Геохимия, 2023, T. 68, № 11, стр. 1195-1204

Роль биогеохимических процессов при обезжелезивании подземных вод

З. Н. Литвиненко a*, Л. М. Кондратьева a

a Институт водных и экологических проблем ДВО РАН
680000 Хабаровск, ул. Дикопольцева, 56, Россия

* E-mail: zoyana2003@mail.ru

Поступила в редакцию 01.03.2023
После доработки 28.03.2023
Принята к публикации 08.05.2023

Аннотация

Статья посвящена биогеохимическим аспектам очистки железосодержащих подземных вод, которые связаны с образованием биопленок в поровом пространстве вокруг скважин после аэрации водоносного горизонта и на технологическом оборудовании. Представлены результаты исследования структуры и активности микробных комплексов в результате откачки подземных вод из эксплуатационных и наблюдательных скважин при изменении окислительно-восстановительных условий. С помощью сканирующей электронной микроскопии исследована микроструктура и элементный состав разновозрастных обрастаний (биопленок). Установлено, что аккумуляция железа и марганца микробной биомассой происходит за счет инкрустации поверхности бактериальных клеток, погруженных в полимерный матрикс, представленный постоянной основой из трех элементов: Al, Si и Ca. Выживаемость микробных комплексов в составе биообрастаний обусловлена высоким природным потенциалом и способностью осуществлять биогеохимические процессы при широком диапазоне концентраций кислорода (аэробные и анаэробные условия).

Ключевые слова: аэрация водоносного горизонта, микробные комплексы, кольматаж скважин, микроструктура биопленок, инкрустация клеток

Список литературы

  1. Болдырев К.А., Кузьмин В.В., Куранов Н.П., Билек Ф. (2012) Геохимическое моделирование внутрипластового обезжелезивания и деманганации подземных вод. Водоснабжение и Санитарная Техника. (4), 49-55.

  2. Вернадский В.И. (1989) Биосфера и ноосфера. М.: Наука, 261 с.

  3. Голубева Е.М., Кондратьева Л.М., Комарова В.С., Абражевич А.В. (2017) Биогеохимические факторы формирования железосодержащих биоминералов. Литосфера. (2), 115-124.

  4. Квартенко А.Н., Говорова Ж.М. (2013) Модернизированные технологии комплексного кондиционирования подземных вод. Вестник МГСУ. (5), 118-123.

  5. Кондратьева Л.М., Голубева Е.М., Литвиненко З.Н. (2016) Микробиологические факторы формирования биоминералов. Сибирский экологический журн. (3), 377-389.

  6. Кулаков В.В., Кондратьева Л.М. (2008) Биогеохимические аспекты очистки подземных вод Приамурья. Тихоокеанская геология. 27(1), 109-118.

  7. Кулаков В.В., Стеблевский В.И. (2012) Ввод в эксплуатацию альтернативного подземного источника водоснабжения Хабаровска. Водоснабжение и санитарная техника. (7), 41-44.

  8. Кучер М.И., Френкель Е.Э., Кучер С.Г. (2011) Коэволюция биосферы как фундаментальная экологическая концепция современности. Актуальные проблемы гуманитарных и социально-экономических наук. (5), 64-66.

  9. Литвиненко З.Н. Кондратьева Л.М., Коновалова Н.С. (2022) Исследование формирования и состава в наземной системе водоподготовки железосодержащих подземных вод. Биотехнология. 38(3), 70-81.

  10. Рыженко Б.Н., Крайнов С.Р., Шваров Ю.В. (2003) Физико-химические факторы формирования состава природных вод (верификация модели “порода-вода”). Геохимия. (6), 630-640.

  11. Ryzhenko B.N., Krainov S.R., Shvarov Yu.V. (2003) Physicochemical Factors Forming the Composition of Natural Waters: Verification of the Rock–Water Model. Geochem. Int. 41(6), 565-575.

  12. Рыженко Б.Н., Мироненко М.В., Лиманцева О.А. (2019) Равновесно-кинетическое моделирование обезжелезивания и деманганации подземных вод. Геохимия. (12), 1247-1260.

  13. Ryzhenko B.N., Mironenko M.V., Limantseva O.A. (2019) Equilibrium and Kinetic Simulation of Groundwater Deironing and Demanganation. Geochem. Int. 57(12), 1306-1319.

  14. Braun B., Schröder J., Knecht H., Szewzyk U. (2016) Unraveling the microbial community of a cold groundwater catchment system. Water Res. 107(15), 113-126.

  15. Das T., Sehar S., Koop L., Wong Y.K., Ahmed S. (2014) Influence of calcium in extracellular DNA mediated bacterial aggregation and biofilm formation. Plos one. 9(3), 1-11.

  16. Desmond P., Huisman K.T., Sanawar H., Farhat N.M., et al. (2022) Controlling the hydraulic resistance of membrane biofilms by engineering biofilm physical structure. Water Research. 210(e-118031). https://doi.org/10.1016/j.watres.2021.118031

  17. Flemming H.-C., Wuertz S. (2019) Bacteria and archaea on Earth and their abundance in biofilms. Nat. Rev. Microbiol. 17(4), 247-260.

