Геохимия, 2022, T. 67, № 6, стр. 503-525

Эволюция плюма Кару-Мод и его влияние на формирование мезозойских магматических провинций в Антарктиде

Н. М. Сущевская a*, Г. Л. Лейченков bc**, Б. В. Беляцкий d***, А. В. Жилкина a

a Институт геохимии и аналитической химии им. В.И. Вернадского РАН
119991 Москва, ул. Косыгина, 19, Россия

b Всероссийский научно-исследовательский институт геологии и минеральных ресурсов Мирового океана им. И.С. Грамберга
190121 Санкт-Петербург, Английский пр., 1, Россия

c Санкт-Петербургский Государственный университет
199034 Санкт-Петербург, Университетская наб., 7–9, Россия

d Всероссийский научно-исследовательский геологический институт им. А.П. Карпинского, ФГБУ “ВСЕГЕИ”
199106 Санкт-Петербург, Средний пр., 74, Россия

* E-mail: nadyas@geokhi.ru
** E-mail: german_l@mail.ru
*** E-mail: bbelyatsky@mail.ru

Поступила в редакцию 18.02.2021
После доработки 24.08.2021
Принята к публикации 24.09.2021

Аннотация

Проведено петролого-геохимическое сравнение трех мезозойских магматических провинций Южной Африки (провинция Кару) и восточной Антарктиды (Земля Королевы Мод (ЗКМ) и Феррар). Результаты подтверждют предполагаемую связь образования феррарской магматической провинции, протягивающейся более чем на 3000 км вдоль окраины восточной Антарктиды, с мезозойским плюмом Кару–Мод. Состав источника магматических расплавов во всех трех регионах характеризуется заметными отрицательными Nb и Ta аномалиями. Такими же особенностями обладают и магмы древних даек (позднепротерозойские и раннепалеозойские) в пределах мезозойской магматической провинции Феррар. Причиной указанного сходства составов является единый долгоживущий источник магм, которым в течение длительного времени являлась литосфера Восточно-Антарктического кратона. К особенностям феррарских магматитов относится и преимущественное распространение базальтов с пониженным содержанием титана, которые выплавляются из деплетированного (претерпевшего неоднократное плавление) сублитосферного мантийного источника, обогащенного в процессе палеосубдукции калием (флюидное обогащение). Образование магматитческой провинции Феррар происходило за счет латерального распространения материала плюма Кару–Мод (в виде мегаапофиза от основной области его проявления) при плавлении метасоматически измененной гондванской мантии вблизи тихоокеанской зоны палеосубдукции. Специфические условия образования под воздействием субдукционного флюида привели к обогащению первичных расплавов провинции Феррар крупноионными литофильными элементами, такими как U, Th, и Rb. Вариации изотопного состава этих расплавов образуют тренд смешения от мантийного источника, по составу близкого к обогащенным магмам провинций Кару и ЗКМ (87Sr/86Sr: 0.708, 143Nd/144Nd: 0.5122, 206Pb/204Pb: 18.2, 207Pb/204Pb: 15.6, 208Pb/204Pb: 37.6), до источника с повышенными значениями 206Pb/204Pb: 20.5, 207Pb/204Pb: 15.7, 208Pb/204Pb: 40.3 и 87Sr/86Sr: 0.716 и пониженными 143Nd/144Nd: 0.5124, который может быть результатом проявления процесса флюидного обогащения мантийного вещества в зоне палеосубдукции. Определенный нами изотопный состав древних магм, территориально приуроченных к области распространения изверженной провинции Феррар, попадает в поле составов мезозойских магматических пород провинций Кару и ЗКМ.

Ключевые слова: плюм Кару–Мод, магматическая провинция Феррар, изотопный состав расплавов, геохимия литофильных элементов

Список литературы

  1. Дубинин Е.П., Сущевская Н.М., Грохольский А.Л. (1999) История развития спрединговых хребтов Южной Атлантики и пространственно-временное положение тройного сочленения Буве. Российский журнал наук о земле 1(5), 423-435.

  2. Колотов В.П., Жилкина А.В., Широкова В.И., Догадкин Н.Н., Громяк И.Н., Догадкин Д.Н., Зыбинский А.М., Тюрин Д.А. (2020) Новый подход к минерализации образцов в открытой системе для анализа геологических образцов методом масс-спектрометрии с индуктивно связанной плазмой с улучшенными метрологическими характеристиками. Журнал Аналитической Химии 75 (5), 394.

  3. Лейченков Г.Л., Сущевская Н.М., Беляцкий Б.В. (2003) Геодинамика атлантического и индийского секторов Южного океана. ДАН 391 (5), 675-678.

  4. Лучицкая М.В., Беляцкий Б.В., Белоусова Е.А., Натапов Л.М. (2017) Особенности состава и геодинамическая обстановка позднепалеозойского гранитоидного магматизма Чукотки. Геохимия (8), 685-714.

  5. Luchitskaya M.V., Belyatsky B.V., Belousova E.A., Natapov L.M. Composition and geodynamic setting of Late Paleozoic magmatism of Chukotka (2017) Geochemistry International 55 (8), 683-710.

  6. Меланхолина Е.Н., Сущевская Н.М. (2019) Тектоника пассивных окраин Южного Океана в регионе Африки – Восточной Антарктиды. Геотектоника (4), 25-42.

  7. Меланхолина Е.Н. (2021) Вопросы соотношения поверхностной и глубинной тектоники. Пример Африканского региона. Геотектоника (в печати).

  8. Соболев А.В., Криволуцкая Н.А., Кузьмин Д.В. (2009) Петрология родоначальных расплавов и мантийных источников магм Сибирской трапповой провинции. Петрология 17(3), 276-310.

  9. Сущевская Н.М., Мигдисова Н.А., Беляцкий Б.В., Пейве А.А. (2003) Образование обогащенных толеитовых магм в пределах западной части Африкано-Антарктического хребта (Южная Атлантика). Геохимия (1), 3-24.

  10. Sushchevskaya N.M., Migdisova N.A., Belyatskii B.V., Peyve A.A. (2003) Genesis of Enriched Tholeiitic Magmas in the Western Segment of the Southwest Indian Ridge, South Atlantic Ocean (2021), Geochemistry International 41 (1), 1.

