Геохимия, 2023, T. 68, № 12, стр. 1241-1252

Особенности изотопного состава стронция и неодима в закалочных стеклах базальтов Срединно-Атлантического хребта, 12°–31° с.ш.

А. Р. Цховребова a*, В. В. Шабыкова a, С. А. Силантьев a, А. И. Буйкин a

a Институт геохимии и аналитической химии им. В.И. Вернадского РАН
119991 Москва, ул. Косыгина, 19, Россия

* E-mail: tsann3@gmail.com

Поступила в редакцию 12.05.2023
После доработки 29.06.2023
Принята к публикации 10.07.2023

Аннотация

В статье приводятся результаты изотопно-геохимических (Sr–Nd систематика, H2O, Cl) исследований закалочных стекол базальтов Срединно-Атлантического хребта (САХ), отобранных в шести участках осевой зоны, расположенных между 31°–12° с.ш. Полученные данные согласуются с существующими представлениями о крупномасштабной геохимической сегментации САХ. Показано, что образцы из сегментов, сложенных преимущественно серпентинитами, имеют более узкий диапазон вариаций изотопного состава стронция (87Sr/86Sr = от 0.7027 до 0.7032) в сравнении с образцами, отобранными из районов, в строении корового разреза которых преобладают базальты (87Sr/86Sr = от 0.7024 до 0.7041). Вариации изотопного состава неодима в этих двух группах образцов почти идентичны (εNd = от +4.9 до +10.9 и от +5.9 до +11.6 в серпентинитовых и базальтовых сегментах, соответственно), хотя в целом, серпентинитовые сегменты имеют несколько более обогащенный состав. Широкие вариации изотопного состава неодима и повышенные содержания Cl, H2O, U, а также повышенные величины отношений K2O/TiO2 и La/Sm в образцах из серпентинитовых сегментов, наиболее вероятно, могут быть связаны с участием в магматизме осевой зоны САХ различных, неоднородных в геохимическом отношении, источников. В некоторых сегментах нельзя исключать влияние обогащенного вещества плюмового типа. Более уверенно судить об этом позволят данные по изотопному составу благородных газов.

Ключевые слова: Срединно-Атлантический хребет, закалочные стекла базальтов, Rb–Sr, Sm–Nd, H2O, Cl

Список литературы

  1. Бортников Н.С., Силантьев С.А., Беа Ф., Монтеро П., Зингер Т.Ф., Сколотнев С.Г., Шарков Е.В. (2022) Разновозрастные цирконы и их изотопный состав (Hf, O) в породах осевой зоны Срединно-Атлантического хребта: свидетельства неоднократного плавления гетерогенной мантии и эпизодической аккреции океанической коры в зоне спрединга. Петрология. 30(1), 3-30.

  2. Костицын Ю.А. (2004) Sm-Nd и Lu-Hf изотопные системы Земли: отвечают ли они хондритам? Петрология. 12(5), 451-466.

  3. Костицын Ю.А. (2007) Взаимосвязь между химической и изотопной (Sr, Nd, Hf, Pb) гетерогенностью мантии. Геохимия. (12), 1267-1291.

  4. Kostitsyn Yu. A. (2007) Relationships between the Chemical and Isotopic (Sr, Nd, Hf, and Pb) Heterogeneity of the Mantle. Geochem. Int. 45(12), 1173

  5. Костицын Ю.А., Силантьев С.А., Аносова М.О., Шабыкова В.В., Сколотнев С.Г. (2018) Возраст плутонических пород разлома Вима (Центральная Атлантика) и природа их мантийных источников. Геохимия. (2), 1-23.

  6. Kostitsyn Yu.A., Silantyev S.A., Anosova M.O., Shabykova V.V., Skolotnev S.G. (2018) Age of Plutonic Rocks from the Vema Fracture Zone (Central Atlantic) and Nature of Their Mantle Sources. Geochem. Int. 56(2), 89-110.

  7. Крымский Р.Ш., Сущевская Н.М., Беляцкий Б.В., Мигдисова Н.А. (2009) Особенности изотопного состава осмия базальтовых стекол западного окончания юго-Западного Индийского хребта. ДАН. 428(1), 87-92.

  8. Портнягин М.В., Симакин С.Г., Соболев А.В. (2002) Фтор в примитивных магмах офиолитового комплекса Троодос (о. Кипр): методика определения и основные результаты. Геохимия. 7, 691-699.

  9. Portnyagin M.V., Simakin S.G., and Sobolev A.V. (2002) Fluorine in Primitive Magmas of the Troodos Ophiolite Complex, Cyprus: Analytical Methods and Main Results. Geochem. Int. 40(7), 625-632.

