементов в магматических силикатных расплавах главных геодинамических обстановок Земли и в природных флюидах. Выделены следующие геодинамические обстановки, различающиеся по условиям формирования и эволюции магматических расплавов: I – зоны спрединга океанических плит (срединно-океанические хребты); II – проявления мантийных плюмов в условиях океанических плит (океанические острова и лавовые плато); III и IV – обстановки, связанные с субдукционными процессами (III – зоны островодужного магматизма, IV – зоны магматизма активных континентальных окраин); V – внутриконтинентальные рифты и области континентальных горячих точек; VI – зоны задугового спрединга, связанные с субдукцией. Проведено сравнение концентраций этих элементов в основных и кислых расплавах для III, IV и V обстановок. Показано, что различия в степени обогащения рудных элементов в зависимости от геодинамической обстановки могут быть связаны с разным вкладом флюидов в перенос и накопление элементов. Рассчитаны отношения содержаний элементов в каждой геодинамической обстановке к средним содержаниям элемента по всем обстановкам Земли.

Ключевые слова: расплавные и флюидные включения, летучие компоненты, редкие и рудные элементы, геодинамические обстановки

Список литературы

  1. Волков А.В., Сидоров А.А., Старостин В.И. (2014) Металлогения вулканогенных поясов и зон активизации. М.: МАКС Пресс, 356 с.

  2. Коваленкер В.А. (2004) Рудообразующие системы эпитермальных золото-серебряных месторождений: концепции, реальность, модели. Проблемы рудной геологии, петрологии, минералогии и геохимии. М.: ИГЕМ РАН, 160-183.

  3. Коваленкер В.А., Киселева Г.Д., Крылова Т.Л., Андреева О.В. (2011) Минералогия и условия образования золотоносного W-Mo – порфирового Бугдаинского месторождения, Восточное Забайкалье, Россия. Геология рудных месторождений. 53, 107-142.

  4. Коваленкер В.А., Абрамов С.С., Киселева Г.Д., Крылова Т.Л., Языкова Ю.И., Бортников Н.С. (2016) Крупное Cu–Au–Fe Быстринское месторождение (Восточное Забайкалье) – первый в России пример ассоциированной с адакитами скарново-порфировой рудообразующей системы. ДАН. 488(5), 547-552.

  5. Наумов В.Б., Коваленко В.И., Дорофеева В.А., Ярмолюк В.В. (2004) Средние содержания петрогенных, летучих и редких элементов в магматических расплавах различных геодинамических обстановок. Геохимия. (10), 1113-1124.

  6. Naumov V.B., Kovalenko V.I., Dorofeeva V.A., Yarmolyuk V.V. (2004) Average concentrations of major, volatile, and trace elements in magmas of various geodynamic settings. Geochem. Int. 42(10), 977-987.

  7. Наумов В.Б., Коваленко В.И., Дорофеева В.А., Гирнис А.В., Ярмолюк В.В. (2010) Средний состав магматических расплавов главных геодинамических обстановок по данным изучения расплавных включений в минералах и закалочных стекол пород. Геохимия. (12), 1266-1288. Naumov V.B., Kovalenko V.I., Dorofeeva V.A., Girnis A.V., Yarmolyuk V.V. (2010) Average compositions of igneous melts from main geodynamic settings according to the investigation of melt inclusions in minerals and quenched glasses of rocks. Geochem. Int. 48(12), 1185-1207.

  8. Наумов В.Б., Коваленкер В.А., Прокофьев В.Ю., Толстых М.Л., Дамиан Г., Дамиан Ф. (2013) Необычные кислые расплавы в районе уникального месторождения золота Рошия Монтана (Горы Апусени, Румыния) по данным изучения включений в кварце. Геохимия. (11), 973-986.

  9. Naumov V.B., Kovalenker V.A., Prokofiev V.Yu., Tolstykh M.L., Damian G., Damian F. (2013) Unusual acid melts in the area of the unique Rosia Montana gold deposit Apuseni Mountains, Romania: Evidence from inclusions in quartz. Geochem. Int. 51(11), 876-888.

  10. Наумов В.Б., Гирнис А.В., Дорофеева В.А., Коваленкер В.А. (2016) Концентрация рудных элементов в магматических расплавах и природных флюидах по данным изучения включений в минералах. Геология рудных месторождений. 58, 367-384.

  11. Наумов В.Б., Дорофеева В.А., Гирнис А.В., Ярмолюк В.В. (2017) Среднее содержание летучих компонентов, петрогенных и редких элементов в магматических расплавах главных геодинамических обстановок Земли. I. Расплавы основного состава. Геохимия. (7), 618-643. Naumov V.B., Dorofeeva V.A., Girnis A.V., Yarmolyuk V.V. (2017) Mean concentrations of volatile components, major and trace elements in magmatic melts in major geodynamic environments on Earth. I. Mafic melts. Geochem. Int. 55(7), 629-653.