  11. Сущевская Н.М., Мигдисова Н.А., Антонов А.В., Крымский Р.Ш., Беляцкий Б.В., Кузьмин Д.В., Бычкова Я.В. (2014) Геохимические особенности лампроитовых лав четвертичного вулкана Гауссберг (восточная Антарктида) – результат влияния мантийного плюма Кергелен. Геохимия (12), 1077-1098.

  12. Sushchevskaya N.M., Migdisova N.A., Antonov A.V., Krymsky R.Sh., Belyatsky B.V., Kuzmin D.V., Bychkova Ya.V. Geochemical Features of the Quaternary Lamproitic Lavas of Gaussberg Volcano, East Antarctica: Result of the Impact of the Kerguelen Plume (2014), Geochemistry International 55 (12), 1030.

  13. Сущевская Н.М., Беляцкий Б.В., Дубинин Е.П., Левченко О.В. (2017) Эволюция плюма Кергелен и его влияние на магматизм континентальных и океанических областей восточной Антарктиды. Геохимия (9), 782-799.

  14. Sushchevskaya N.M., Belyatsky B.V., Dubinin E.P., Levchenko O.V. (2017) Evolution of the Kerguelen Plume and Its Impact upon the Continental and Oceanic Magmatism of East Antarctica. Geochemistry International 55, (9), 775.

  15. Сущевская Н.М., Беляцкий Б.В., Лейченков Г.Л., Батанова В.Г., Соболев А.В. (2019) Изотопная характеристика юрского плюмового магматизма в провинции Альманнррюгген (Земля Королевы Мод, Восточная Антарктида). ДАН 486 (1), 97-101.

  16. Сущевская Н.М., Соболев А.В., Лейченков Г.Л., Батанова В.Г., Беляцкий Б.В., Жилкина А.В. (2021) Роль пироксенитовой мантии в формировании расплавов мезозойского плюма Кару (по резудьтатам изучения магматических пород западной части Земли Королевы Мод). Геохимия 66 (4), 308-328.

  17. Sushchevskaya N.M., Sobolev A.V., Leitchenkov G.L., Batanova V.G., Belyatsky B.V., Zhilkina A.V. Role of Pyroxenite Mantle in the Formation of the Mesozoic Karoo Plume Melts:Evidence from the Western Queen Maud Land, East Antarctica (2021), Geochemistry International 59, (4), 357-376. © Pleiades Publishing, Ltd.

  18. Airoldi G.M., Muirhead J.D., Long S.M., Zanella E., White J.D.L. (2016) Flow dynamics in mid-Jurassic dikes and sills of the Ferrar large igneous province and implications for long-distance magma transport. Tectonophysics 683, 182-199.

  19. Albarede F. (1992) How deep do common basaltic magmas form and differentiate? Journal of Geophysical Research 97, 10997-11009.

  20. Anderson D.L. (1994) Superplumes or supercontinents? Geology 22, 39-42.

  21. Anderson D.L. (2000) The thermal state of the upper mantle: no role for mantle plumes. Geophysical Research Letters 27, 3623-3626.

  22. Anderson D.L. (2005) Large igneous provinces, delamination, and fertile mantle. Elements 1, 271-275.

  23. Anderson D.L., Natland J.H. (2005) A brief history of the plume hypothesis and its competitors: concept and controversy. In: Foulger G.R., Jurdy, D.M. (eds) Plates, plumes and planetary processes. Geological Society of America, Special Papers 430, 119-145.

  24. Antonini P., Picciirillo E.M., Petrini R., Civetta L., D’Antonio M., Orsi G. (1999) Enriched mantle–Dupal signature in the genesis of the Jurassic Ferrar tholeiites from Prince Albert Mountains (Victoria Land, Antarctica). Contributions to Mineralogy and Petrology 136 (1), 1-19.

  25. Arndt N.T., Christensen U. (1992) The role of lithospheric mantle in continental flood volcanism: thermal and geochemical constraints. J. Geophysical Research 97(B7), 10967-10981. https://doi.org/10.1029/92JB00564

  26. Bebout G.E. (2014) 4.20 Chemical and isotopic cycling in subduction zones. Treatise on Geochemistry 4, 703-747. https://doi.org/10.1016/B978-0-08-095975-7.00322-3

  27. Bebout G.E., Penniston-Dorland S.C. (2016) Fluid and mass transfer at subduction interfaces – the field metamorphic record. Lithos 240–243, 228-258.

  28. Betts P.G., Mason W.G., Moresi L. (2012) The influence of a mantle plume head on the dynamics of a retreating subducrion zone. Geology 40 (8), 739-742.

  29. Boger S.D., Miller J.McL. (2004) Terminal suturing of Gondwana and the onset of the Ross-Delamerian Orogeny: the cause and effect of an Early Cambrian reconfiguration of plate motions. Earth and Planetary Science Letters 219, 35-48.

  30. Brewer T.S. (1989) Mesozoic dolerites from Whichaway Nunataks. Antarctic Science 1, 151-155.

  31. Brewer T.S., Hergt J.M., Hawkesworth C.J., Rex D., Storey B.C. (1992) Coats Land dolerites and the generation of Antarctic continental food basalts. The Geological Society of London, Special Publication 68, 185-208.

  32. Brewer T.S., Rex D., Guise P.G., Hawkesworth C.J. (1996) Geochronology of mesozoic tholeiitic magmatism in Antarctica: implications for the devepopment of the failed Weddell Sea Rift system. The Geological Society of London, Special Publication 108, 45-61.

  33. Brotzu P., Capaldi G., Civetta L., Melluso L., Orsi G. (1988) Jurassic Ferrar Dolerites and Kirkpatrick Basalts in northern Victoria Land (Antarctica): stratigraphy, geochronology and petrology. Memorie della Società Geologica Italiana 43, 97-116.

  34. Buiter S.J.H., Torsvik T.H. (2014) A review of Wilson Cycle plate margins: a role of mantle plumes in continental break-up along sutures? Gondwana Research 26, 627-653.

  35. Bull A.L., Domier M., Torsvik T.H. (2014) The effect of plate motion history on the longevity of deep mantle heterogeneities Earth and Planetary Science Letters 401, 172-182.

  36. Burgess S.D., Bowring S.A., Fleming T.H., Elliot D.H. (2015) High-precision geochronology links the Ferrar large igneous province with early-Jurassic anoxia and biotic crisis. Earth and Planetary Science Letters 415, 90-99. https://doi.org/10.1016/2j.epsl.2015.01.037

  37. Burke K., Steinberger B., Torsvik T.H., Smethurst M.A. (2008) Plume generation zones at the margins of large low shear velocity provinces on the core–mantle boundary. Earth and Planetary Science Letters 265, 49-60.