  10. Ревяко Н.М., Костицын Ю.А., Бычкова Я.В. (2012) Взаимодействие расплава основного состава с вмещающими породами при формировании расслоенного интрузива Кивакка, Северная Карелия. Петрология. 20(2), 115-135.

  11. Силантьев С.А. (1995) Метаморфизм в современных океанических бассейнах. Петрология. 1(4), 450-473.

  12. Силантьев С.А. (2003) Вариации геохимических и изотопных характеристик реститовых перидотитов вдоль простирания Срединно-Атлантического хребта как отражение природы мантийных источников магматизма. Петрология. 11(4), 339-362.

  13. Силантьев С.А., Данюшевский Л.В., Плечова А.А., Доссо Л., Базылев Б.А., Бельтенев В.Е. (2008) Геохимические и изотопные черты продуктов магматизма рифтовой долины САХ в районах 12°49′–17°23 с.ш. и 29°59′–33°41 с.ш.: свидетельство двух контрастных источников родительских расплавов. Петрология. 16(1), 38-65.

  14. Силантьев С.А., Бортников Н.С., Шатагин К.Н., Бычкова Я.В., Краснова Е.А., Бельтенев В.Е. (2015) Перидотит-базальтовая ассоциация САХ на 19°42′–19°59′ с.ш.: оценка условий петрогенезиса и баланса вещества при гидротермальном преобразовании океанической коры. Петрология. 23(1), 1-23.

  15. Силантьев С.А., Буйкин А.И., Цховребова А.Р., Шабыкова В.В., Бельтенев В.Е. (2023) Вариации состава закалочных стекол MORB Срединно-Атлантического хребта, 12°–31° с.ш.: отражение эволюции состава родительских расплавов и влияния гидротермального компонента. Петрология. 31(5), 4хх-4хх.

  16. Соболев А.В. (1996) Включения расплавов в минералах как источник принципиальной петрологической информации. Петрология. 4(3), 228-239.

  17. Шарков Е.В., Бортников Н.С., Богатиков О.А., Зингер Т.Ф., Бельтенев В.Е., Чистяков А.В. (2005) Третий слой океанической коры в осевой части Срединно-Атлантического хребта (полигон Сьерра-Леоне, 6° c.ш). Петрология. 13(6), 592-625.

  18. Bougault H., Dmitriev L., Schilling J.G., Sobolev A., Joron J.L., Needham H.D. (1988) Mantle heterogeneity from trace elements: MAR triple junction near 14° N. Earth Planet. Sci. Lett. 88, 27-36.

  19. Buikin A.I., Silantyev S.A., Verchovsky A.B. (2022) N–Ar–He–CO2 systematics combined with H2O, Cl, K abundances in MORB glasses demonstrate interaction of magmatic and hydrothermal systems: a case for MAR at 16°07′–17°11′ N. Geochem. Int. 60(11), 1068-1086.

  20. DePaolo D.J. (1980) Crustal growth and mantle evolution: inferences from models of element transport and Nd and Sr isotopes. Geochim. Cosmochim. Acta. 44, 1185-1196.

  21. DePaolo D.J. (1983) The mean life of continents: estimates of continental recycling rates from Nd and Hf isotopic data and implications for mantle structure. Geophys. Res. Lett. 10, 705-708.

  22. Dosso L., Hanan B.B., Bougolt H., Schilling, J.G., Joron J.L. (1991) Sr-Nd-Pb geochemical morphology between 10° and 17° on MidAtlantic Ridge: a new MORB isotope signature. Earth Planet. Sci. Lett. 6, 29-43.

  23. Fedotova A.A., Bibikova E.V., Simakin S.G. (2008) Ion-microprobe zircon geochemistry as an indicator of mineral genesis during geochronological studies. Geochem. Int. 46(9), 912-927.

  24. Hemond C., Hofmann A.W., Vlastelic I., Nauret F. (2006) Origin of MORB enrichment and relative trace element compatibilities along the Mid-Atlantic Ridge between 10° and 24°N. Geochem. Geophys. Geosyst. 7 (12), Q12010.https://doi.org/10.1029/2006GC001317

  25. Hofmann A.W. (2003) Sampling Mantle Heterogeneity through Oceanic Basalts: Isotopes and Trace Elements. Treaties Geo Chem. 2, 61-101.

  26. Humphris S.E., Tivey M.K., Tivey M.A. (2015) The Trans-Atlantic Geotraverse hydrothermal field: A hydrothermal system on an active detachment fault. Deep Sea Res., Part II. 121, 8-16.

  27. Jackson M.G., Dasgupta R. (2008) Compositions of HIMU, EM1, and EM2 from global trends between radiogenic isotopes and major elements in ocean island basalts. Earth Planet. Sci. Lett. 276, 175-186.

