Геохимия, 2023, T. 68, № 5, стр. 437-453

Особенности состава внеземных базальтоидов Солнечной системы c точки зрения наук об экзопланетах (краткая сводка)

С. И. Демидова a*, Д. Д. Бадюков a**

a Институт геохимии и аналитической химии им. В.И. Вернадского РАН
119991 Москва, ул. Косыгина, 19, Россия

* E-mail: demidova.si@yandex.ru
** E-mail: badyukov@geokhi.ru

Поступила в редакцию 26.10.2022
После доработки 08.12.2022
Принята к публикации 20.12.2022

Аннотация

Формирование базальтов является глобальным этапом эволюции дифференцированного космического тела (планеты или астероида) Солнечной системы. В работе представлены основные особенности химического и минерального состава базальтоидных метеоритов группы SNC, HED, ангритов и лунных морских базальтов на основе литературных данных. Несмотря на различия продуктов базальтового вулканизма разных космических тел, а также значительные вариации составов главных минералов базальтоидных пород на конкретном родительском теле, большинство из них является продуктами низкощелочного базальтового магматизма, что указывает на распространенность такого типа вещества на малых телах Солнечной системы. Все они характеризуются присутствием таких главных породообразующих минералов, как пироксен, оливин и плагиоклаз, и их спектральные характеристики могут быть использованы для поиска родственных пород в других звездных системах. Показаны основные факторы, влияющие на спектральные характеристики безатмосферных тел и более крупных планет с атмосферой, рассмотрена возможность поиска продуктов подобного базальтовому вулканизма на экзопланетах в ходе будущих миссий.

Ключевые слова: лунные морские базальты, SNC метеориты, HED метеориты, ангриты, базальтовый вулканизм, экзопланеты

Список литературы

  1. Барсуков В.Л., Сурков Ю.А., Москалева Л.П., Щеглов О.П. (1982) Геохимические исследования поверхности Венеры на АМС “Венера 13” и “Венера 14”. Геохимия. (7), 899-919.

  2. Гусева Е.Н. (2016) Классификация рифтовых зон Венеры: рифтовые долины и пояса грабенов. Астрономический вестник. 50(3), 197-209.

  3. Лоренц К.А., Назаров М.А., Курат Г., Брандштеттер Ф., Нтафлос Т. (2007) Экзотическое метеоритное вещество говардитов и полимиктовых эвкритов. Петрология. 15(2), 115-132.

  4. Маров М.Я. (2016) Космос: От Солнечной системы вглубь Вселенной. М.: ФИЗМАТЛИТ, 536 с.

  5. Маров М.Я., Шевченко И.И. (2017) Экзопланеты. Экзопланетология. М. Ижевск: Институт компьютерных исследований, 138 с.

  6. Сурков Ю.А., Кирнозов Ф.Ф., Глазов В.Н., Дунченко А.Г. (1976) Содержание естественных радиоактивных элементов в венерианских породах по данным АМС “Венера 9” и “Венера10”. Космические исследования. 14(5), 704-709.

  7. Adams J.B. (1975) Interpretation of visible and near-infrared diffuse reflectance spectra of pyroxenes and other rock-forming minerals. In Infrared and Raman Spectroscopy of Lunar and Terrestrial Minerals (Ed. Karr C.). N.Y.: Academic Press, 91-116.

  8. Barrat J.A., Yamaguchi A., Greenwood R.C., Bohn M., Cotten J., Benoit M., Franchi I.A. (2007) The Stannern trend eucrites: contamination of main group eucritic magmas by crustal partial melts. Geochim. Cosmochim. Acta. 71, 4108-4124.

  9. Barrat J.A., Yamaguchi A., Zanda B., Bollinger C., Bohn M. (2010) Relative chronology of crust formation on asteroid Vesta: insights from the geochemistry of diogenites. Geochim. Cosmochim. Acta. 74, 6218-6231.

  10. Basaltic Volcanism Study Project (1981) Basaltic volcanism on the terrestrial planets. N.Y: Pergamon Press, 1286 p.

  11. Basilevsky A.T., Nikolaeva O.V., Weitz C.M. (1992) Geology of the Venera 8 landing site region from Magellan data: Morphological and geochemical considerations. J. Geophys. Res. 97, 16315-16335.

  12. Bell J. (2008) The Martian Surface: Composition, Mineralogy and Physical Properties. Cambridge: Cambridge University Press, 636 p.

