Геохимия, 2022, T. 67, № 7, стр. 603-620

Сопряженные реакции окисления–восстановления и карбонатизации–декарбонатизации при взаимодействии перидотитов с карбонатизированными метаосадками и метабазитами: эксперименты в системах без железа при 10 ГПа

А. В. Гирнис ab*, А. Б. Вудланд b, В. К. Булатов bc, Г. П. Брай b, Х. Е. Хёфер b

a Институт геологии рудных месторождений, петрографии, минералогии и геохимии РАН
119017 Москва, Староменетный пер., 35, Россия

b Institut für Geowissenschaften, Goethe-Universität Frankfurt am Main
60438 Frankfurt am Main, Altenhöferallee 1, Germany

c Институт геохимии и аналитической химии им. В.И. Вернадского РАН
119991 Москва, ул. Косыгина, 19, Россия

* E-mail: girnis@igem.ru

Поступила в редакцию 04.08.2021
После доработки 08.11.2021
Принята к публикации 10.11.2021

Аннотация

Гипотеза “окислительно-восстановительного застывания” (redox freezing, далее ROF) основана на предположении, что увеличение давления способствует стабилизации в перидотитовой мантии Fe–Ni металлической фазы и может служить восстановителем карбонатно-силикатных расплавов. Восстановление ${\text{CO}}_{3}^{{2 - }}$ с выделением элементарного C (графит или алмаз) приводит к повышению температуры солидуса и кристаллизации расплава. Термодинамические расчеты показывают, что равновесные фугитивности кислорода в перидотите, содержащем углерод и магнезит, существенно ниже, чем значения, буферируемые минеральными ассоциациями метаосадков (гранат–кианит–SiO2–арагонит–элементарный углерод) или эклогитов (пироксен–гранат–магнезит–элементарный углерод). Следовательно, окислительно-восстановительные взаимодействия могут происходить между углеродсодержащими перидотитами и метаосадками или эклогитами в отсутствии металла и даже в системе, не содержащей железо. Для проверки этого предположения проведены эксперименты по взаимодействию форстерита (как модели перидотита) с синтетическими смесями, моделирующими карбонатсодержащие метаосадок (SiO2 + CaCO3 + Al2O3) и эклогит (SiO2 + MgCO3 ± Al2O3 ± CaO) при 10 ГПa и 1200–1500°C. Для уменьшения переноса основных компонентов смеси были разделены графитовым диском, который также служил источником С. Взаимодействие проявлялось в декарбонатизации карбонатизированного метаосадка или эклогита с образованием алмаза на поверхности графитового диска. На контакте с перидотитом графитовый диск растворялся, и развивалась метасоматическая зональность. Пироксен и магнезит с незначительным содержанием Са появились в фронтальной метасоматической зоне. С приближением к графитовому диску содержание Са в новообразованном пироксене и карбонате возрастает, и наблюдается образование высококальциевого пироксена и граната в тыловой метасоматической зоне. Эти результаты указывают на протекание сопряженных окислительно-восстановительных реакции в перидотите и метаосадке (или эклогите): Mg2SiO4 + C + O2 = = MgSiO3 + MgCO3 и CaCO3 + 1/3Al2SiO5 + 2/3SiO2 = 1/3Ca3Al2Si3O12 + C + O2, соответственно. Реакции осуществляются за счет диффузии кислорода вдоль межзерновых каналов, заполненных карбонатно-силикатным расплавом. Взаимодействие включает также перенос основных катионов и приводит к образованию карбонатизированного лерцолита и алмазсодержащей эклогитовой ассоциации. Такой процесс может происходить и в природе, на контакте карбонатизированного метаосадка или эклогита с перидотитом. Полученные результаты показывают, что присутствие Fe–Ni металла не является необходимым для протекания ROF. Рассмотренные процессы могут объяснять существование богатых алмазом эклогитов и низкое содержание алмазов в перидотитовых ксенолитах.

Ключевые слова: мантийный метасоматоз, экспериментальное моделирование, окислительно-восстановительные реакции, карбонаты, алмаз

Список литературы

  1. Ali R.A.M., Maurice A.E., Pitcairn I.K., Ahmed A.H., Azer M.K., Boskabadi A., Bakhit B.R., Shahien M.G. (2020) Neoproterozoic and Cretaceous mantle oxidation states: Controls and heterogeneity through time. Lithos. 356–357, 105 375.