  38. Carpentier M., Weis D., Chauvel C. (2013) Large U loss during weathering of upper continental crust: the sedimentary record. Chemical Geology 340, 91-104.

  39. Cawood P.A. Terra Australis Orogen: Rodinia breakup and development of the Pacific and Iapetus margins of Gondwana during the Neoproterozoic and Paleozoic. Earth-Science Reviews 69, 249-279.

  40. Choi S.H., Mukasa S.B., Ravizza G., Fleming Th.H., Marsh B.D., Bedard J.H.J. (2019) Fossil subduction zone origin for magmas in the Ferrar Large Igneous Province, Antarctica: Evidence from PGE and Os isotope systematics in the Basement Sill of the McMurdo Dry Valleys. Earth and Planetary Science Letters 506, 507-519.

  41. Coetzee A., Kisters A.F.M. (2018) The elusive feeders of the Karoo Large Igneous Province and their structural controls. Tectonophysics 747–748, 146-162.

  42. Collerson K.D., Kamber B.S. (1999) Evolution of the continents and the atmosphere inferred from Th–U–Nb systematics of the depleted mantle. Science 283, 1519-1522.

  43. Coltice N., Phillips B.R., Bertrand H., Ricard Y., Rey P. (2007) Global warming of the mantle at the origin of flood basalts over supercontinents. Geology 35, 391-394.

  44. Compston W., McDougall I., Heier K.S. (1968) Geochemical comparison of the Mesozoic basaltic rocks of Antarctica, South Africa, South America and Tasmania. Geochimica et Cosmochimica Acta 32, 129-149.

  45. Dalziel I.W.D., Lawver L.A., Murphy J.B. (2000) Plumes, orogenesis, and supercontinental fragmentation. Earth and Planetary Science Letters 178, 1-11.

  46. Dalziel I.W.D. (2013) Antarctica and supercontinental evolution: clues and puzzles. Earth and Environmental Science Transactions of the Royal Society of Edinburgh 104, 3-16.

  47. Davaille A., Romanowicz B. (2020) Deflating the LLSVPs: bundles of mantle thermochemical plumes rather than thick stagnant “piles”. Tectonics 39, e2020TC006265. https://doi.org/10.1029/2020TC006265

  48. Day J.M., Pearson D.G., Macpherson C.G., Lowry D., Carracedo J.C. (2009) Pyroxenite-rich mantle formed by recycled oceanic lithosphere: oxygen-osmium isotope evidence from Canary Island lavas. Geology 37(6), 555-558.

  49. Demarchi G., Antonini P., Piccirillo E.M., Orsi G., Civetta L., D’Antonio M. (2001) Significance of orthopyroxene and major element constraints on the petrogenesis of Ferrar tholeiites from southern Prince Albert Mountains, Victoria Land, Antarctica. Contributions to Mineralogy and Petrology 142, 127-146.

  50. Duncan R.A., Hooper P.R., Rehacek J., Mash J.S., Duncan A.R. (1997) The timing and duration of the Karoo igneous event, southern Gondwana. J. Geophysical Resarch 102, 18 127-18 138.

  51. East M., Müller R.D., Williams S., Zahirovic S. (2020) Subduction history reveals Cretaceous superflux as a possible cause for the mid-Cretaceous plume pulse and supeswell events. Gondwana Research 79, 125-139.

  52. Elkins-Tanton L.T., Hager B.H. (2000) Melt intrusion as a trigger for lithospheric foundering and the eruption of the Siberian flood basalt. Geophysical Research Letters 27, 3937-3940.

  53. Elkins-Tanton L.T. (2005) Continental magmatism caused by lithospheric delamination. In: Foulger G.R., Natland J.H., Presnall D.C., Anderson D.L. (eds) Plates, plumes, and paradigms. Geological Society of America Special Paper 388, 449-461.

  54. Ellam R.M., Cox K.G. (1991) An interpretation of Karoo picrite basalts in terms of interaction between asthenospheric magmas and the mantle lithosphere. Earth and Planetary Science Letters 105, 330-342.

  55. Ellam R.M., Carlson R.W., Shirey S.B. (1992) Evidence from Re–Os isotopes for plume lithosphere mixing in Karoo flood basalt genesis. Nature 359, 718-721.

  56. Ellam R.M. (2006) New constraints on the petrogenesis of the Nuanetsi picrite basalts from Pb and Hf isotope data. Earth and Planetary Science Letters 245, 153-161.

  57. Elliot D.H., Fleming T.H., Haban M.A., Siders M.A. (1995) Petrology and mineralogy of the Kirkpatrick Basalt and Ferrar Dolerite, Mesa Range region, north Victoria Land, Antarctica. In: Elliot D.H., Blaisdell G.L. (eds) Contributions to Antarctic Research IV. AGU, Antarctic Research Series. 103-141.

  58. Elliot D.H., Fleming T.H. (2000) Weddell triple junction: the principal focus of Ferrar and Karoo magmatism during initial breakup of Gondwana. Geology 28, 539-542.

  59. Elliot D.H., Fleming T.H. (2004) Occurrence and dispersal of magmas in the Jurassic Ferrar large igneous province, Antarctica. Gondwana Research 7, 223-237.

  60. Elliot D.H., Fleming T.H. (2008) Physical volcanology and geological relationships of the Jurassic Ferrar Large Igneous Province, Antarctica. J. Volcanology and Geothermal Research 172, 20-37. https://doi.org/10.1016/j.jvolgeores.2006.02.016

  61. Elliot D.H., Fleming T.H. (2018) The Ferrar Large Igneous Province: field and geochemical constraints on supra-crustal (high-level) emplacement of the magmatic system. The Geological Society of London, Special Publications, 463, 41-58.

  62. Elliot D.H., Fleming T.H., Kyle P.R., Foland K.A. (1999) Long-distance transport of magmas in the Jurassic Ferrar Large Igneous Province, Antarctica. Earth and Planetary Science Letters 167, 89-104.

  63. Encarnación J., Fleming T.H., Elliot D.H., Eales H.V. (1996) Synchronous emplacement of Ferrar and Karoo dolerites and the early breakup of Gondwana. Geology 24, 535-538.

  64. Ernst R.E., Buchan K.L. (2001) Mantle plumes: their identification through time. Geological Society of America, Special Papers 352, 1-593.