  13. Benneke B., Wong I., Piaulet C., Knutson H.A., Lothringer J., Morley C.V., Crossfield I.J.M., Gao P., Greene T.P., Dressing C., Dragomir D., Howard A.W., McCullough P.R., Kempton E.M.R., Fortney J.J., Fraine J. (2019) Water vapor and clouds on the habitable-zone sub-neptune exoplanet K2-18b. Astrophys. J. 887(1), L14.

  14. Bogard D.D., Johnson P. (1983) Martian gases in an Antarctic meteorite? Science. 221, 651-654.

  15. Bouvier A., Blichert-Toft J., Albare`de F. (2009) Martian meteorite chronology and the evolution of the interior of Mars. Earth Planet. Sci. Lett. 280, 285-295.

  16. Bouvier L.C., Costa M.M., Connelly J.N., Jensen N.K., Wielandt D., Storey M., Nemchin A.A., Whitehouse M.J., Snape J.F., Bellucci J.J., Moyniers F., Agranier A., Gueguen B., Schönbächler M., Bizzaro M. (2018) Evidence for extremely rapid magma ocean crystallization and crust formation on Mars. Nature. 558(7711), 586-589.

  17. Braden S., Stopar J., Robinson M., Lawrence S.J., van der Bogert C.H., Hiesinger H. (2014) Evidence for basaltic volcanism on the Moon within the past 100 million years. Nature Geosci. 7, 787-791.

  18. Bridges J.C., Catling D.C., Saxton J.M., Swindle T.D., Lyon I.C., Grady M.M. (2001) Alteration assemblages in martian meteorites: implications for near-surface processes. In Chronology and Evolution of Mars (Eds. Kallenbach R., Geiss J., Hartmann W.K.), Springer Netherlands, 365-392.

  19. Bridges J.C., Warren P.H. (2006) The SNC meteorites: basaltic igneous processes on Mars. J. Geologic. Society. 163, 229-251.

  20. Brunetto R., Loeffler M.J., Nesvorný D., Sasaki S., Strazzulla G. (2015) Asteroid surface alteration by space weathering processes. In Asteroids IV (Eds. Michel P., DeMeo F.E., Bottke W.F.). Tucson: Univ. of Arizona, 597-616.

  21. Burbine T.H., McCoy T.J., Meibom A., Gladman B., Keil K. (2002) Meteoritic parent bodies: Their number and identification. In Asteroids III (eds. Bottke W.F. ). Tucson: University of Arizona Press, 553-667.

  22. Burbine T.H., McCoy T.J., Hinrichs J.L., Lucey P.G. (2006) Spectral properties of angrites. Meteorit. Planet. Sci. 41(8), 1139-1145.

  23. Burns R.G. (1993) Mineralogical Applications of Crystal Field Theory. Cambridge Univ. Press, 576 p.

  24. Byrne P.K., Ostrach L.R., Fassett C.I., Chapman C.R., Denevi B.W., Evans A.J., Klimczak C., Banks M.E., Head J.W., Solomon S.C. (2016) Widespread effusive volcanism on Mercury likely ended by about 3.5 Ga. Geophys. Res. Lett. 43(14), 7408-7416.

  25. Cassan A., Kubas D., Beaulieu J.-P., Dominik M., Horne K., Greenhill J., Wambsganss J., Menzies J., Williams A., Jørgensen U.G., et al. (2012) One or more bound planets per Milky Way star from microlensing observations. Nature. 481(7380), 167-169.

  26. Charbonneau D., Brown T.M., Noyes R.W., Gilliland R.L. (2002) Detection of an extrasolar planet atmosphere. Astrophys. J. 568(1), 377-384.

  27. Clive Neal’s Mare Basalt Database [Электрон. ресурс]. URL: https://www3.nd.edu/~cneal/Lunar-L/ (дата обращения: 01.09.2022).

  28. Cousin A., Sautter V., Payré V., Forni O., Mangold N., Gasnault O., Le Deit L., Johnson J., Maurice S., Salvatore M. et al. (2017) Classification of igneous rocks analyzed by ChemCam at Gale crater, Mars. Icarus. 288, 265-283.