  2. Alt J.C., Teagle D.A.H. (1999) The uptake of carbon during alteration of ocean crust. Geochim. Cosmochim. Acta. 63, 1527-1535.

  3. Anderson K.R., Poland M.P. (2017) Abundant carbon in the mantle beneath Hawai‘i. Nature Geosci. 10, 704-708.

  4. Arima M., Kozai Y., Akaishi M. (2002) Diamond nucleation and growth by reduction of carbonate melts under high-pressure and high-temperature conditions. Geology. 30, 691-694.

  5. Ballhaus C. (1995) Is the upper mantle metal-saturated? Earth Planet. Sci. Lett. 132, 75-86.

  6. Bebout G.E. (2007) Metamorphic chemical geodynamics of subduction zones. Earth Planet. Sci. Lett. 260, 373-393.

  7. Bebout G.E., Barton M.D. (1993) Metasomatism during subduction: products and possible paths in the Catalina Schist, California. Chem. Geol. 108, 61-92.

  8. Behrens H., Zhang Y., Leschik M., Wiedenbeck M., Heide G., Frischat G.H. (2007) Molecular H2O as carrier for oxygen diffusion in hydrous silicate melts. Earth Planet. Sci. Lett. 254, 69-76.

  9. Berman R.G. (1990) Mixing properties of Ca–Mg–Fe–Mn garnets. Am. Mineral. 75, 328-344.

  10. Biellmann C., Gillet P., Peyronneau J. (1993) Experimental evidence for carbonate stability in the Earth’s lower mantle. Earth Planet. Sci. Lett. 118, 31-41.

  11. Brey G.P., Bulatov V.K., Girnis A.V., Lahaye Y. (2008) Experimental melting of carbonated peridotite at 6–10 GPa. J. Petrol. 49, 797-821.

  12. Brey G.P., Girnis A.V., Bulatov V.K., Hofer H.E., Gerdes A., Woodland A.B. (2015) Reduced sediment melting at 7.5–12 GPa: phase relations, geochemical signals and diamond nucleation. Contrib. Mineral. Petrol. 170, 18.

  13. Brounce M.N., Kelley K.A., Cottrell E. (2014) Variations in Fe3+/ΣFe of Mariana Arc Basalts and Mantle Wedge fO2. J. Petrol. 55, 2513-2536.

  14. Brounce M., Cottrell E., Kelley K.A. (2019) The redox budget of the Mariana subduction zone. Earth Planet. Sci. Lett. 528, 115859.

  15. Bulatov V.K., Brey G.P., Girnis A.V., Gerdes A., Höfer H.E. (2014) Carbonated sediment–peridotite interaction and melting at 7.5–12 GPa. Lithos. 200–201, 368-385.

  16. Burnham A.D., Bulanova G.P., Smith C.B., Whitehead S.C., Kohn S.C., Gobbo L., Walter M.J. (2016) Diamonds from the Machado River alluvial deposit, Rondônia, Brazil, derived from both lithospheric and sublithospheric mantle. Lithos. 265, 199-213.

  17. Busigny V., Cartigny P., Philippot P., Ader M., Javoy M. (2003) Massive recycling of nitrogen and other fluid-mobile elements (K, Rb, Cs, H) in a cold slab environment: evidence from HP to UHP oceanic metasediments of the Schistes Lustres nappe (western Alps, Europe). Earth Planet. Sci. Lett. 215, 27-42.

  18. Canil D., Scarfe C.M. (1990) Phase relations in peridotite + + CO2 systems to 12 GPa: implications for the origin of kimberlite and carbonate stability in the Earth’s upper mantle. J. Geophys. Res. Solid Earth. 95, 15805-15816.

  19. Cannao E., Tiepolo M., Bebout G.E., Scambelluri M. (2020) Into the deep and beyond: Carbon and nitrogen subduction recycling in secondary peridotites. Earth Planet. Sci. Lett. 543, 116328.

  20. Cartigny P., Palot M., Thomassot E., Harris J.W. (2014) Diamond formation: A stable isotope perspective. Annu. Rev. Earth Planet. Sci. 42, 699-732.