  18. Ghernaout D., Elboughdiri N., Ghareba S. (2020) Fenton Technology for Wastewater Treatment: Dares and Trends. Open Access Libr. J. (7), 1-28.

  19. Goode C., Allen D.G. (2011) Effect of calcium on moving-bed biofilm reactor biofilms. Water Environment Research. 83(3), 220-232.

  20. Hallberg R., Ferris F.G. (2004) Biomineralization by Gallionella. Geomicrobiol. J. (21), 325-330.

  21. Herlitzius J., Sumpf H., Grischek T. (2012) German-Russian cooperation for clean drinking water. Int. J. Water Manag. Bluefacts. 76-81.

  22. Kappler A., Schink B., Newman D.K. (2005) Fe(III) mineral formation and cell encrustation by the nitrate-dependent Fe(II)-oxidizing strain BoFeN1. Geobiology. (3), 235-245.

  23. Khatri N., Tyagi S., Rawtani D. (2017) Recent strategies for the removal of iron from water: A review. J. Water Process Eng. (19), 291-304.

  24. Kokare C.R., Chakraborty S., Khopade A.N., Mahadik K.R. (2009) Biofilm: Importance and Applications. Indian J. Biotechnology. (8), 159-168.

  25. Krupińska I. (2015) Importance of humic substances for methods of groundwater treatment. Pol. J. Soil Sci. (48), 161-172.

  26. Krupińska I. (2017) Effect of organic substances on the efficiency of Fe(II) to Fe(III) oxidation and removal of iron compounds from groundwater in the sedimentation process. CEER. (26), 15-29.

  27. Krupińska I. (2020) Impact of the oxidant type on the efficiency of the oxidation and removal of iron compounds from groundwater containing humic substances. Molecules. 25(15), 3380.

  28. Li J., Peng X., Zhou H, Li J., and Sun Z. (2013) Molecular evidence for microorganisms participating in Fe, Mn and S biogeochemical cycling in two low-temperature hydrothermal fields at the Southwest Indian Ridge. J. Geophys. Res. Biogeosci. (118), 665-679.

  29. Liu G., Zhang Y., Knibbe W.J., Feng C., Liu W., Medema G., van der Meer W. (2017) Potential impacts of changing supply-water quality on drinking water distribution: A review. Water Res. (116), 135-148.

  30. Makris K.C., Andra S.S., Botsaris G. (2014) Pipe scales and biofilms in drinking-water distribution systems: undermining finished water quality. Crit. Rev. Environ. Sci. Technol. (44), 1477-1523.

  31. Munter R., Overbeck P., Sutt J. (2008) Which is the Best Oxidant for Complexed Iron Removal from Groundwater: The Kogalym Case. Ozone-Sci. Eng. (30), 73-80.

  32. Paufler S., Grischek T., Adomat Y., Herlitzius J., Hiller K., Metelica Y. (2018) Effective range of chlorine transport in an aquifer during disinfection of wells: from laboratory experiments to field application. J. Hydrology. (559), 711-720.

  33. Peng C.Y., Korshin G.V., Valentine R.L., Hill A.S., Friedman M.J., Reiner S.H. (2010) Characterization of elemental and structural composition of corrosion scales and deposits formed in drinking water distribution systems. Water Res. 44(15), 4570-4580.

  34. Perez A., Rossano S., Trcera N., Huguenot D., Fourdrin C., Vernery-Carron A., et al. (2016). Bioalteration of synthetic Fe(III)-, Fe(II)-bearing basaltic glasses and Fe-free glass in the presence of the heterotrophic bacteria strain Pseudomonas aeruginosa: impact of siderophores. Geochim. Cosmochim. Acta. (188), 147-162.

  35. Stewart P.S. (2003) Diffusion in biofilms J. Bacteriol. (185), 1485-1491.

  36. Sudek L.A., Wanger G., Templeton A.S., Staudigel H., Tebo B.M. (2017) Submarine Basaltic Glass Colonization by the Heterotrophic Fe(II)-Oxidizing and Siderophore-Producing Deep-Sea Bacterium Pseudomonas stutzeri VS-10: The Potential Role of Basalt in Enhancing Growth. Front. Microbiol. (8), 363.

  37. Summers Z.M., Gralnick J.A., Bond D.R. (2013) Cultivation of an obligate Fe(II)-oxidizing lithoautotrophic bacterium using electrodes. MBio. (4), e 420-12.

  38. Wang Z., Liu L., Yao J., Cai W. (2006) Effects of extracellular polymeric substances on aerobic granulation in sequencing batch reactors. Chemosphere. 63(10), 1728-1735.

  39. Wolska M. (2018) Removal of precursors of chlorinated organic compounds in selected water treatment processes. Desalin. Water Treat. (52), 3938-3946.

  40. Wu B., Amelung W., Xing Y., Bol R., Berns A.E. (2019) Iron cycling and isotope fractionation in terrestrial ecosystems. Earth-Science Reviews. (190), 323-352.

  41. Zhurina M.V., Gannesen A.V., Plakunov V.K., Zdorovenko E.L. (2014) Composition and functions of the extracellular polymer matrix of bacterial biofilms. Microbiology. 83(6), 713-722.

Дополнительные материалы отсутствуют.