  12. Наумов В.Б., Дорофеева В.А., Толстых М.Л., Гирнис А.В., Ярмолюк В.В. (2020) Состав и геохимическая специфика магматических расплавов Камчатки по данным анализа расплавных включений и закалочных стекол пород. Геохимия. 65(3), 237-257.

  13. Naumov V.B., Dorofeeva V.A., Tolstykh M.L., Girnis A.V., Yarmolyuk V.V. (2020) Composition and geochemical specifics of magmatic melts in Kamchatka: Evidence from melt inclusions and quenched glasses of rocks. Geochem. Int. 58(3), 271-290.

  14. Прокофьев В.Ю., Калинин А.А., Лобанов К.В., Бэнкс Д.А., Боровиков А.А., Чичеров М.В. (2018) Состав рудообразующих флюидов золотой минерализации Печенгской структуры зеленокаменного пояса Печенга-Имандра-Варзуга (Кольский полуостров, Россия). Геология рудных месторождений. 60, 317-341.

  15. Сафонов Ю.Г., Попов В.В., Волков А.В., Гонгальский Б.И. (2006) Геодинамические- геотектонические обстановки образования крупных золоторудных концентраций. В кн. Крупные и суперкрупные месторождения рудных полезных ископаемых. Т. 2. М.: ИГЕМ РАН, 97-142.

  16. Ancellin M.A., Samaniego P., Vlastelic I., Nauret F., Gannoun M., Hidalgo S. (2017) Across-versus along-arc Sr–Nd–Pb isotope variations in the Ecuadorian volcanic arc. Geochemistry, Geophysics, Geosystems. 18, 1163-1188.

  17. Audetat A. (2019) The metal content of magmatic-hydrothermal fluids and its relationship to mineralization potential. Econ. Geol. 114, 1033-1056.

  18. Audetat A., Zhang D.H. (2019) Abundances of S, Ga, Ge, Cd, In, Tl and 32 other major to trace elements in high-temperature (350–700°C) magmatic-hydrothermal fluids. Ore Geol. Rev. 109, 630-642.

  19. Audetat A., Zhang L., Ni H.W. (2018) Copper and Li diffusion in plagioclase, pyroxenes, olivine and apatite, and consequences for the composition of melt inclusions. Geochim. Cosmochim. Acta. 243, 99-115.

  20. Benson T.R., Coble M.A., Rytuba J.J., Mahood G.A. (2017) Lithium enrichment in intracontinental rhyolite magmas leads to Li deposit in caldera basins. Nature Communications. 8, 1-9.

  21. Berni G.V., Heinrich C.A., Walle M., Wall V.J. (2019) Fluid geochemistry of the Serra Pelada Au-Pd-Pt deposit, Carajas, Brazil: Exceptional metal enrichment caused by deep reaching hydrothermal oxidation. Ore Geol. Rev. 111, 102991.

  22. Berni G.V., Wagner T., Fusswinkel T. (2020) From a F-rich granite to a NYF pegmatite: Magmatic-hydrothermal fluid evolution of the Kymi topaz granite stock, SE Finland. Lithos. 364-365, 105538.

  23. Brandl P.A., Regelous M., Beier C., O’Neill H.St.C., Nebel O., Haase K.M. (2016) The timescales of magma evolution at mid-ocean ridges. Lithos. 240–243, 49-68.

  24. Burisch M., Walter B.F., Walle M., Markl G. (2016) Tracing fluid migration pathways in the root zone below unconformity-related hydrothermal veins: Insights from trace element systematic of individual fluid inclusions. Chem. Geol. 429, 44-50.

  25. Catchpole H., Kouzmanov K., Putlitz B., Seo J.H., Fontbote L. (2015) Zoned base metal mineralization in a porphyry system: Origin and evolution of mineralizing fluids in the Morococha district, Peru. Econ. Geol. 110, 39-71.

  26. Chamberlain K.J., Wilson C.J.N., Wallace P.J., Millet M.A. (2015) Micro-analytical perspectives on the Bishop Tuff and its magma chamber. J. Petrol. 56, 605-640.

  27. Chamberlain K.J., Barclay J., Preece K., Brown R.J., Davidson J.P., EIMF (2016) Origin and evolution of silicic magmas at ocean islands: Perspectives from a zoned fall deposit on Ascension Island, South Atlantic. J. Volcan. Geotherm. Res. 327, 349-360.