  21. Chinn I.L., Perritt S.H., Stiefenhofer J., Stern R.A. (2018) Diamonds from Orapa Mine show a clear subduction signature in SIMS stable isotope data. Mineral. Petrol. 112 (Suppl. 1): S197-S207.

  22. Dalton J.A., Wood B.J. (1993) The partitioning of Fe and Mg between olivine and carbonate and the stability of carbonate under mantle conditions. Contrib. Mineral. Petrol. 114, 501-509.

  23. Dasgupta R., Hirschmann M.M. (2010) The deep carbon cycle and melting in Earth’s interior. Earth Planet. Sci. Lett. 298, 1-13.

  24. Debret B., Bouilhol P., Pons M.L., Williams H. (2018) Carbonate transfer during the onset of slab devolatilization: new insights from Fe and Zn stable isotopes. J. Petrol. 59, 1145-1166.

  25. Drewitt J.W.E., Walter M.J., Zhang H., McMahon S.C., Edwards D., Heinen B.J., Lord O.T., Anzellini S., Kleppe A.K. (2019) The fate of carbonate in oceanic crust subducted into Earth’s lower mantle. Earth Planet. Sci. Lett. 511, 213-222.

  26. Eggler D.H., Baker D.R. (1982) Reduced volatiles in the system C–O–H: implications to mantle melting, fluid formation, and diamond genesis. In High-Pressure Research in Geophysics (Eds. Akimoto S., Manghnani M.H.). Tokyo, 237-250.

  27. Eguchi J., Dasgupta R. (2017) CO2 content of andesitic melts at graphite-saturated upper mantle conditions with implications for redox state of oceanic basalt source regions and remobilization of reduced carbon from subducted eclogite. Contrib. Mineral. Petrol. 172, 12.

  28. Fedortchouk Y. (2019) A new approach to understanding diamond surface features based on a review of experimental and natural diamond studies. Earth-Sci. Rev. 193, 45-65.

  29. Fedortchouk Y., Zhang Z. (2011) Diamond resorption: link to metasomatic events in the mantle or record of magmatic fluid in kimberlitic magma? Can. Mineral. 49, 707-719.

  30. Fedortchouk Y., Liebske C., McCammon C. (2019) Diamond destruction and growth during mantle metasomatism: An experimental study of diamond resorption features. Earth Planet. Sci. Lett. 506, 493-506.

  31. Förster M.W., Bussweiler Y., Prelevic D., Daczko N.R., Buhre S., Mertz-Kraus R., Foley S.F. (2021) Sediment-peridotite reaction controls fore-arc metasomatism and arc magma geochemical signatures. Geosci., 11, 372.

  32. Frost D.J., McCammon C.A. (2008) The redox state of Earth’s mantle. Annu. Rev. Earth Planet. Sci. 36, 389-420.

  33. Frost D.J., Liebske C., Langenhorst F., McCammon C.A., Trønnes R.G., Rubie D.C. (2004) Experimental evidence for the existence of iron-rich metal in the Earth’s lower mantle. Nature 428, 409-412.

  34. Galvez M.E., Beyssac O., Martinez I., Benzerara K., Chaduteau K., Malvoisin B., Malavieille J. (2013) Graphite formation by carbonate reduction during subduction. Nature Geosci. 6, 473-477.

  35. Gardes E., Laumonier M., Massuyeau M., Gaillard F. (2020) Unravelling partial melt distribution in the oceanic low velocity zone. Earth Planet. Sci. Lett. 540, 116242.

  36. Gerrits A.R., Inglis E.C., Dragovic B., Starr P.G., Baxter E.F., Burton K.W. (2019) Release of oxidizing fluids in subduction zones recorded by iron isotope zonation in garnet. Nature Geosci. 12, 1029-1033.

  37. Girnis A.V., Brey G.P., Bulatov V.K., Höfer H.E., Woodland A.B. (2018) Graphite to diamond transformation during sediment–peridotite interaction at 7.5 and 10.5 GPa. Lithos. 310–311, 302-313.

  38. Gorce J.S., Caddick M.J., Bodnar R.J. (2019) Thermodynamic constraints on carbonate stability and carbon volatility during subduction. Earth Planet. Sci. Lett. 519, 213-222.

  39. Hammouda T., Laporte D. (2000) Ultrafast mantle impregnation by carbonatite melts. Geology. 28, 283-285.

  40. Holland T.J.B., Powell R. (2011) An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids. J. Metamor. Geol. 29, 333-383.