  65. Ernst R.E., Bond D.P.G., Zhang Sh.-H., Buchan K.L., Grasby S.E., Youbi N., El Bilali H., Bekker A., Doucet L.S. (2021) Large igneous province record through time and implications for secular environmental changes and geological time-scale boundaries. In: Ernst R.E., Dickson A.J., Bekker A. (eds) Large Igneous Provinces: a driver of global environmental and biotic changes. Geophysical Monograph 255, 4-29. https://doi.org/10.1002/9781119507444.ch1

  66. Farmer G.L. (2003) Continental basaltic rocks. In: Rudnick L.R. (ed.) Treatise on Geochemistry 3, The Crust. Oxford: Elsevier–Pergamon, 85-121.

  67. Farnetani C.G., Richards M.A. (1994) Numerical investigations of the mantle plume initiation model for flood basalt events. Journal of Geophysical Research 99, 13 813-13 834.

  68. Faure G., Bowman J.R., Elliot D.H., Jones L.M. (1974) Strontium isotope composition and petrogenesis of the Kirkpatrick Basalt, Queen Alexandra Range, Antarctica. Contributions to Mineralogy and Petrology 48, 153-169.

  69. Faure G., Mensing T., Jones L.M., Hoers J., Kibler E.M. (1991) Isotopic and geochemical studies of Ferrar Dolerite sills in the Transantarctic Mountains. In: Ulbrich H., Rocha Campos A.C. (eds) Gondwana Seven Proceedings. Univ Sao Paulo, Sao Paulo, 669-683.

  70. Faure G., Pace K.K., Elliot D.H. (1982) Systematic variations of 87Sr/S6Sr and major element concentrations in the Kirkpatrick Basalt of Mount Falla, Queen Alexandra Range, Transantarctic Mountains. In: Craddock C (ed) Antarctic Geoscience. University of Wisconsin Press, Madison, Wisconsin, 715-723.

  71. Ferris J.K., Storey B.C., Vaughan A.P.M., Kyle P.R., Jones P.C. (2003) The Dufek and Forrestal intrusions, Antarctica: a centre for Ferrar Large Igneous Province dike emplacement? Geophysical Research Letters 30, 1348.

  72. Fleck R.J., Sutter J.F., Elliot D.H. (1977) Interpretation of discordant 40Ar/39Ar age spectra of mesozoic tholeiites from Antarctica. Geochimica et Cosmochimica Acta 41, 15-32.

  73. Fleming T.H., Elliot D.H., Jones J.M., Bowman J.R., Siders M.A. (1992) Chemical and isotopic variations in an iron-rich lava flow from the Kirkpatrick Basalt, north Victoria Land, Antarctica: implication for low-temperature alteration. Contributions to Mineralogy and Petrology 111, 440-457.

  74. Fleming T.H., Foland K.A., Elliot D.H. (1995) Isotopic and chemical constraints on the crustal evolution and source signature of Ferrar magmas, north Victoria Land, Antarctica. Contributions to Mineralogy and Petrology 121, 217-236.

  75. Fleming T.N., Heimann A., Foland K.A., Elliot D.H. (1997) 40Ar/39Ar geochronology of Ferrar Dolerite sills from the Transantarctic Mountains, Antarctica: implications for the age and origin of the Ferrar magmatic province. Geological Society of America Bulletin 109 (5), 533-546.

  76. Foland K.A., Fleming T.H., Heimann A., Elliot D.H. (1993) Potassium-argon dating of fine-grained basalts with massive Ar loss: application of the technique to plagioclase and glass from the Kirkpatrick Basalt, Antarctica. Chemical Geology 107 (1–2), 173-190.

  77. Ford A.B., Kistler R.W. (1980) K-Ar age, composition, and origin of Mesozoic mafic rocks related to Ferrar group, Pensacola Mountains, Antarctica. New Zealand Journal of Geology and Geophysics 23, 371-390.

  78. Foulger G.R., Natland J.H., Presnall D.C., Anderson D.L. (2005) Plates, plumes and paradigms. The Geological Society of America, Special Papers 388, 1-881.

  79. Foulger G.R., Jurdy D.M. (2007) Plates, plumes and planetary processes. The Geological Society of America, Special Papers 430, 1-997.

  80. Frey F.A., Coffin M.F., Wallace P.J. (2000) Origin and evolution of a submarine large igneous province: the Kerguelen Plateau and Broken Ridge, southern Indian ocean. Earth and Planetary Science Letters 176, 73-89.

  81. Gallagher K., Hawkesworth C. (1992) Dehydration melting and the generation of continental flood basalts. Nature 358, 57-59.

  82. Garfunkel Z. (2008) Formation of continental flood volcanism – the perspective of setting of melting. Lithos 100, 49-65.

  83. GEOROC – открытая база данных Института Химии им. Макс-Планка по геохимии магматических пород. http://georoc.mpch-mainz.gwdg.de/georoc/

  84. Gose W.A., Helper M.A., Connelly J.N., Hutson F.E., Dalziel I.W.D. (1997) Paleomagnetic data and U-Pb isotopic age determinations from Coats Land, Antarctica: implications for late Proterozoic plate reconstructions. Journal of Geophysical Research 102 (B4), 7887-7902.

  85. Gray D.R., Foster D.A., Meert J.G., Goscombe B.D., Armstrong R., Trouw R.A.J., Passchier C.W. (2008) A Damara orogen perspective on the assembly of southwestern Gondwana. In: West Gondwana: pre-Cenozoic correlations across the South Atlantic region (eds) Pankhurst R.J., Trouw R.A.J., Brito Neves B.B., de Wit M.J. The Geological Society of London, Special Publications 294, 257-278.

  86. Greber N.D, Davies J.H.F.L., Gaynor S.P., Jourdand F., Bertrand H., Schaltegger U. (2020) New high precision U-Pb ages and Hf isotope data from the Karoo large igneous province; implications for pulsed magmatism and early Toarcian environmental perturbations. Results in Geochemistry 1, 100005. https://doi.org/10.1016/j.ringeo.2020.100005

  87. Gunn B.M. (1966) Model and element variation in Antarctic tholeiites. Geochimica et Cosmochimica Acta 30, 881-920.

  88. Hagen-Peter G., Cottle J.M. (2016) Synchronous alkaline and subalkaline magmatism during the late Neoproterozoic-early Paleozoic Ross orogeny, Antarctica: insights into magmatic sources and processes within a continental arc. Lithos 262, 677-698.