  29. Day J.M.D., Tait K.T., Udry A., Moynier F., Liu Y., Neal C.R. (2018) Martian magmatism from plume metasomatized mantle. Nature Communications. 9, 4799

  30. Demidova S.I., Whitehouse M.J, Merle R., Nemchin A.A., Kenny G.G., Brandstätter F., Ntaflos Th., Dobryden I. (2022) A micrometeorite from a stony asteroid identified in Luna 16 soil. Nature Astr. (6), 560-567

  31. De Sanctis M.C., Ammannito E., Capria M.T., Tosi F., Capaccioni F., Zambon F., Carraro F., Fonte S., Frigeri A., Jaumann R., Magni G., Marchi S., McCord T.B., McFadden L.A., McSween H.Y., Mittlefehldt D.W., Nathues A., Palomba E., Pieters C.M., Raymond C.A., Russell C.T., Toplis M.J., Turrini D. (2012a) Spectroscopic characterization of mineralogy and its diversity across Vesta. Science. 336, 697-700.

  32. De Sanctis M.C., Combe J.-Ph., Ammannito E., Palomba E., Longobardo A., McCord T.B., Marchi S., Capaccioni F., Capria M.T., Mittlefehldt D.W., Pieters C.M., Sunshine J., Tosi F., Zambon F., Carraro F., Fonte S., Frigeri A., Magni G., Raymond C.A., Russell C.T. (2012b) Detection of widespread hydrated materials on Vesta by the VIR Imaging Spectrometer on board the Dawn mission. Astrophys. Journ. Lett. 758(2), L36.

  33. De Sanctis M.C., Altieri F., Ammannito E., Biondi D., De Angelis S., Meini M., Mondello G., Novi S., Paolinetti R. Soldani M., Mugnuolo R., Pirrotta S., Vago J.L., the Ma_MISS team (2017) Ma_MISS on ExoMars: Mineralogical Characterization of the Martian Subsurface. Astrobiology. 17(6–7), 612-620.

  34. Donahue T.M., Hoffman J.H., Hodges R.R., Watson A.J. (1982) Venus was wet: a measurement of the ratio of deuterium to hydrogen. Science. 216, 630-633.

  35. Ehlmann B.L., Edwards C.S. (2014) Mineralogy of the Martian surface. Ann. Rev. Earth Planet. Sci. 42, 291-315.

  36. Elkins-Tanton L.T., Hess P.C., Parmentier E.M. (2005) Possible formation of ancient crust on Mars through magma ocean processes. J. Geophys. Res.: Planets. 110, E12S01.

  37. Filliberto J. (2014) Magmatic diversity on Venus: Constraints from terrestrial analog crystallization experiments. Icarus. 231, 131-136.

  38. Gaffey M.J., Cloutis E.A., Kelley M.S., Reed K.L. (2002) Mineralogy of Asteroids. In Asteroids III (Eds. Bottke W.F.Jr., Cellino A., Paolicchi P., Binzel R.P.). University of Arizona Press, 83-204.

  39. Giguere T.A., Taylor G.J., Hawke B.R., Lucey P.G. (2000) The titanium contents of lunar mare basalts. Meteorit. Planet. Sci. 35, 193-201.

  40. Gilmore M., Treiman A., Helbert J., Smrekar S. (2017) Venus surface composition constrained by observation and experiment. Space Sci. Rev. 212, 1511-1540.

  41. Gladman B.J., Burns J.A., Duncan M., Lee P., Levinson H.F. (1996) The exchange of impact ejecta between terrestrial planets. Science. 271, 1387-1392.

  42. Goodrich C.A., Delaney J.S. (2000) Fe/Mg–Fe/Mn relations of meteorites and primary heterogeneity of primitive achondrite parent bodies. Geochim. Cosmochim. Acta. 64(1), 149-160.

  43. Greenwood R.C., Franchi I.A., Jambon A., Buchanan P.C. (2005) Widespread magma oceans on asteroidal bodies in the early Solar System. Nature. 435, 916-918.

  44. Halliday A.N., Wanke H., Birck J.-L., Clayton R.N. (2001) The accretion, composition and early differentiation of Mars. Space Sci. Rev. 96, 197-230.

  45. Haqq-Misra J., Schwieterman E.W., Socas-Navarro H., Kopparapu R., Angerhausen D., Beatty T.G., Berdyugina S., Felton R., Sharma S., De la Torre G.G., Apai D., the TechnoClimes 2020 workshop participants (2022) Searching for technosignatures in exoplanetary systems with current and future missions. Acta Astronautica. 198, 194-207.

  46. Hapke B. (2001) Space weathering from Mercury to the asteroid belt. J. Geophys. Res. 106, 10039-10074.

  47. Hardersen P.S., Gaffey M.J., Abell P.A. (2005) Near-IR spectral evidence for the presence of iron-poor orthopyroxenes on the surfaces of six M-type asteroids. Icarus. 175, 141-158.