  28. Jacobsen S.B. (1988) Isotopic constraints on crustal growth and recycling. Earth Planet. Sci. Lett. 90, 315-329.

  29. Kendrick M. A., Arculus R., Burnard P., Honda M. (2013) Quantifying brine assimilation by submarine magmas: Examples from the Galápagos Spreading Centre and Lau Basin. Geochim. Cosmochim. Acta. 123, 150-165.

  30. Kendrick M.A., Hémond C., Kamenetsky V.S., Danyushevsky L., Devey C.W., Rodemann T., Jackson M.G., Perfit M.R. (2017) Seawater cycled throughout Earth’s mantle in partially serpentinized lithosphere. Nat. Geosci. 10(3), 222-228.

  31. Kendrick M.A., Scambelluri M., Honda M., Phillips D. (2011) High abundances of noble gas and chlorine delivered to the mantle by serpentinite subduction. Nat. Geosci. 4(11), 807-812.

  32. Kent A.J.R., Norman M.D., Hutcheon I.D. Stolper E.M. (1999) Assimilation of seawater-derived components in an oceanic volcano: evidence from matrix glasses and glass inclusions from Loihi seamount, Hawaii. Chem. Geol. 156, 299-319.

  33. Klein E.M., Langmuir C.H. (1987) Global correlations of ocean ridge basalt chemistry with axial depth and crustal thickness. Geophys. Res. 92, 8089-8115.

  34. Le Roex A.P., Dick H.J.B., Erlank A.J., Reid A.M., Frey F.A., Hart S.R. (1983) Geochemistry, mineralogy and petrogenesis of lavas erupted along the Southwest Indian Ridge between the Bouvet Triple Junction and 11 degrees east. Petrology. 24, 267-318.

  35. Moorbath S. (1978) Age and isotopic evidence for the evolution of continental crust. Philos. Trans. R. Soc. Ser. 288(1355), 401-413.

  36. Niu Y., Wilson M., Humphreys E.R., O’Hara M.J. (2011) The origin of Intra-plate Ocean Island Basalts (OIB): the lid effect and its geodynamic Implications. Petrology. 51(7–8), 1443-1468.

  37. Nosova A.A., Sazonova L.V., Narkisova V.V., and Simakin S.G. (2002) Minor Elements in Clinopyroxene from Paleozoic Volcanics of the Tagil Island Arc in the Central Urals. Geochem. Int. 40(3), 219-232.

  38. Pertsev A.N., Aranovich L.Ya., Prokofiev V.Y., Solovova I.P., Ageeva O.A., Borisovskiy S.E., Shatagin K.N., Zhilicheva O.M. (2021) Potassium-rich granite melt inclusions in zircon from abbro-hosted felsic stringers, Mid-Atlantic Ridge at 13°34′ N: E-MORB connection. Lithos. 400-401, 106 300.

  39. Rona P.A. (1980) TAG Hydrothermal Field: Mid-Atlantic Ridge crest at latitude 26° N. J. Geol. Soc. 137, 385-402.

  40. Schilling J.G. (1973) Icelandic mantle plume: geochemical evidence along the Reykjanes Ridge. Nature. 242, 565-571.

  41. Shilling J.C. (1986) Geochemical and isotopic variation along the Mid-Atlantic Ridge axis from 79° to 0° N. Geol. Soc. Amer. M, 137-156.

  42. Smirnov V.K., Sobolev A.V., Batanova V.G., Portnyagin M.V., Simakin S.G., Potapov E.V. (1995) Quantitative SIMS analysis of melt inclusions and host minerals for trace elements and H2O. EOS Trans. AGU. 76(17), 270.

  43. Stroncik N.A., Niedermann S. (2016) Atmospheric contamination of the primary Ne and Ar signal in mid-ocean ridge basalts and its implications for ocean crust formation. Geochim. Cosmochim. Acta. 172, 306-321.

  44. Sun S.-S., McDonough W.F. (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol. Soc. Spec. Publ. London. 42, 313-345.

  45. Sun S.S., Nesbitt R.W., Sharaskin A.Y. (1979) Geochemical characteristics of mid-ocean ridge basalts. Earth Planet. Sci. Lett. 44(1), 119-138.

  46. Verma S.P. (1992) Seawater alteration effects on REE, K, Rb, Cs, Sr, U, Th, Pb and Sr-Nd-Pb isotope systematics of Mid-Ocean Ridge Basalt // Geochemical J. V. 26. P. 159-177.

  47. Workman R.K., Hart S.R. (2005) Major and trace element composition of the depleted MORB mantle (DMM). Earth Planet. Sci. Lett. 231(1–2), 53-72.

  48. Zindler A., Hart S. (1986) Chemical geodynamics. Ann. Rev. Earth Planet. Sci. 14, 493-571.

Дополнительные материалы отсутствуют.