  89. Hassan R., Flament N., Gurnis M., Bower D.J., Müller D. (2015) Provenance of plumes in global convection models. Geochemistry, Geophysics, Geosystems 16, 1465-1489. https://doi.org/10.1002/2015GC005751

  90. Hastie W.W., Watkeys M.K., Aubourg C. (2014) Magma flow in dyke swarms of the Karoo LIP: implications for the mantle plume hypothesis. Gondwana Research 25, 736-755.

  91. Heimann A., Fleming T.N., Elliot D.H., Foland K.A. (1994) A short interval of Jurassic continental flood basalt volcanism in Antarctica as demonstrated by Ar40/Ar39 geochronology. Earth and Planetary Science Letters 121 (1–2), 19-41.

  92. Heinonen J.S., Luttinen A.V. (2010) Mineral chemical evidence for extremely magnesian subalkaline melts from the Antarctic extension of the Karoo large igneous province. Mineralogy and Petrology 99, 201-217. https://doi.org/10.1007/s00710-010-0115-9

  93. Heinonen J.S., Carlson R.W., Luttinen A.V. (2010) Isotopic (Sr, Nd, Pb, and Os) composition of highly magnesian dikes of Vestfjella, western Dronning Maud Land, Antarctica: a key to the origins of the Jurassic Karoo large igneous province? Chemical Geology 277, 227-244.

  94. Heinonen J.S., Luttinen A.V., Riley T.R., Michallik R.M. (2013) Mixed pyroxenite–peridotite sources for mafic and ultramafic dikes from the Antarctic segment of the Karoo continental flood basalt province. Lithos 177, 366-380.

  95. Heinonen J.S., Carlson R.W., Riley T.R., Luttinen A.V., Horan M.F. (2014) Subduction-modifed oceanic crust mixed with a depleted mantle reservoir in the sources of the Karoo continental food basalt province. Earth and Planetary Science Letters 394, 229-241.

  96. Heinonen J.S., Luttinen A.V., Bohrson W.A. (2016) Enriched continental flood basalts from depleted mantle melts: modeling lithospheric contamination of Karoo lavas from Antarctica. Contributions to Mineralogy and Petrology 171, 9. https://doi.org/10.1007/s00410-015-1214-8

  97. Heinonen J.S., Luttinen A.V., Bohrson W.A. (2018) Enrichment of 18O in the mantle sources of the Antarctic portion of the Karoo large igneous province. Contributions to Mineralogy and Petrology 173(3), 21. https://doi.org/10.1007/s00410-018-1447-4

  98. Hergt J.M. (2000) Comment on: ‘‘Enriched mantle – Dupal signature in the genesis of the Jurassic Ferrar tholeiites from Prince Albert Mountains (Victoria Land, Antarctica)’’ by Antonini et al. (Contributions to Mineralogy and Petrology 136, 1–19). Contributions to Mineralogy and Petrology 139, 240-244.

  99. Hergt J.M., Chappell B.W., Faure G., Mensing T.M. (1989) The geochemistry of Jurassic dolerites from Portal Peak, Antarctica. Contributions to Mineralogy and Petrology 102, 298-305.

  100. Hergt J.M., Chappell B.W., McCulloch M.T., McDougall I., Chivas A.R. (1989) Geochemical and isotopic constraints on the origin of the Jurassic dolerites of Tasmania. Journal of Petrology 30, 841-883.

  101. Hergt J.M., Peate D.W., Hawkesworth C.J. (1991) The petrogenesis of mesozoic Gondwana low-Ti flood basalts. Earth and Planetary Science Letters 105, 134-148.

  102. Hoers J., Faure G., Elliot D.H. (1980) Correlation of δ18O and initial 87Sr/86Sr ratios in Kirkpatrick Basalt on Mt. Ealla, Transantarctic Mountains. Contributions to Mineralogy and Petrology 75, 199-203.

  103. Hofmann A.W. (1997) Mantle geochemistry: the message from oceanic volcanism. Nature 385, 219-226.

  104. Hofmann A.W. (2003) Sampling mantle heterogeneity through oceanic basalts: isotopes and trace elements. Treatise on Geochemistry 2, 61-101. https://doi.org/10.1016/B0-08-043751-6/02123-X

  105. Hole M.J., Saunders A.D., Rogers G., Sykes M.A. (1995) The relationships between alkaline magmatism, lithospheric extension and slab window formation along continental destructive plate margins. The Geological Society of London, Special Publications 81, 265-285.

  106. Hole M.J. (2015) The generation of continental flood basalts by decompression melting of internally heated mantle. Geology 43, 311-314.

  107. Hornig I. (1993) High-Ti and Low-Ti tholeiites in the Jurassic Ferrar Group, Antarctica. Geologisches Jahrbuch E47, 335-369.

  108. Hotten R. (1995) Palaeomagnetic studies on mafic dykes of the Shackleton Range, Antarctica, and their geotectonic relevance. Polarforschung 63 (2/3), 123-151.

  109. Hotten R. (1993) Die mafischen Gänge der ShackIeton Range/Antarktika: Petrographie, Geochemie, Isotopengeochemie und Paläomagnetik. Berichte Polarforschung 118, 1-225.

  110. Ivanov A.V., Meffre S., Thompson J., Corfu F., Kamenetsky V.S., Kamenetsky M.B., Demonterova E.I. (2017) Timing and genesis of the Karoo-Ferrar large igneous province: new high precision U-Pb data for Tasmania confirm short duration of the major magmatic pulse. Chemical Geology 455, 32-43.

  111. Johnston S.T., Thorkelson D.J. (2000) Continental flood basalts: episodic magmatism above long-lived hotspots. Earth and Planetary Science Letters 175, 247-256.

  112. Jourdan F., Féraud G., Bertrand H., Watkeys M.K., Kampunzu A.B., Le Gall B. (2006) Basement control on dyke distribution in Large Igneous Provinces: case study of the Karoo triple junction. Earth and Planetary Science Letters 241, 307-322.

  113. Jourdan F., Bertrand H., Schärer U., Blichert-Toft J., Féraud G., Kampunzu A.B. (2007) Major and trace element and Sr, Nd, Hf, and Pb isotope compositions of the Karoo Large Igneous Province, Botswana-Zimbabwe: lithosphere vs mantle plume contribution. Journal of Petrology 48, 1043-1077.