  48. Hartmann W.K., Berman D.C. (2000) Elysium Planitia lava flows: Crater count chronology and geological implications. J. Geophys. Res. Planets. 105, 15011-15025.

  49. Hashimoto G.L., Roos-Serote M., Sugita S., Gilmore M.S., Kamp L.W., Carlson R.W., Baines K.H. (2008) Felsic highland crust on Venus suggested by Galileo Near-Infrared Mapping Spectrometer data. J. Geophys. Res. 113(E9), E00B24.

  50. Head J.W., Chapman C.R., Strom R.G., Fassett C.I., Denevi B.W., Blewett D.T., Ernst C.M., Watters T.R., Solomon S.C., Murchie S.L., Prockter L.M., Chabot N.L., Gillis-Davis J.J., Whitten J.L., Goudge T.A., Baker D.M.H., Hurwitz D.M., Ostrach L.R., Xiao Z., Merline W.J., Kerber L., Dickson J.L., Oberst J., Byrne P.K., Klimczak C., Nittler L.R. (2011) Flood volcanism in the northern high latitudes of Mercury revealed by MESSENGER. Science. 333(6051), 1853.

  51. Irving A.J., Kuehner S.M., Rumble D., Bunch T.E., Wittke J.H. (2005) Unique angrite NWA 2999: The case for samples from Mercury (abstract). EOS Trans. AGU 86, #P51A-0898.

  52. Ivanov M.A., Head J.W. (2013) The history of volcanism on Venus. Planet. Space Sci. 84, 66-92.

  53. Isaacson P.J., Klima R.L., Sunshine J.M., Cheek L.C., Pieters C.M., Hiroi T., Dyar M.D., Lane M., Bishop J.L. (2014) Visible to near-infrared optical properties of pure synthetic olivine across the olivine solid solution. Am. Mineral. 99(2–3), 467-478.

  54. Johnson M.C., Rutherford M.J., Hess P.C. (1991) Chassigny petrogenesis: melt compositions, intensive parameters and water contents of Martian(?) magmas. Geochim. Cosmochim. Acta. 55, 349-366.

  55. Joy K.H., Crawford I.A., Curran N.M., Zolensky M., Fagan A.F., Kring D.A. (2016) The Moon: an archive of small body migration in the Solar System. Earth Moon Planets. 118(2–3), 133-158.

  56. Jozwiak L.M., Head J., Wilson L. (2017) Explosive volcanism on Mercury: Analysis of vent and deposit morphology and modes of eruption. Icarus. 302(E1).

  57. Kasting J.F., Whitmire D.P., Reynolds R.T. (1993) Habitable zones around main sequence star. Icarus. 101, 108-128.

  58. Kasting J.F., Catling D. (2003) Evolution of a habitable planet. Annu. Rev. Astron. Astrophys. 41, 429-463.

  59. Keil K. (2012) Angrites, a small but diverse suite of ancient, silica undersaturated volcanic-plutonic mafic meteorites, and the history of their parent asteroid. Chemie der Erde. 72, 191-218.

  60. Kraft M.D., Michalski J.R., Sharp T.G. (2003) Effects of pure silica coatings on thermal emission spectra of basaltic rocks: Considerations for Martian surface mineralogy. Geophys. Res. Lett. 30(24), ID 2288.

  61. Kronrod E., Matsumoto K., Kuskov O.L., Kronrod V., Yamada R., Kamata S. (2022) Towards geochemical alternatives to geophysical models of the internal structure of the lunar mantle and core. Adv. Space Res. 69, 2798-2824.

  62. Kuehner S.M., Irving A.J., Bunch T.E., Wittke J.H., Hupe G.M., Hupe A.C. (2006) Coronas and symplectites in plutonic angrite NWA 2999 and implications for Mercury as the angrite parent body (abstract). Lunar Planet. Sci. Conf. 37, (# 1344, CD-ROM).

  63. Kurat G., Varela M.E., Brandstätter F., Weckwerth G., Clayton R., Weber H.W., Schultz L., Wäsch E., Nazarov M.A. (2004) D’Orbigny: a non-igneous angritic achondrite. Geochim. Cosmochim. Acta. 68, 1901-1921.

  64. Lapen T.J., Righter M., Brandon A.D., Debaille V., Beard B.L., Shafer J.T., Peslier A.H. (2010) A younger age for ALH84001 and its geochemical link to shergottite sources in Mars. Science. 328, 347-351.