  41. Isshiki M., Irifune T., Hirose K., Ono S., Ohishi Y., Watanuki T., Nishibori E., Takata M., Sakata M. (2004) Stability of magnesite and its high-pressure form in the lowermost mantle. Nature. 427, 60-63.

  42. Jacob D.E., Piazolo S., Schreiber A., Trimby P. (2016) Redox-freezing and nucleation of diamond via magnetite formation in the Earth’s mantle. Nature Commun. 7, 11891.

  43. Kerrick D.M., Connolly J. (1998) Subduction of ophicarbonates and recycling of CO2 and H2O. Geology. 26, 375-378.

  44. Kopylova M., Navon O., Dubrovinsky L., Khachatryan G. (2010) Carbonatitic mineralogy of natural diamond-forming fluids. Earth Planet. Sci. Lett., 291, 126-137.

  45. Korsakov A.V., Hermann J. (2006) Silicate and carbonate melt inclusions associated with diamonds in deeply subducted carbonate rocks. Earth Planet. Sci. Lett. 241, 104-118.

  46. Li Y.-H., Schoonmaker J.E. (2003) Chemical composition and mineralogy of marine sediments. In Treatise on Geochemistry 7, 1-35.

  47. Logvinova A.M., Shatskiy A., Wirth R., Tomilenko A.A., Ugap’eva S.S., Sobolev N.V. (2019) Carbonatite melt in type Ia gem diamond. Lithos. 342–343, 463-467.

  48. Luth R.W. (1993) Diamonds eclogites, and the oxidation state of the Earth’s mantle. Science. 261, 66-68.

  49. Luth R.W. (1999) Carbon and carbonates in the mantle. In Mantle Petrology: Field Observations and High Pressure Experimentation: A Tribute to Francis R. (Joe) Boyd (Eds. Fei Y., Bertka C.M., Mysen, B.O.). The Geochemical Society. 297-316

  50. Luth R.W., Stachel T. (2014) The buffering capacity of lithospheric mantle: implications for diamond formation. Contrib. Mineral. Petrol. 168, 1083.

  51. Martin A.M., Hammouda T. (2011) Role of iron and reducing conditions on the stability of dolomite + coesite between 4.25 and 6 GPa – a potential mechanism for diamond formation during subduction. Eur. J. Mineral. 23, 5-16.

  52. Martirosyan N.S., Litasov K.D., Shatskiy A., Ohtani E. (2015) Reactions of iron with calcium carbonate at 6 GPa and 1273–1873 K: implications for carbonate reduction in the deep mantle. Russ. Geol. Geophys. 56, 1322-1331.

  53. Martirosyan N.S., Yoshino T., Shatskiy A., Chanyshev A., Litasov K. (2016) The CaCO3–Fe interaction: Kinetic approach for carbonate subduction to the deep Earth’s mantle. Phys. Earth Planet. Int. 259, 1-9.

  54. Martirosyan N.S., Shatskiy A., Chanyshev A.D., Litasov K.D., Podborodnikov I.V., Yoshino T. (2019) Effect of water on the magnesite–iron interaction, with implications for the fate of carbonates in the deep mantle. Lithos. 326–327, 435-445.

  55. Matjuschkin V., Woodland A.B., Frost D., Yaxley G.M. (2020) Reduced methane-bearing fluids as a source for diamond. Sci. Rep. 10, 6961.

  56. Menzel M.D., Garrido C.J., Sanchez-Vizcaino V.L., Hidas K., Marchesi C. (2019) Subduction metamorphism of serpentinite-hosted carbonates beyond antigorite–serpentinite dehydration (Nevado–Filabride Complex, Spain). J. Metamorph. Geol. 37, 681-715.

  57. Messiga B., Kienast J.R., Rebay G., Riccardi M.P., Tribuzio R. (1999) Cr-rich magnesiochloritoid eclogites from the Monviso ophiolites (Western Alps, Italy). J. Metamorph. Geol. 17, 287-299.

  58. Mikhail S., McCubbin F.M., Jenner F.E., Shirey S.B., Rumble D., Bowden R. (2019) Diamondites: evidence for a distinct tectono-thermal diamond‑forming event beneath the Kaapvaal craton. Contrib. Mineral. Petrol. 174, 71.