  28. Chamberlain K.J., Barclay J., Preece K.J., Brown R.J., Davidson J.P. (2019) Lower crustal heterogeneity and fractional crystallization control evolution of small-volume magma batches at ocean island volcanoes (Ascension Island, South Atlantic). J. Petrol. 60, 1489-1522.

  29. Chang J., Li J.W., Audetat A. (2018) Formation and evolution of multistage magmatic-hydrothermal fluids at the Yulong porphyry Cu-Mo deposit, eastern Tibet: Insights from LA-ICP-MS analysis of fluid inclusions. Geochim. Cosmochim. Acta. 232, 181-205.

  30. Chi G.X., Chu H.X., Petts D., Potter E., Jackson S., Williams–Jones A. (2019) Uranium-rich diagenetic fluids provide the key to unconformity-related uranium mineralization in the Athabasca Basin. Scientific Reports. 9(5530), 1-10.

  31. Cooper G.F., Wilson C.J.N., Millet M.A., Baker J.A. (2016) Generation and rejuvenation of a supervolcanic magmatic system: a case study from Mangakino volcanic centre, New Zealand. J. Petrol. 57, 1135-1170.

  32. Damdinova L.B., Damdinov B.B., Bryanskii N.V. (2018) Processes of formation of fluorite-leucophane-melinophane-eudidymite ores of the Ermakovka F-Be deposit (western Transbaikalia). Russian Geol. Geophys. 59, 1022-1038.

  33. de Graaf, Luders V., Banks D.A., Sosnicka M., Reijmer J.J.G., Kaden H., Vonhof H.B. (2020) Fluid evolution and ore deposition in the Harz Mountains revisited: isotope and crush-leach analyses of fluid inclusions. Mineral. Dep. 55, 47-62.

  34. Essarraj S., Boiron M.-C., Cathelineau M., Tarantola A., Leisen M., Boulvais P., Maacha L. (2016) Basinal brines at the origin of the Imiter Ag-Hg deposit (Anti-Atlas, Morocco): Evidence from LA-ICP-MS data on fluid inclusions, halogen signatures, and stable isotopes (H, C, O). Econ. Geol. 111, 1753-1781.

  35. Fiedrich A.M., Laurent O., Heinrich C.A., Bachmann O. (2020) Melt and fluid evolution in an upper-crustal magma reservoir, preserved by inclusions in juvenile clasts from Kos Plateau Tuff, Aegean Arc, Greece. Geochim. Cosmochim. Acta. 280, 237-262.

  36. Forni F., Bachmann O., Mollo S., De Astis G., Gelman S.E., Ellis B.S. (2016) The origin of a zoned ignimbrite: Insights into the Campanian Ignimbrite magma chamber (Campi Flegrei, Italy). Earth Planet. Sci. Lett. 449, 259-271.

  37. Forni F., Petricca E., Bachmann O., Mollo S., De Astis G., Piochi M. (2018) The role of magma mixing/mingling and cumulate melting in the Neapolitan Yellow Tuff caldera-forming eruption (Campi Flegrei, Southern Italy). Contrib. Mineral. Petrol. 173, 1-18.

  38. Fusswinkel T., Wagner T., Sakellaris G. (2017) Fluid evolution of Neoarchean Pampalo orogenic gold deposit (E Finland): Constraints from LA-ICPMS fluid inclusion microanalysis. Chem. Geol. 450, 96-121.

  39. Gomes S.D., Berger S., Figueiredo e Silva R.C., Hagemann S.G., Rosiere C.A., Banks D.A., Lobato L.M., Hensler A.S. (2018) Oxide chemistry and fluid inclusion constraints on the formation of itabirite-hosted iron ore deposits at the eastern border of the southern Espinhaco Range, Brazil. Ore Geol. Rev. 95, 821-848.

  40. Haber M., Jelen S., Mato L., Kovalenker V. (1998) Modelling of mineral-forming processes of the Banska Stiavnica epithermal deposit, Western Carpathians, Slovak Republic. Proceeding of the Ninth Quadrennial IAGOD Symposium. 1998. E. Schweizerbart’sche Verlagsbuchhandlung (Nagele u. Obermiller). D-70176 Stuttgart., 183-203.

  41. Hartley M.E., Bali E., Maclennan J., Neave D.A., Halldorsson S.A. (2018) Melt inclusion constraints on petrogenesis of the 2014–2015 Holuhraun eruption, Iceland. Contrib. Mineral. Petrol. 173, 1-23.

  42. Hauri E.H., Maclennan J., McKenzie D., Gronvold K., Oskarsson N., Shimizu N. (2018) CO2 content beneath northern Iceland and the variability of mantle carbon. Geology. 46, 55-58.