  114. Jordan T.A., Becker D. (2018) Investigating the distribution of magmatism at the onset of Gondwana breakup with novel strapdown gravity and aeromagnetic data. Physics of the Earth and Planetary Interiors 282, 77-88.

  115. Kelemen P.B., Hanghej K., Greene A.R. (2014) One view of the geochemistry of subduction-related magmatic arcs, with an emphasis on primitive andesite and lower crust. Treatise on Geochemistry 4, 749-807. https://doi.org/10.1016/B978-0-08-095975-7.00323-5

  116. King S.D., Anderson D.L. (1995) An alternative mechanism of flood basalt formation. Earth and Planetary Science Letters 136, 269-279.

  117. Krohne N., Lisker F., Kleinschmidt G., Klügel A., Läufer A., Estrada S., Spiegel C. (2018) The Shackleton Range (East Antarctica): an alien block at the rim of Gondwana? Geological Magazine 155 (4), 841-864.

  118. Kyle P.R. (1980) Development of heterogeneities in the subcontinental mantle: evidence from the Ferrar Group, Antarctica. Contributions to Mineralogy and Petrology 73, 89-104.

  119. Kyle P.R., Elliot D.H., Sutter J.F. (1981) Jurassic Ferrar Supergroup tholeiites from the Transantarctic Mountains, Antarctica, and their relation to the initial fragmentation of Gondwana. In: Cresswall M.M., Vella P. (eds) Gondwana Five: Proceedings of the Fifth Gondwana Symposium, Wellington, New Zealand, Rotterdam: A.A. Balkema, 283-287.

  120. Lambart S., Laporte D., Provost A., Schiano P. (2012) Fate of pyroxenite-derived melts in the peridotitic mantle: thermodynamic and experimental constraints. J. Petrology 53, 451-476.

  121. Lambart S., Laporte D., Schiano P. (2013) Markers of the pyroxenite contribution in the major-element compositions of oceanic basalts: Review of the experimental constraints. Lithos 160–161, 14-36.

  122. Lambart S., Baker M.B., Stopler E.M. (2016) The role of pyroxenite in basalt genesis: melt-PX, a melting parameterization for mantle pyroxenites between 0.9 and 5 GPa. J. Geophysical Research https://doi.org/10.1002/2015JB012762

  123. Leat P.T. (2008) On the long-distance transport of ferrar magmas. In: Structure and emplacement of high-level magmatic systems (eds) Thomson K., Petford N. The Geological Society of London, Special Publications 302, 45-61.

  124. Leat P.T. (2013) The geological and tectonic evolution of the Transantarctic Mountains: a review. In: Antarctic palaeoenvironments and Earth-surface processes (eds) Thambrey M.J., Barker P.F., Barrett P.J., Bowman V., Davies B., Smellie J.L., Tranter M. The Geological Society of London, Special Publications 381, 7-35.

  125. Leat P.T., Luttinen A.V., Storey B.C., Millar I.L. (2005) Sills of the Theron Mountains, Antarctica evidence for long distance transport of mafic magmas during Gondwana break-up. In Dyke SwarmsTime Markers of Crustal Evolution (eds) Hanski E., Mertanen S., Ramo T., Vuollo J., Taylor & Francis, 183-99.

  126. Leitchenkov G., Guseva J., Gandyukhin V., Grikurov G., Kristoffersen Y., Sand M., Golynsky A., Aleshkova N. (2008) Crustal structure and tectonic provinces of the Riiser-Larsen Sea area (East Antarctica): results of geophysical studies. Marine Geophysical Researches 29(2), 135-158. https://doi.org/10.1007/s11001-008-9051-z

  127. Ludwig K.R. (2001) SQUID 1.00. User’s manual. BGC Special Publication 2, 2455 Ridge Road, Berkeley, CA 94 709, USA. 54 p.

  128. Ludwig K.R. (2012) User’s manual for Isoplot 3.75. A geochronological toolkit for Microsoft Excel. BGC Special Publication 4, 2455 Ridge Road, Berkeley, CA 94709, USA. 141 p.

  129. Luttinen A.V. (2018) Bilateral geochemical asymmetry in the Karoo large igneous province. Scientific Reports 8, 5223-5234.

  130. Luttinen A.V., Furnes H. (2000) Flood basalts of Vestfjella: Jurassic magmatism across an Archaean-Proterozoic lithospheric boundary in Dronning Maud Land, Antarctica. J. Petrology 41, 1271-1305. https://doi.org/10.1093/petrology/41.8.1271

  131. Luttinen A.V., Leat P.T., Furnes H. (2010) Björnnutane and Sembberget basalt lavas and the geochemical provinciality of Karoo magmatism in western Dronning Maud Land, Antarctica. Journal of Volcanology and Geothermal Research 198, 1-18. doi: . 2010.07.011.https://doi.org/10.1016/j.jvolgeores

  132. Luttinen A.V., Heinonen J.S., Kurhila M., Jourdan F., Mänttäri I., Vuori S.K., Huhma H. (2015) Depleted mantle-sourced CFB magmatism in the Jurassic Africa-Antarctica rift: petrology and 40Ar/39Ar and U/Pb chronology of the Vestfjella dyke swarm, Dronning Maud Land, Antarctica. Journal of Petrology 56, 919-952. https://doi.org/10.1093/petrology/egv022

  133. Luttinen A.V., Siivola J.U. (1997) Geochemical characteristics of Mesozoic lavas and dikes from Vestfjella, Dronning Maud Land: recognition of three distinct chemical types. In: Ricci C.A. (ed) The Antarctic region: geological evolution and processes 7. Terra Antarctica Publications, Siena, 495-503.

  134. Luttinen A.V., Rämö O.T., Huhma H. (1998) Neodymium and strontium isotopic and trace element composition of a Mesozoic CFB suite from Dronning Maud Land, Antarctica: implications for lithosphere and asthenosphere contributions to Karoo magmatism. Geochimica et Cosmochimica Acta 62, 2701-2714.

  135. Marsh P.D., Thomson J.W. (1984) Location and geology of nunataks in north-western Coats Land. British Antarctic Survey Bulletin 65, 33-39.

  136. Martin A.K. (2007) Gondwana breakup via double-saloon-door rifting and seafloor spreading in a backarc basin during subduction rollback. Tectonophysics 445 (3–4), 245-272.

  137. Matzen A.K., Wood B.J., Baker M.B., Stolper E.M. (2017) The roles of pyroxenite and peridotite in the mantle sources of oceanic basalts. Nature Geoscience 10, 530-535.