  59. Morishima H., Kato T., Suto M., Ohtani E., Urakawa S., Utsumi W., Shimomura O., Kikegawa T. (1994) The phase boundary between α- and ß-Mg2SiO4 determined by in situ X-ray observation. Science. 265, 1202-1203.

  60. Moussallam Y., Longpré M.-A., McCammon C., Gomez-Ulla A., Rose-Koga E.F., Scaillet B., Peters N., Gennaro E., Paris R., Oppenheimer C. (2019) Mantle plumes are oxidised. Earth Planet. Sci. Lett. 527, 115 798.

  61. Mposkos E., Baziotis I., Proyer A. (2010) Metamorphic reprocessing of a serpentinized carbonate-bearing peridotite after detachment from the mantle wedge: A P–T path constrained from textures and phase diagrams in the system CaO–MgO–Al2O3–SiO2–CO2–H2O. Lithos. 118, 349-364.

  62. Mukherjee B.K., Sachan H.K., Ogasawara Y., Muko A., Yoshioka N. (2003) Carbonate-bearing UHPM rocks from the Tso-Morari region, Ladakh, India: petrological implications. Int. Geol. Rev. 45, 49-69.

  63. Navon O., Hutcheon I.D., Rossman G.R., Wasserburg G.J. (1988) Mantle-derived fluids in diamond micro-inclusions. Nature 335, 784-789.

  64. Palme H., O’Neill H.St.C. (2014) Cosmochemical estimates of mantle composition. In Treatise on Geochemistry. 2nd Ed. Elsevier. 3, 1-39.

  65. Pal’yanov Y.N., Sokol A.G., Borzdov Y.M., Khokhryakov A.F. (2002) Fluid-bearing alkaline–carbonate melts as the medium for the formation of diamonds in the Earth’s mantle: an experimental study. Lithos. 60, 145-159.

  66. Pal’yanov Y.N., Sokol A.G., Tomilenko A.A., Sobolev N.V. (2005) Conditions of diamond formation through carbonate-silicate interaction. Eur. J. Mineral. 17, 207-214.

  67. Palyanov Y.N., Bataleva Y.V., Sokol A.G., Borzdov Y.M., Kupriyanov I.N., Reutsky V.N., Sobolev N.V. (2013) Mantle–slab interaction and redox mechanism of diamond formation. Proc. Nat. Acad. Sci. 11, 20408-20413.

  68. Perchuk A.L., Yapaskurt V.O., Griffin W.L., Shur M.Y. Gain S.E.M. (2018) Three types of element fluxes from metabasite into peridotite in analogue experiments: Insights into subduction-zone processes. Lithos, 302, 203-223.

  69. Perchuk A.L., Serdyuk A.A., Zinovieva N.G. (2019) Subduction sediment-lherzolite interaction at 2.9 GPa: Effects of metasomatism and partial melting. Petrology, 27, 467-488.

  70. Petts D.C., Stachel T., Stern R.A., Hunt L., Fomradas G. (2016) Multiple carbon and nitrogen sources associated with the parental mantle fluids of fibrous diamonds from Diavik, Canada, revealed by SIMS microanalysis. Contrib. Mineral. Petrol. 171, 17.

  71. Plank T., Langmuir C.H. (1998) The chemical composition of subducting sediment and its consequences for the crust and mantle. Chem. Geol. 145, 325-394.

  72. Plank T., Manning C.E. (2019) Subducting carbon. Nature. 574, 343-352.

  73. Poli S. (2015) Carbon mobilized at shallow depths in subduction zones by carbonatitic liquids. Nature Geosci. 8, 633-636.

  74. Rohrbach A., Schmidt M.W. (2011) Redox freezing and melting in the Earth’s deep mantle resulting from carbon–iron redox coupling. Nature. 472, 209-212.

  75. Rohrbach A., Ballhaus C., Golla-Schindler U., Ulmer P., Kamenetsky V.S., Kuzmin D.V. (2007) Metal saturation in the upper mantle. Nature. 449, 456-458.

  76. Rosenthal A., Yaxley G.M., Green D.H., Hermann J., Kovács I., Spandler C. (2014) Continuous eclogite melting and variable refertilisation in upwelling heterogeneous mantle. Sci. Rep. 4, 6099.