  43. Hedenquist J.W., Lowenstern J.B. (1994) The role of magmas in the formation of hydrothermal ore deposits. Nature. 370, 519-527.

  44. Hennings S.K., Wagner T., Ulmer P., Heinrich C.A. (2017) Fluid evolution of the Monte Mattoni mafic complex, Adamello batholith, northern Italy: Insights from fluid inclusion analysis and thermodynamic modeling. J. Petrol. 58, 1645-1670.

  45. Hulsbosh N., Boiron M.-Ch., Dewaele S., Muchez P. (2016) Fluid fractionation of tungsten during granite-pegmatite differentiation and the metal source of peribatholitic W quartz veins: Evidence from the Karagwe-Ankole Belt (Rwanda). Geochim. Cosmochim. Acta. 175, 299-318.

  46. Hulsbosch N., Boiron M.-Ch., Thomas R., Daele Van J., Dewaele S., Muchez P. (2018) Evaluation of the petrogenetic significance of melt inclusions in pegmatitic schorl-dranite from graphic tourmaline-quartz assemblages: Application of LA-ICP-QMS analyses and volume ratio calculations. Geochim. Cosmochim. Acta. 244, 308-335.

  47. Hurtig N.C., Hanley J.J., Gysi A.P. (2018) The role of hydrocarbons in ore formation at the Pillara Mississippi Valley-type Zn–Pb deposit, Canning Basin, Western Australia. Ore Geol. Rev. 102, 875-893.

  48. Husen A., Kamenetsky V.S., Everard J.L., Kamenetsky M.B. (2016) Transition from ultra-enriched to ultra-depleted primary MORB melts in a single volcanic suite (Macquarie Island, SW Pacific): Implications for mantle source, melting process. Geochim. Cosmochim. Acta. 185, 112-128.

  49. Iddon F., Edmonds M. (2020) Volatile-rich magmas distributed through the upper crust in the Main Ethiopian Rift. Geochemistry, Geophysics, Geosystems. 20(6), 1-24.

  50. Jenner F.E., Hauri E.H., Bullock E.S., Konig S., Arculus R.J., Mavrogenes J.A., Mikkelson N., Goddard C. (2015) The competing effects of sulfide saturation versus degassing on the behavior of the chalcophile elements during the differentiation of hydrous melts. Geochemistry, Geophysics, Geosystems. 16, 1490-1507.

  51. Jones M.R., Wanless V.D., Soule S.A., Kurz M.D., Mittelstaedt E., Fornari D.J., Curtice J., Klein F., Le Roux V., Brodsky H., Peron S., Schwartz D.M. (2019) New constraints on mantle carbon from Mid-Atlantic Ridge popping rocks. Earth Planet. Sci. Lett. 511, 67-75.

  52. Keim M., Walter B.F., Neumann B.F., Kreiss S., Bayerl R., Markl G. (2019) Polyphase enrichment and redistribution processes in silver-rich mineral associations of the hydrothermal fluorite-barite-(Ag-Cu) Clara deposit, SW Germany. Mineral. Dep. 54, 155-174.

  53. Kovalenker V.A., Prokof’ev V.Yu., Kozerenko S.V., Mironova O.F., Kolpakova N.N., Zalibekyan M.A. (2001) Mineralizing fluid composition and genesis of gold-sulfide-telluride mineralization at the Megradzor deposit: evidence from fluid inclusion. Geochemistry Intern., 39 Supll., 145-159.

  54. Kurosawa M., Sasa K., Shin K.-C., Ishii S. (2016) Trace-element compositions and Br/Cl ratios of fluid inclusions in the Tsushima granite, Japan: Significance for formation of granite-derived fluids. Geochim. Cosmochim. Acta. 182, 216-239.

  55. Lang J.L., Baker T. (2001) Intrusion-related gold systems: the present level of understanding. Mineral. Dep. 36, 477-489.

  56. Legros H., Richard A., Tarantola A., Kouzmanov K., Mercadier J., Vennemann T., Marignac C., Cuney M., Wang R.C., Charles N., Beilly L., Lespinasse M.Y. (2019) Multiple fluid involved in granite-related W-Sn deposits from the world-class Jiangxi province (China). Chem. Geol. 508, 92-115.

  57. Le Voyer M., Hauri E.H., Cottrell E., Kelley K.A., Salters V.J.M., Langmuir C.H., Hilton D.R., Barry P.H., Furi E. (2019) Carbon fluxes and primary magma CO2 contents along the global mid-ocean ridge system. Geochemistry, Geophysics, Geosystems. 20, 1387-1424.