  65. Li S., Lucey P.G., Fraeman A.A., Poppe A.R., Sun V.Z., Hurley D.M., Schultz P.H. (2020) Widespread hematite at high latitudes of the Moon. Sci. Adv. 6, 1940.

  66. Lunar meteorites [Электрон. ресурс]. URL: https://meteorites.wustl.edu/lunar/moon_meteorites_list_alumina.htm (дата обращения 1.09.2022)

  67. Mandler B.E., Elkins-Tanton L.T. (2013) The origin of eucrites, diogenites, and olivine diogenites: Magma ocean crystallization and shallow magma chamber processes on Vesta. Meteorit. Planet. Sci. 48(11), 2333-2349.

  68. Markus K., Moroz L., Arnold G., Henckel D., Hiesinger H., Rohrbach A., Klemme S. (2018) Reflectance spectra of synthetic Fe-free ortho-and clinoenstatites in the UV/VIS/IR and impli- cations for remote sensing detection of Fe-free pyroxenes on planetary surfaces. Planet. Space Sci. 159, 43-55.

  69. Marov M.Y., Avduevsky V.S., Kerzhanovich V.V., Rozhdestvensky M.K., Borodin N.F., Ryabov O.L. (1973) Venera 8: Measurements of temperature, pressure and wind velocity on the illuminated side of Venus 1. J. Atmos. Sci. 30, 1210-1214.

  70. McCubbin F.M., McCoy T.J. (2016) Expected geochemical and mineralogical properties of meteorites from Mercury: Inferences from MESSENGER data (abstract). 79th Ann. Meet. Met. Soc., #6242.

  71. McKay G., Le L., Wagstaff J., Crozaz G. (1994) Experimental partitioning of rare earth elements and strontium: constraints on petrogenesis and redox conditions during crystallization of Antarctic angrite Lewis Cliff 86010. Geochim. Cosmochim. Acta. 58, 2911-2919.

  72. McSween H.Y., Harvey R.P. (1993) Outgassed water on Mars: constraints from melt inclusions in SNC meteorites. Science. 259, 1890-1892.

  73. McSween H.Y., Grove T.L., Wyatt M.B. (2003) Constraints on the composition and petrogenesis of the Martian crust. J. Geophys. Res. 108(E12), 5135.

  74. McSween H.Y., Wyatt M.B., Gellert R., Bell J.F., Morris R.V., Herkenhoff K.E., Crumpler L.S., Milam K.A., Stockstill K.R., Tornabene L.L., Arvidson R.E., Barlett P., Blaney D., Cabrol N.A., Christensen P.R., Clarc B.C., Crisp J.A., Des Marais D.J., Economou T., Farmer J.D., Farrand W., Ghosh A., Golombek M., Gorevan S., Greely R., Hamilton V.E., Johnson J.R., Jolliff B.L., Klingelho G., Knudson A.T., McLennan S., Ming D., Moerch J.E., Rieder R., Ruff S.W., Schro C., De Souza P.A., Squires S.W., Wanke H., Wang A., Yen A., Zipfel J. (2006) Characterization and petrologic interpretation of olivine-rich basalts at Gusev Crater, Mars. J. Geophys. Res. 111(E2), E02S10.

  75. McSween H.Y., Taylor G.J., Wyatt M.B. (2009) Elemental composition of the Martian crust. Science. 324, 736-739.

  76. McSween H.Y., Mittlefehldt D.W., Beck A.W., Mayne R.G., McCoy T.J. (2011) HED meteorites and their relationship to the geology of Vesta and the Dawn mission. Space Sci. Rev. 163, 141-174.

  77. McSween H.Y. (2015) Petrology on Mars. Am. Mineralogist. 100(11–12), 2380-2395.

  78. McSween H.Y., Raymond C.A., Stolper E.M., Mittlefehldt D.W., Baker M.B., Lunning N.G., Beck A.W., Hahn T.M. (2019) Differentiation and magmatic history of Vesta: Constraints from HED meteorites and Dawn spacecraft data. Chemie der Erde. 79, 125526.

  79. Michalski, J.R., Kraft, M.D., Sharp, T.G., Williams, L.B., Christensen, P.R. (2005) Mineralogical constraints on the high-silica martian surface component observed by TES. Icarus, 174, 161-177.

  80. Mikouchi T., Koizumi E., Monkawa A., Ueda Y., Miyamoto M. (2003) Mineralogical comparison of Y000593 with other nakhlites: implications for relative burial depths of nakhlites (abstract). Lunar Planet. Sci. Conf. 34, #1883.