  77. Ross N.L., Akaogi M., Navrotsky A., Susaki J., McMillan P. (1986) Phase transitions among the CaGeO3 polymorphs (wollastonite, garnet, and perovskite structures): studies by high-pressure synthesis, high-temperature calorimetry, and vibrational spectroscopy and calculation. J. Geophys. Res. 91, 4685-4696.

  78. Ryabchikov I.D., Green D.H., Wall V.J., Brey G. (1981) The oxidation state of carbon in the environment of the reduced-velocity zone. Geochem. Int. 18, 148-158.

  79. Santos S.S.M., Marcondes M.L., Justo J.F., Assali L.V.C. (2019) Stability of calcium and magnesium carbonates at Earth’s lower mantle thermodynamic conditions. Earth Planet. Sci. Lett. 506, 1-7.

  80. Scambelluri M., Van Roermund H.L.M., Pettke T. (2010) Mantle wedge peridotites: Fossil reservoirs of deep subduction zone processes Inferences from high and ultrahigh-pressure rocks from Bardane (Western Norway) and Ulten (Italian Alps). Lithos. 120, 186-201.

  81. Sharygin I.S., Shatskiy A., Litasov K.D., Golovin A.D., Ohtani E., Pokhilenko N.P. (2018) Interaction of peridotite with Ca-rich carbonatite melt at 3.1 and 6.5 GPa: Implication for merwinite formation in upper mantle, and for the metasomatic origin of sublithospheric diamonds with Ca-rich suite of inclusions. Contrib. Mineral. Petrol. 173, 22.

  82. Shirey S.B., Cartigny P., Frost D.G., Keshav S., Nestola F., Nimis P., Pearson D.G., Sobolev N.V., Walter M.J. (2013) Diamonds and the geology of mantle carbon. Rev. Mineral. Geochem. 75, 355-421.

  83. Skuzovatov S.Y., Zedgenizov D.A. (2019) Protracted fluid-metasomatism of the Siberian diamondiferous subcontinental lithospheric mantle as recorded in coated, cloudy and monocrystalline diamonds. Mineral. Petrol. 113, 285-306.

  84. Smart K.A., Heaman L.M., Chacko T., Simonetti A., Kopylova M., Mah D., Daniels D. (2009) The origin of high-MgO diamond eclogites from the Jericho Kimberlite, Canada. Earth Planet. Sci. Lett. 284, 527-537.

  85. Smart K.A., Tappe S., Stern R.A., Webb S.J., Ashwal L.D. (2016) Early Archaean tectonics and mantle redox recorded in Witwatersrand diamonds. Nature Geosci. 9, 255-259.

  86. Smith C.B., Walter M.J., Bulanova G.P., Mikhail S., Burnham A.D., Gobbo L., Kohn S.C. (2016) Diamonds from Dachine, French Guiana: a unique record of early Proterozoic subduction. Lithos. 265, 82-95.

  87. Smit K.V., Stachel T., Luth R.W., Stern R.A. (2019) Evaluating mechanisms for eclogitic diamond growth: An example from Zimmi Neoproterozoic diamonds (West African craton). Chem. Geol. 520, 21-32.

  88. Stachel T., Luth R.W. (2015) Diamond formation – Where, when and how? Lithos. 220–223, 200-220.

  89. Stagno V., Frost D.J. (2010) Carbon speciation in the asthenosphere: Experimental measurements of the redox conditions at which carbonate-bearing melts coexist with graphite or diamond in peridotite assemblages. Earth Planet. Sci. Lett. 300, 72-84.

  90. Stagno V., Frost D.J., McCammon C.A., Mohseni H., Fei Y. (2015) The oxygen fugacity at which graphite or diamond forms from carbonate-bearing melts in eclogitic rocks. Contrib. Mineral. Petrol. 169, 16.

  91. Staudigel H., Hart S.R., Schmincke H.-U., Smith B.M. (1989) Cretaceous ocean crust at DSDP Sites 417 and 418: Carbon uptake from weathering versus loss by magmatic outgassing. Geochim. Cosmochim. Acta. 53, 3091-3094.

  92. Sun C., Dasgupta R. (2019) Slab–mantle interaction, carbon transport, and kimberlite generation in the deep upper mantle. Earth Planet. Sci. Lett. 506, 38-52.