  58. Li W.T., Audetat A., Zhang J. (2015) The role of evaporites in the formation of magnetite-apatite deposits along the Middle and Lower Yangtze River, China: Evidence from La-ICP-MS analysis of fluid inclusions. Ore Geol. Rev. 67, 264-278.

  59. Li X.H., Zeng Z.G., Yang H.X., Yin X.B., Wang X.Y., Chen S.A., Ma Y., Guo K. (2018) Geochemistry of silicate melt inclusions in middle and southern Okinawa Trough rocks: Implications for petrogenesis and variable subducted sediment component injection. Geolog. J. 54, 1160-1189.

  60. Liu H.Q., Bi X.W., Lu H.Z., Hu R.H., Lan T.G., Wang X.S., Huang M.L. (2018) Nature and evolution of fluid inclusions in the Cenozoic Beiya gold deposit, SW China. J. Asian Earth Sci. 161, 35-56.

  61. Loewen M.W., Bindeman I.N. (2015) Oxygen isotope and trace element evidence for three-stage petrogenesis of the youngest episode (260-79 ka) of Yellowstone rhyolitic volcanism. Contrib. Mineral. Petrol. 170(4), 1-25.

  62. Mallick S., Salters V.J.M., Langmuir C.H. (2019) Geochemical variability along the northern East Pacific Rise: Coincident source composition and ridge segmentation. Geochemistry, Geophysics, Geosystems. 20, 1889-1911.

  63. Mao J., Pirajno F., Lehmann B.,Luo M., Berzina A. (2014) Distribution of porphyry deposits in the Eurasian continent and their corresponding tectonic settings. J. Asia Earth Sci. 79, 576-584.

  64. Martz P., Mercadier J., Cathelineau M., Boiron M.Ch., Quirt D., Doney A., Gerbeaud O., De Wally E., Ledru P. (2019) Formation of U-rich mineralizing fluids through basinal brine migration within basement-hosted shear zones: A large-scale study of the fluid chemistry around the unconformity-related Cigar Lake U deposit (Saskatchewan, Canada). Chem. Geol. 508, 116-143.

  65. Marquez-Zavalia M.F., Heinrich C.A. (2016) Fluid evolution in a volcanic-hosted epithermal carbonate-base metal-gold vein system: Alto da la Blenda, Farallon Negro, Argentina. Mineral. Dep. 51, 873-902.

  66. Marschall H.R., Wanless V.D., Shimizu N., Pogge von Strandmann P.A.E., Elliott T., Monteleone B.D. (2017) The boron and lithium isotopic composition of mid-ocean ridge and the mantle. Geochim. Cosmochim. Acta. 207, 102-138.

  67. Mehrabi B., Karimshahraki B., Banks D., Boyce A., Yardley B.W.D. (2019) Hydrothermal iron oxide-Cu-Au (IOCG) mineralization at the Jalal-Abad deposit, northwestern Zarand, Iran. Ore Geol. Rev. 106, 300-317.

  68. Mercer C.N., Hofstra A.H., Todorov T.I., Roberge J., Burgisser A., Adams D.T., Cosca M. (2015) Pre-eruptive conditions of the Hideaway Park topaz rhyolite: Insights into metal source and evolution of magma parental to the Henderson porphyry molybdenum deposit, Colorado. J. Petrol. 56, 645-679.

  69. Mernagh T.P., Mavrogenes J. (2019) Significance of high temperature fluids and melts in the Grasberg porphyry copper-gold deposit. Chem. Geol. 508, 210-224.

  70. Miller W.G.R., MacLennan J., Shorttle O., Gaetani G.A., Le Roux V., Klein F. (2019) Estimating the carbon content of the deep mantle with Icelandic melt inclusions. Earth Planet. Sci. Lett. 523, 115699.

  71. Morales M.J., Figueiredo e Silva R.C., Lobato L.M., Gomes S.D., Gomes C.C.C.O., Banks D.A. (2016) Metal source and fluid-rock interaction in the Archean BIF-hosted Lamego gold mineralization: Microthermometric and LA-ICP-MS analyses of fluid inclusions in quartz veins, Rio das Velhas greenstone belt, Brazil. Ore Geol. Rev. 72, 510-531.

  72. Muller D., Forrestal P. (1998) The shoshonite porphyry Cu-Au association at Bajo de la Alumbdrera, Catamarca Province, Argentina. Mineral. Petrol. 64, 47-64.

  73. Mungall J.E. (2002) Roasting the mantle: slab melting and the genesis of major Au and Au-rich Cu deposits. Geology. 30, 915-918.

  74. Myers M.L., Wallace P.J., Wilson C.J.N., Morter B.K., Swallow E.J. (2016) Prolonged asctnt and episodic venting of discrete magma batches at the onset of the Huckleberry Ridge supereruption, Yellowstone. Earth Planet. Sci. Lett. 451, 285-297.