  81. Minitti M.E., Mustard J.F., Rutherford M.J. (2002) Effects of glass content and oxidation on the spectra of SNC-like basalts: applications to Mars remote sensing. J. Geophys. Res. 107(E5), 6-1-6-14

  82. Mittlefehldt D.W., Lindstrom M.M. (1990) Geochemistry and genesis of the angrites. Geochim. Cosmochim. Acta. 54, 3209-3218.

  83. Mittlefehldt D.W. (2015) Asteroid (4) Vesta: I. The howardite-eucrite-diogenite (HED) clan of meteorites Chemie der Erde. 75, 155-183.

  84. Moroz L.V., Basilevsky A.T., Hiroi T., Rout S.S., Baither D., Van der Bogert C.H., Yakovlev O.I., Fisenko A.V., Semjonova L.F., Rusakov V.S., Khramov D.A., Zinovieva N.G., Arnold G., Pieters C.M. (2009) Spectral properties of simulated impact glasses produced from Martian soil analogue JSC Mars-1. Icarus. 202(1), 336-353.

  85. Müller W.F. (1993) Thermal and deformational history of the Shergotty meteorite deduced from clinopyroxene microstructure. Geochim. Cosmochim. Acta. 57, 4311-4322.

  86. Mustard J.F., Poulet F., Gendrin A., Bibring J.-P., Langevin Y., Gondet B., Mangold N., Bellucci G., Altieri F. (2005) Olivine and pyroxene diversity in the crust of Mars. Science. 307, 1594-1597.

  87. NASA Exoplanet Catalog [Электрон. ресурс]. URL: https://exoplanets.nasa.gov/ (дата обращения: 01.09.2022).

  88. Neal C.R., Taylor L.A. (1992) Petrogenesis of mare basalts: A record of lunar volcanism. Geochim. Cosmochim. Acta. 56, 2177-2211.

  89. Nikolaeva O.V., Ariskin A.A. (1999) Geochemical constraints on petrogenic processes on Venus. J. Geophys. Res. 104, 18889-18897.

  90. Nittler L.R., Starr R.D., Weider S.Z., McCoy T.J., Boynton W.V., Ebel D.S., Ernst C. M., Evans L.G., Goldsten J.O., Hamara D.K., Lawrence D.J., McNutt R.L., Schlemm C.E., Solomon S.C., Sprague A.L. (2011) The Major-Element Composition of Mercury’s Surface from MESSENGER X-ray Spectrometry. Science. 333, 1847-1850.

  91. Papike, J.J., Karner, J.M., Shearer, C.K. (2003) Determination of planetary basalt parentage: a simple technique using the electron microprobe. Am. Mineral. 88, 469-472.

  92. Pieters C.M., Taylor L.A., Noble S.K., Keller L.P., Hapke B., Morris R.V., Allen C.C., McKay D.S., Wentworth S. (2000) Space weathering on airless bodies: Resolving a mystery with lunar samples. Meteorit. Planet. Sci. 35, 1101-1107.

  93. Pieters C.M., Boardman J., Buratti B., Chatterjee A., Clark R., Glavich T., Green R., Head J., Isaacson P., Malaret E., McCord T., Mustard J., Petro N., Runyon C., Staid M., Sunshine J., Taylor L. Tompkins S., Varanasi P., White M. (2009) The Moon Mineralogy Mapper (M3) on Chandrayaan-1. Current Science. 96(4), 500-505.

  94. Pieters C.M., Besse, S., Boardman J. et al. (2011) Mg-spinel lithology: A new rock-type on the lunar farside. J. Geophys. Res. 116, E00G08.

  95. Pieters C.M., Ammannito E., Blewett D.T., Denevi B.W., De Sanctis M.C., Gaffey M.J., Le Corre L., Li J.-Y., Marchi S., McCord T.B., McFadden L.A., Mittlefehldt D.W., Nathues A., Palmer E., Reddy V., Raymond C.A., Russell C.T. (2012) Distinctive space weathering on Vesta from regolith mixing processes. Nature. 491, 79-82.

  96. Pisello A., De Angelis S., Ferrari M., Porreca M., Vetere F.P., Behrens H., De Sanctis M.C., Perugini D. (2022) Visible and near-InfraRed (VNIR) reflectance of silicate glasses: Characterization of a featureless spectrum and implications for planetary geology. Icarus. 374, 114801.