  138. McDonough W., Sun S.S. (1995) The composition of the Earth. Chemical Geology 120 (3–4), 223-253. https://doi.org/10.1016/0009-2541(94)00140-4

  139. McLennan S.M. (2001) Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochemistry, Geophysics, Geosystems 2, (2000GC000109)

  140. Melluso L., Hergt J.M., Zanetti A. (2014) The late crystallization stages of low-Ti, low-Fe tholeiitic magmas: insights from evolved Antarctic and Tasmanian rocks. Lithos 188, 72-83.

  141. Mensing T.M., Faure G., Jones L.M., Hoefs J. (1991) Stratigraphic correlation and magma evolution of the Kirkpatrick Basalt in the Mesa Range, northern Victoria Land, Antarctica. In: Ulbrich H., Rocha Campos A.C. (eds) Gondwana Seven Proceedings, Univ Sao Paulo, Sao Paulo, 653-667.

  142. Mensing T.M., Faure G. (1996) Cretaceous alteration of volcanic rocks, Pain Mesa, northern Victoria Land, Antarctica. Chemical Geology 129, 153-161.

  143. Minor D.R., Mukasa S.B. (1997) Zircon U-Pb and hornblende 40Ar–39Ar ages for the Dufek layered mafic intrusion, Antarctica: implications for the age of the Ferrar large igneous province Geochimica et Cosmochimica Acta 61 (12), 2497-2504.

  144. Molzahn M., Reisberg L., Worrner G. (1996) Os, Sr, Nd, Pb, O isotope and trace element data from the Ferrar flood basalts, Antarctica: evidence for an enriched subcontinental lithospheric source. Earth and Planetary Science Letters 144, 529-546.

  145. Mortimer N., Parkinson D., Raine J.I., Adams C.J., Graham, I.J., Oliver P.J., Palmer K. (1995) Ferrar magmatic province rocks discovered in New Zealand: implications for Mesozoic Gondwana geology. Geology 23, 185-88.

  146. Natali C., Beccaluva L., Bianchini G., Siena F. (2017) Comparison among Ethiopia-Yemen, Deccan, and Karoo continental flood basalts of central Gondwana: Insights on lithosphere versus asthenosphere contributions in compositionally zoned magmatic provinces. The Geological Society of America, Special Papers 526, 191-215. https://doi.org/10.1130/2017.2526(10).

  147. Natland J.H. (1989) Partial melting of a lithologically heterogeneous mantle. In: Saunders, A.D., Norry M.J. (eds) Magmatism in the ocean basins. The Geological Society of London, Special Publications 42, 41–77.

  148. Neumann E.-R., Svensen H., Galerne C.Y., Planke S. (2011) Multistage evolution of dolerites in the Karoo Large Igneous Province, Central South Africa. J. Petrology 52, 959-984.

  149. Olierook H.K.H., Jourdan F., Merle R.E., Timms N.E., Kusznir N., Muhling J.R. (2016) Bunbury Basalt: Gondwana breakup products or earliest vestiges of the Kerguelen mantle plume? Earth and Planetary Science Letters 440, 20-32.

  150. Panter K.S., Blusztajn J., Hart S.R., Kyle P.R., Esser R., McIntosh W.C. (2006) The origin of HIMU in the SW Pacific: evidence from intraplate volcanism in southern New Zealand and subantarctic islands. Journal of Petrology 47(9), 1673-1704.

  151. Phillips E.H., Sims K.W.W., Blichert-Toft J., Richard C. Aster R.C., Gaetani G.A., Kyle P.R., Wallace P.J., Rasmussen D.J. (2018) The nature and evolution of mantle upwelling at Ross Island, Antarctica, with implications for the source of HIMU lavas. Earth and Planetary Science Letters 498, 38-53.

  152. Plank T. (2014) 4.17 The chemical composition of subducting sediments. Treatise on Geochemistry 4, 607-635. https://doi.org/10.1016/B978-0-08-095975-7.00319-3

  153. Richards M.A., Duncan R.A., Courtillot V.E. (1989) Flood basalts and hot-spot tracks: plume heads and tails. Science 246, 103-107.

  154. Riley T.R., Knight K.B. (2001) Review age of pre-break-up Gondwana magmatism. Antarctic Science 13 (2), 99-110.

  155. Riley T.R., Leat Ph.T., Storey B.C., Parkinson I.J., Millar I.L. (2003) Ultramafic lamprophyres of the Ferrar large igneous province: evidence for a HIMU mantle component. Lithos 66, 63-76.

  156. Riley T.R., Leat P.T., Curtis M.L., Millar I.L., Duncan R.A., Fazel A. (2005) Early–Middle Jurassic dolerite dykes from western Dronning Maud Land (Antarctica): identifying mantle sources in the Karoo Large Igneous Province. Journal of Petrology 46, 1489-1524.

  157. Riley T.R., Curtis M.L., Leat P.T., Watkeys M.K., Duncan R.A., Millar I.L., Owens W.H. (2006) Overlap of Karoo and Ferrar magma types in KwaZulu–Natal, South Africa. J. Petrology 47, 541-556.

  158. Riley T.R., Jordan T.A., Leat P.T., Curtis M.L., Millar I.L. (2020) Magmatism of the Weddell Sea rift system in Antarctica: implications for the age and mechanism of rifting and early stage of the Gondwana breakup. Gondwana Research 79, 185-196.

  159. Rodionov N.V., Belyatsky B.V., Antonov A.V., Kapitonov I.N., Sergeev S.A. (2012) Comparative in-situ U–Th–Pb geochronology and trace element composition of baddeleyite and low-U zircon from carbonatites of the Palaeozoic Kovdor alkaline–ultramafic complex, Kola Peninsula, Russia. Gondwana Research 21(4), 728-744. https://doi.org/10.1016/j.gr.2011.10.005

  160. Rudnick R.L., Gao S. (2014) 4.1 Composition of the continental crust. Treatise on Geochemistry 4, 1-51. https://doi.org/10.1016/B978-0-08-095975-7.00301-6

  161. Semenov V.S., Mikhailov V.M., Koptev-Dvornikov E.V., Ford A.B., Shulyatin O.G., Semenov S.V., Tkacheva D.A. (2014) Layered Jurassic intrusions in Antarctica. Petrology 22, 547-573.

  162. Siders M.A., Elliot D.H. (1985) Major and trace element geochemistry of the Kirkpatrick Basalt, Mesa Range, Antarctica. Earth and Planetary Science Letters 72, 54-64.