  75. Myers M.L., Wallace P.J., Wilson C.J.N. (2019) Inferring magma ascent timescales and reconstructing conduit processes in explosive rhyolitic eruptions using diffusive losses of hydrogen from melt inclusions. J. Volcanol. Geotherm. Res. 369, 95-112.

  76. Naumov V.B., Kovalenker V.A., Damian G., Abramov S.S., Tolstykh M.L., Prokofiev V. Yu. (2014) Origin of the Laleaua Alba dacite (Baia Sprie volcanic area and Au-Pb-Zn ore district, Romania): evidence from study of melt inclusions. Central European Geology. 57(1), 83-112.

  77. Ouyang H.G., Mao J.W., Hu R.H. (2020) Geochemistry and crystallization conditions of magmas related to porphyry Mo mineralization in northeastern China. Econ. Geol. 115, 79-100.

  78. Pan J.Y., Ni P., Wang R.C. (2019) Comparison of fluid processes in coexisting wolframite and quartz from a giant vein-type tungsten deposit, South China: Insights from detailed petrography and LA-ICP-MS analysis of fluid inclusions. Amer. Mineral. 104, 1092-1116.

  79. Pelch M.A., Appold M.S., Emsbo P., Bodnar R.J. (2015) Constraints from fluid inclusion compositions on the origin of Mississippi Valley-type mineralization in the Illinois-Kentucky district. Econ. Geol. 110, 787-808.

  80. Portnyagin M.V., Ponomareva V.V., Zelenin E.A., Bazanova L.I., Pevzner M.M., Plechova A.A., Rogozin A.N., Garbe-Schonberg D. (2020) TephraKam: Geochemical database of glass compositions in tephra and welded tuffs from the Kamchatka volcanic arc (NW Pacific). Earth System Science Data. 12(1), 469-486.

  81. Prokofiev V.Yu., Banks D.A., Lobanov K.V., Selektor S.L., Milichko V.A., Akinfiev N.N., Borovikov A.A., Luders V.L., Chicherov M.V. (2020) Exceptional concentrations of gold nanoparticles in 1,7 Ga fluid inclusions from the Kola superdeep borehole, northwest Russia. Scientific Reports. 10, 1108.

  82. Rasmussen D.J., Kyle P.R., Wallace P.J., Sims K.W.W., Gaetani G.A., Phillips E.H. (2017) Understanding degassing and transport of CO2-rich alkalic magmas at Ross Island, Antarctica using olivine-hosted melt inclusions. J. Petrol. 58, 841-862.

  83. Richard A., Cathelineau M., Boiron M.-C., Mercadier J., Banks D.A., Cuney M. (2016) Metal-rich fluid inclusions provide new insights into unconformity-related U deposits (Athabasca Basin and Basement, Canada). Mineral. Dep. 51, 249-270.

  84. Richards J.P. (2003) Tectono-magmatic precursors for porphyry Cu-(Mo-Au) deposit formation. Econ. Geol. 98, 1515-1533.

  85. Richards J.P., Kerrich R. (1993) The Porgera gold mine, Papua New Guinea: Magmatic hydrothermal to epithermal evolution of an alkali-type precious metal deposit. Econ. Geol. 88, 1017-1052.

  86. Rudnick R.L., Gao S. (2014) Composition of the continental crust. Treatise on Geochemistry (second edition). 4, 1-51.

  87. Ruth D.C.S., Cottrell E., Cortes J.A., Kelley K.A., Calder E.S. (2016) From passive degassing to violent Strombolian eruption: the case of the 2008 eruption of Llaima volcano, Chile. J. Petrol. 57, 1833-1864.

  88. Sawkins F.J. (1990) Metal deposits in relation to plate tectonics. Mineral and Rocks. 17, 461.

  89. Schiavi F., Rosciglione A., Kitagawa H., Kobayashi K., Nakamura E., Nuccio P.M., Ottolni L., Paonita A., Vannucci R. (2015) Geochemical heterogeneties in magma beneath Mount Etna recorded by 2001–2006 melt inclusions. Geochemistry, Geophysics, Geosystems. 16, 2109-2126.

  90. Schindlbeck J.C., Kutterolf S., Freundt A., Eisele S., Wang K.L., Frische M. (2019) Miocene to Holocene marine tephrostratigraphy offshore northern Central America and southern Mexico: Pulsed activity of known volcanic complexes. Geochemistry, Geophysics, Geosystems. 19, 4143-4173.