  97. Reddy V., Dunn T.L., Thomas C.A., Moskovitz N.A., Burbine T.H. (2015) Mineralogy and surface composition of asteroids. In Asteroids IV (Eds. Michel P., DeMeo F.E., Bottke W.F.). Tucson: Univ. of Arizona, 43-63.

  98. Righter K., Drake M.J. (1997) A magma ocean on Vesta: Core formation and petrogenesis of eucrites and diogenites. Meteorit. Planet. Sci. 32, 929-944.

  99. Rubie D.C., Gessman C.K., Frost D.J. (2004) Partitioning of oxygen during core formation on Earth and Mars. Nature. 429, 58-61.

  100. Ruzicka A., Snyder G.A., Taylor L.A. (2001) Comparative geochemistry of basalts from the Moon, Earth, HED asteroid, and Mars: Implications for the origin of the Moon. Geochim. Cosmochim. Acta. 65(6), 979-997.

  101. Scott E.R.D., Bottke W.F. (2011) Impact histories of angrites, eucrites and their parent bodies. Meteorit. Planet Sci. 46, 1878-1887.

  102. Sing D.K., Fortney J.J., Nikolov N., Wakeford H.R., Kataria T., Evans T.M., Aigrain S., Ballester G.E., Burrows A.S., Deming D., Dйsert J.-M., Gibson N.P., Henry G.W., Huitson C.M., Knutson H.A., Lecavelier Des Etangs A., Pont F., Showman A.P., Vidal–Madjar A., Williamson M.H., Wilson P.A. (2016) A continuum from clear to cloudy hot-jupiter exoplanets without primordial water depletion. Nature. 529(7584), 59-62.

  103. Snape J.F., Curran N.M., Whitehouse M.J., Nemchin A.A., Joy K.H., Hopkinson T., Anand M., Bellucci J.I., Kenny G.G. (2018) Ancient volcanism on the Moon: Insights from Pb isotopes in the MIL 13317 and Kalahari 009 lunar meteorites. Earth Planet. Sci. Let. 502, 84-95.

  104. Snape J.F., Nemchin A.A., Whitehouse M.J., Merle R.E., Hopkinson H., Anand M. (2019) The timing of basaltic volcanism at the Apollo landing sites. Geochim. Cosmochim. Acta. 266, 29-53.

  105. Sokol A.K., Fernandes V.A., Schultz T., Bischoff A., Burgess R., Clayton R.N., Münker C., Nishiizumi K., Palme H., Schultz L., Weckwerth G., Mezger K., Horstmann M. (2008) Geochemistry, petrology and ages of the lunar meteorites Kalahari 008 and 009: New constraints on early lunar evolution. Geochim. Cosmochim. Acta. 72, 4845-4873.

  106. Stolper E. (1977) Experimental petrology of eucritic meteorites. Geochim. Cosmochim. Acta. 41, 587-611.

  107. Stolper E.M., Baker M.B., Newcombe M.E., Schmidt M.E., Treiman A.H., Cousin A., Dyar M.D., Fisk M.R., Gellert R., King P.L., Leshin L., Maurice S., McLennan S.M., Minitti M.E., Perrett G., Rowland S., Sautter V., Wiens R.C., MSL Scinece Team (2013) The petrochemistry of Jake_M: a martian mugearite. Science. 341, 1239463.

  108. Taylor G.J., Martel L.M.V., Karunatillake S., Gasnault O., Boynton W.V. (2010) Mapping Mars geochemically. Geology. 38, 183-186.

  109. Taylor G.J., Warren P., Ryder G., Delano J., Pieters C., Lofgren G. (1991) Lunar rocks. In Lunar sourcebook: A users guide to the Moon (Eds. Heiken G.H., Vaniman D.T., French B.M.). Cambridge Univ. Press. 183-284.

  110. Taylor L.A., Pieters C.M., Keller L.P., Morris R.V., McK ay D.S. (2001) Lunar mare soils: Space weathering and the major effects of surface-correlated nanophase Fe. J. Geophys. Res. 106, 27985-28000.

  111. Taylor S.R., McLennan S.M. (2008) Planetary crusts: their composition, origin and evolution. Cambridge University Press. 378 p.

  112. The Meteoritical Bulletin Database [Электрон. ресурс]. URL: https://www.lpi.usra.edu/meteor/metbull.php (дата обращения: 01.09.2022).