  93. Syracuse E.M., van Keken P.E., Abers G.A. (2010) The global range of subduction zone thermal models. Phys. Earth. Planet. Int. 183, 73-90.

  94. Tappert R., Stachel T., Harris J.W., Muehlenbachs K., Ludwig T., Brey G.P. (2005) Diamonds from Jagersfontein (South Africa): messengers from the sublithospheric mantle. Contrib. Mineral. Petrol. 150, 505-522.

  95. Timmerman S., Honda M., Zhang X., Jaques A.L., Bulanova G., Smith C.B., Burnham A.D. (2019) Contrasting noble gas compositions of peridotitic and eclogitic monocrystalline diamonds from the Argyle lamproite, Western Australia. Lithos. 344–345, 193-206.

  96. Uenver-Thiele L., Woodland A.B., Downes H., Altherr R. (2014) Oxidation state of the lithospheric mantle below the Massif Central, France. J. Petrol. 55, 2457-2479.

  97. Uenver-Thiele L., Woodland A.B., Seitz H.-M., Downes H., Altherr R. (2017) Metasomatic processes revealed by trace element and redox signatures of the lithospheric mantle beneath the Massif Central, France. J. Petrol. 58, 395-422.

  98. von Seckendorff V., O’Neill H.St.C. (1993) An experimental study of Fe–Mg partitioning between olivine and orthopyroxene at 1173, 1273 and 1423 K and 1.6 GPa. Contrib. Mineral. Petrol. 113, 196-207.

  99. Watson E.B. (1991) Diffusion in fluid-bearing and slightly-melted rocks: experimental and numerical approaches illustrated by iron transport in dunite. Contrib. Mineral. Petrol. 107, 417–434.

  100. Wiser N.M., Wood B.J. (1991) Experimental determination of activities in Fe–Mg olivine at 1400 K. Contrib. Mineral. Petrol. 108, 146-153.

  101. Wood B.J., Bryndzia L.T., Johnson K.E. (1990) Mantle oxidation state and its relationship to tectonic environment and fluid speciation. Science. 248, 337-345.

  102. Woodland A.B., Bulatov V.K., Brey G.P., Girnis A.V., Höfer H.E., Gerdes A. (2018) Subduction factory in an ampoule: Experiments on sediment–peridotite interaction under temperature gradient conditions. Geochim. Cosmochim. Acta. 223, 319-349.

  103. Yaxley G.M., Green D.H. (1994) Experimental demonstration of refractory carbonate-bearing eclogite and siliceous melt in the subduction regime. Earth Planet. Sci. Lett. 128, 313-325.

  104. Yaxley G.M., Berry A.J., Rosenthal A., Woodland A.B., Paterson D., (2017) Redox preconditioning deep cratonic lithosphere for kimberlite genesis – evidence from the central Slave Craton. Nature Sci. Rep. 7, 30.

  105. Zhang J., Li B., Utsumi W., Liebermann R.C. (1996) In situ X-ray observations of the coesite–stishovite transition: reversed phase boundary and kinetics. Phys. Chem. Miner. 23, 1-10.

  106. Zhang L., Ellis D.J., Williams S., Jiang W. (2002) Ultra-high pressure metamorphism in western Tianshan, China: Part II. Evidence from magnesite in eclogite. Am. Mineral. 87, 861-866.

  107. Zhang Y., Ni H. (2010) Diffusion of H, C, and O components in silicate melts. Rev. Mineral. Geoch. 72, 171-255.

  108. Zhang Z., Fedortchouk Y. (2012) Records of mantle metasomatism in the morphology of diamonds from the Slave craton. Eur. J. Mineral. 24, 619-632.

  109. Zhao S., Schettino E., Merlini M., Poli S. (2019) The stability and melting of aragonite: An experimental and thermodynamic model for carbonated eclogites in the mantle. Lithos. 324–325, 105-114.

  110. Zhu F., Li J., Liu J., Lai X., Chen B., Meng Y. (2019) Kinetic control on the depth distribution of superdeep diamonds. Geophys. Res. Lett. 46, 1984-1992.

  111. Zhu J., Zhang L., Tao R., Fei Y. (2020) The formation of graphite-rich eclogite vein in S.W. Tianshan (China) and its implication for deep carbon cycling in subduction zone. Chem. Geol. 533, 119430.

Дополнительные материалы отсутствуют.