  91. Schindler C., Hagemann S.G., Banks D., Mernagh T., Harris A.C. (2016) Magmatic hydrothermal fluids at the sedimentary rock-hosted, intrusion-related Telfer gold-copper deposit, Paterson orogen, Western Australia: Pressure-temperature-composition constraints on the ore-forming fluids. Econ. Geol. 111, 1099-1126.

  92. Schlegel T.U., Wagner T., Walle M., Heinrich C.A. (2018) Hematite breccia-hosted iron oxide copper-gold deposits require magmatic fluid components exposed to atmospheric oxidation: Evidence from Prominent Hill, Gawler Craton, South Ausrralia. Econ. Geol. 113, 597-644.

  93. Seo J.H., Yoo B.C., Villa I.M., Lee J.H., Lee T., Kim C., Moon K.J. (2017) Magmatic-hydrothermal processes in Sangdong W-Mo deposit, Korea: Study of fluid inclusions and 39Ar–40Ar geochronology. Ore Geol. Rev. 91, 316-334.

  94. Shelton K.L., Cavender B.D., Perry L.E., Schiffbauer J.D., Appold M.S., Burstein I., Fike D.A. (2020) Stable isotope and fluid inclusion studies of early Zn-Cu-(Ni-Co)-rich ores, lower ore zone of Brushy Creek mine, Viburnum Trend MVT district, Missouri, USA.: Products of multiple sulfur sources and metal-specific fluids. Ore Geol. Rev. 118, 103358.

  95. Shimizu K., Saal A.E., Myers C.E., Nagle A.N., Hauri E.H., Forsyth D.W., Kamenetsky V.S., Niu Y.L. (2016) Two-component mantle melting-mixing model for the generation of mid-ocean ridge basalts: Implications for the volatile content of the Pacific upper mantle. Geochim. Cosmochim. Acta. 176, 44-80.

  96. Shimizu K., Saal A.E., Hauri E.H., Perfit M.R., Hekinian R. (2019) Evaluating the roles of melt-rock interaction and partial degassing on the CO2/Ba ratios of MORB: Implications for the CO2 budget in the Earth’s depleted upper mantle. Geochim. Cosmochim. Acta. 260, 29-48.

  97. Shu Q.H., Chang Z.S., Hammerli J., Lai Y., Huizenga J.M. (2017) Composition and evolution of fluids forming the Baiyinnuo’er Zn-Pb skarn deposit, northeastern China: Insights from laser ablation ICP-MS study of fluid inclusions. Econ. Geol. 112, 1441-1460.

  98. Sillitoe R.H. (1972) Relation of metal provinces in western America to subduction of oceanic lithosphere. Geol. Soc. Am. Bull. 83, 813-818.

  99. Sillitoe R.H. (1997) Characteristics and controls of the largest porphyry copper-gold and epithermal gold deposits in the circum-Pacific region. Aust. J. Earth Sci. 44, 373-388.

  100. Sillitoe R., Hedenquist J. (2003) Linkages between volcanotectonic settings, ore-fluid compositions, and epithermal precious metal deposits. SEG Special Publication. 10, 315-343.

  101. Swallow E.J., Wilson C.J.N., Myers M.L., Wallace P.J., Collins K.S., Smith E.G. (2018) Evacuation of multiple magma bodies and onset of caldera collapse in a supereruption, captured in glass and mineral compositions. Contrib. Mineral. Petrol. 173, 1-22.

  102. Szymanowski D., Ellis B.S.,Bachmann O., Guillong M., Phillips W.M. (2015) Bridging basalts and rhyolites in the Yellowstone-Snake River Plain volcanic province: The elusive intermadiate step. Earth Planet. Sci. Lett. 415, 80-89.

  103. Tamburrino S., Insinga D.D., Pelosi N., Kissel C., Laj C., Capotondi L., Sprovieri M. (2016) Tephrochronology of ~70 ka-long marine record in the Marsili Basin (southern Tyrrhenian Sea). J. Volcan. Geotherm. Res. 327, 23-39.

  104. Taracsak Z., Hartley M.E., Burgess R., Edmonds M., Iddon F., Longpre M.-A. (2019) High fluxes of deep volatiles from ocean island volcanoes: Insights from El Hierro, Canary Islands. Geochim. Cosmochim. Acta. 258, 19-36.

  105. Tomkins A.G., Mavrogenes J.A. (2003) Generation of metal-rich felsic magmas during crustal anataxis. Geology. 31, 765-768.

  106. Tomkins A.G., Weinberg R.F., McFariane C.R.M. (2009) Preferential magma extraction from K- and metal-enriched source regions in the crust. Mineral. Dep. 44, 171-181.