  163. Sobolev A.V., Hofmann A.W., Kuzmin D.V., Yaxley G.M., Arndt N.T., Chung S., Danyushevsky L.V., Elliott T., Frey F.A., Garcia M.O., Gurenko A.A., Kamenetsky V.S., Kerr A.C., Krivolutskaya N.A., Matvienkov V.V., Nikogosian I.K., Rocholl A., Sigurdsson I.A., Sushchevskaya N.M., Teklay M. (2007) The amount of recycled crust in sources of mantle-derived melts. Science 316, 412-417. https://doi.org/10.1126/science.1138113

  164. Søager N., Portnyagin M., Hoernle K., Holm P.M., Hauff F., Garbe-Schönberg D. (2015) Olivine major and trace element compositions in southern Payenia basalts, Argentina: evidence for pyroxenite–peridotite melt mixing in a back-arc setting. Journal of Petrology 56 (8), 1495-1518.

  165. Spaeth G., Hotten R., Peters M., Techmer K. (1995) Mafic dykes in the Shackleton Range, Antarctica. Polarforschung 63(2/3), 101-121.

  166. Storey B.C., Vaughan A.P.M., Riley T.R. (2013) The links between large igneous provinces, continental break-up and environmental change: evidence reviewed from Antarctica. Earth and Environmental Science Transactions of the Royal Society of Edinburgh 104, 1-14.

  167. Stroncik N.A., Devey C.W. (2011) Recycled gabbro signature in hotspot magmas unveiled by plume–ridge interactions. Nature Geoscience 4, 39-397.

  168. Sushchevskaya N., Belyatsky B. (2011) Geochemical and petrological characteristics of Mesozoic dykes from Schirmacher Oasis (East Antarctica). In: Dyke Swarms: Keys for Geodynamic Interpretation (ed. Srivastava R.K.). Springer-Verlag, Berlin-Heidelberg, 3-18. https://doi.org/10.1007/978-3-642-12496-9_1

  169. Sushchevskaya N.M., Belyatsky B.V., Laiba A.V. (2011) Origin, distribubution and evolution of plume magmatism in East Antarctica. In: Volcanology (ed.Fr.Stoppa), INTECH, Rijeka, Croatia, 3-29. ISBN: 978-953-307-434-4

  170. Svensen H., Corfu F., Polteau S., Hammer Ø., Planke S. (2012) Rapid magma emplacement in the Karoo Large Igneous Province. Earth and Planetary Science Letters 325–326, 1-9.

  171. Svensen H.H., Torsvik T.H., Callegaro S., Augland L., Heimdal T.H., Jerram D.A., Planke S., Pereira E. (2018) Gondwana Large Igneous Provinces: plate reconstructions, volcanic basins and sill volumes. The Geological Society of London, Special Publications 463, 17-40. https://doi.org/10.1144/SP463.7

  172. Sweeney R.J., Falloon T.J., Green D.H., Tatsuni Y. (1991) The mantle origins of Karoo picrites. Earth and Planetary Science Letters 107, 256-271.

  173. Thompson, R.N., Gibson S.A. (2000) Transient high temperatures in mantle plume heads inferred from magnesian olivines in Phanerozoic picrites. Nature 407, 502-506.

  174. Torsvik T.H., Smethurst M.A., Burke K., Steinberger B. (2006) Large igneous provinces generated from the margins of the large low-velocity provinces in the deep mantle. Geophysical J. International 167, 1447-1460.

  175. Torsvik T.H., Cocks L.R.M. (2013) Gondwana from top to base in space and time. Gondwana Research 24, 999-1030.

  176. Torsvik T.H., Steinberger B., Ashwal L.D., Doubrovine P.V., Tronnes R.C. (2016) Earth evolution and dynamics – a tribute to Kevin Burke. Canadian J. Earth Sciences 53, 1073-1087. https://doi.org/10.1139/cjes-2015-0228

  177. Van der Meer D.G., van Hinsbergen D.J.J., Spakman W. (2018) Atlas of the underworld: slab remnants in the mantle, their sinking history, and a new outlook on lower mantle viscosity. Tectonophysics 723, 309-448.

  178. Wang X.-C., Wilde S.A., Xu B., Pang Ch.-J. (2016) Origin of arc-like continental basalts: implications for deep-Earth fluid cycling and tectonic discrimination. Lithos 261, 5-45.

  179. Will T.M., Zeh A., Gerdes A., Frimmel H.E., Millar I.L., Schmädicke E. (2009) Palaeoproterozoic to Palaeozoic magmatic and metamorphic events in the Shackleton Range, East Antarctica: Constraints from zircon and monazite dating, and implications for the amalgamation of Gondwana. Precambrian Research 172, 25-45.

  180. White R.S., McKenzie D.P. (1989) Magmatism at rift zones: the generation of volcanic continental margins and flood basalts. J. Geophysical Research: Solid Earth 94(B6), 7685-7729.

  181. Yang Z.F., Li J., Liang W.F., Luo Z.H. (2016) On the chemical markers of pyroxenite contributions in continental basalts in Eastern China: implications for source lithology and the origin of basalts. Earth-Science Reviews 157, 18-31.

  182. Zavala K., Leitch A.M., Fisher G.W. (2011) Silicic segregations of the Ferrar dolerite sills, Antarctica. J. Petrology 52, 1927-1964.

  183. Zheng Y.-F. (2019). Subduction zone geochemistry. Geoscience Frontiers 10, 1223-1254.

  184. Zheng Y.-F., Xu Zh., Chen L., dai L.-Q., Zhao Z.-F. (2020) Chemical geodynamics of mafic magmatism above subduction zones. J. Asian Earth Sciences 194, 104185. https://doi.org/10.1016/j.jseaes.2019.104185

  185. Zieg M.J., Marsh B.D. (2012) Multiple reinjections and crystal – mush compaction in beacon sill, McMurdo Dry Valleys, Antarctica. J. Petrology 53, 2567-2591.

Дополнительные материалы

скачать ESM.xlsx
Таблица 1. Главные и примесные элементы в породах магматической провинции Феррар.
Таблица 2. Sr-Nd-Pb изотопный состав валовых проб базитов провинции Феррар.
Таблица 3. Результаты уран-свинцового SHRIMP-II локального анализа бадделеита из образца долерита пробы 48Г, дайковый комплекс г.Гасс хр.Шеклтон.