  107. Tuohu R.M., Wallace P.J., Loewen M.W., Swanson D.A., Kent A.J.R. (2016) Magma transport and olivine crystallization depths in Kilauea’s east rift zone inferred from experimentally rehomogenized melt inclusions. Geochim. Cosmochim. Acta. 185, 232-250.

  108. Van Daele J., Hulsbosch N., Dewaele S., Boiron M.-C., Piessens K., Boyce A., Muchez Ph. (2018) Mixing of magmatic-hydrothermal and metamorphic fluids and the origin of peribatholitic Sn vein-type deposits in Rwanda. Ore Geol. Rev. 101, 481-501.

  109. Walowski K.J., Wallace P.J., Clynne M.A., Rasmussen D.J., Weis D. (2016) Slab melting and magma formation beneath the southern Cascade arc. Earth Planet. Sci. Lett. 446, 100-112.

  110. Walowski K.J., Wallace P.J., Cashman K.V., Marks J.K., Clynne M.A., Ruprecht P. (2019) Understanding melt evolution and eruption dynamics of the 1666 C.E. eruption of Cinder Cone, Lassen Volcanic National Park, California: Insights from olivine-hosted melt inclusions. J. Volcan. Geotherm. Res. 387, 106665.

  111. Walter B.F., Burish M., Marks M.A.W., Markl G. (2017) Major element compositions of fluid inclusions from hydrothermal vein-type deposits record eroded sedimentary units in the Schwarzwald district, SW Germany. Mineral. Dep. 52, 1191-1204.

  112. Walter B.F., Kortenbruck P., Scharrer M., Zeitvogel C., Walle M., Mertz-Kraus R., Markl G. (2019) Chemical evolution of ore-forming brines – Basement leaching, metal provenance, and the redox link between barren and ore-bearing hydrothermal veins. A case study from the Schwarzwald mining district in SW-Germany. Chem. Geol. 506, 126-148.

  113. White W.M., Klein E.M. (2014) Composition of the oceanic crust. Treatise on Geochemistry (second edition). 4, 457-496.

  114. Wieser P.E., Jenner F., Edmonds M., Maclennan J., Kunz B.E. (2020) Chalcophile elements track the fate of sulfur at Kilauea Volcano, Hawai’i. Geochim. Cosmochim. Acta. 282, 245-275.

  115. Woelki D., Regelous M., Haase K.M., Beier C. (2019) Geochemical mapping of a paleo-subduction zone benearth the Troodos Ophiolite. Chem. Geol. 523, 1-8.

  116. Wolff J.A., Forni F., Ellis B.S., Szymanowski D. (2020) Europium and barium enrichments in compositionally zoned felsic tuffs: A smoking gun for the origin of chemical and physical gradients by cumulate melting. Earth Planet. Sci. Lett. 540, 116251.

  117. Yang J.H., Kang L.F., Liu L., Peng J.T., Qi Y.Q. (2019a) Tracing the origin of ore-forming fluids in the Piaotang tungsten deposit, South China: Constraints from in-sity analyses of wolframite and individual fluid inclusion. Ore Geol. Rev. 111, 102939.

  118. Yang J.H., Zhang Z., Peng J.T., Liu L., Leng C.B. (2019b) Metal source and wolframite precipitation process at the Xihuashan tungsten deposit, South China: Insights from mineralogy, fluid inclusion and stable isotope. Ore Geol. Rev. 111, 102965.

  119. Yang S., Humayun M., Salters V.J.M. (2018) Elemental systematics in MORB glasses from the Mid-Atlantic Ridge. Geochemistry, Geophysics, Geosystems 19, 4236-4259.

  120. Zhang D.H., Audetat A. (2017) Chemistry, mineralogy and crystallization conditions of porphyry Mo-forming magmas at Urad-Henderson and Silver Creek, Colorado, USA. J. Petrol. 58, 277-296.

  121. Zhang D.H., Audetat A. (2018) Magmatic-hydrothermal evolution of the barren Huangshan pluton, Anhui Province, China: A melt and fluid inclusion study. Econ. Geol. 113, 803-824.

  122. Zhao Z., Xiong X., Wang Q., Bao Z., Zhang Y., Xie Y, Ren S. (2003) Alkali-rich igneous rocks and related Au and Cu large and superlarge deposits in China. Sci. China. Ser. D. 46, 1-13.

  123. Zwan van der F.M., Devey C.W., Hansteen T.H., Almeev R.R., Augustin M., Haase K.M., Basaham A., Snow J.E. (2017) Lower crustal hydrothermal circulation at slow-spreading ridges: evidence from chlorine in Arctic and South Atlantic basalt glasses and melt inclusions. Contrib. Mineral. Petrol. 172, 1-23.

Дополнительные материалы отсутствуют.