  113. Tissot F.L.H., Collinet M., Namur O., Grove T.L. (2022) The case for the angrite parent body as the archetypal first-generation planetesimal: Large, reduced and Mg-enriched. Geochim. Cosmochim. Acta. 65(6), 979-997.

  114. Treiman A.H. (1989) An alternate hypothesis for the origin of Angra dos Reis: Porphyry, not cumulate. Proc. Lunar Planet. Sci. Conf. 19, 443-450.

  115. Treiman A.H. (2007) Geochemistry of Venus’ surface: current limitations as future opportunities. In Exploring Venus as a Terrestrial Planet (Eds. Esposito L.W., Stofan E.R., Cravens T.E.). AGUMonograph Series. 176, 7-22.

  116. Treiman A.H., Bullock M.A. (2012) Mineral reaction buffering of Venus’ atmosphere: a thermochemical constraint and implications for Venus-like planets. Icarus. 217, 534-541.

  117. Trombka J.S., Squyres W., Bruckner J., Boynton W.V., Reedy R.C., McCoy T.J., Gorenstein P., Evans L.G., Arnold J.R, Starr R.D., Nittler L.R., Murphy M.E., Mikheeva I., McNutt Jr. R.L., McClanahan T.P., McCartney E., Goldsten J.O., Gold R.E., Floyd S.R., Clark P.E., Burbine T.H., Bhangoo J.S., Bailey S.H., Petaev M. (2000) The elemental composition of asteroid 433 Eros: results of the NEAR-Shoemaker X-ray spectrometer. Science. 289, 2101-2105.

  118. Tsiaras A., Waldmann I.P., Tinetti G., Tennyson J., Yurchenko S.N. (2019) Water vapour in the atmosphere of the habitable-zone eight-earth-mass planet K2-18b. Nat. Astron. 3, 1086-1091.

  119. Udry A., Howarth G.H., Herd C.D.K., Day J.M.D., Lapen T.J., Filiberto J. (2020) What Martian meteorites reveal about the interior and surface of Mars. J. Geophys. Res.: Planets 125, E2020JE006523.

  120. Vander Kaaden K.E., McCubbin F.M., Nittler L.R., Peplowski P.N., Weider S.Z., Frank E.A., McCoy T.J. (2017) Geochemistry, mineralogy, and petrology of boninitic and komatiitic rocks on the mercurian surface: Insights into the mercurian mantle. Icarus. 285, 155-168.

  121. Vàci Z., Agee C. (2020) Constraints on Martian Chronology from Meteorites. Geosciences. 10, 455-470

  122. Varela M.E., Hwang S.-L., Shen P., Chu H.-T., Yui T.-F., Lizuka Y., Brandstätter F., Abdu Y.A. (2017) Olivinites in the angrite D’Orbigny: Vestiges of pristine reducing conditions during angrite formation. Geochim. Cosmochim. Acta. 217, 349-364.

  123. Vernazza P., Mothé-Diniz T., Barucci M. A., Birlan M., Carvano J. M., Strazzulla G., Fulchignoni M., Migliorini A. (2005) Analysis of near-IR spectra of 1 Ceres and 4 Vesta, targets of the Dawn mission. Astronomy & Astrophysics. 436, 1113-1121.

  124. Warren P.H., Taylor G.J. (2014) The Moon. In Planets, Asteriods, Comets and The Solar System, V. 2 of Treatise on Geochemistry (Second Edition) (Ed. Davis A.M.). Elsevier, 213-250.

  125. Wieczorec M.A., Jolliff B.L., Khan A., Pritchard M.E., Weiss B., Williams J.G., Hood L.L., Righter K., Neal C.R., Shearer C.K., McCallum I.S., Tompkins S., Hawke B.R., Peterson C., Gillis J.J., Bussey B. (2006) The constitution and structure of the lunar interior. Rev. Mineral. Geochem. 60, 221-364.

  126. Wilson L. (2009) Volcanism in the Solar System. Nat. Geosci. 2(6), 389-397.

  127. Wilson L., Keil. K., McCoy T.J. (2010) Pyroclast loss or retention during explosive volcanism on asteroids: influence of asteroid size and gas content of melt. Meteorit. Planet Sci. 45, 1284-1301.

  128. Zhu M., Wünnemann K., Potter R.W.K., Kleine T., Morbidelli A. (2019) Are the Moon’s nearside-farside asymmetries the result of a giant impact? J. Geophys. Res. 124(8), 2117-2140.

  129. Zolotov M.Yu. (2020) Water-CO2-basalt interactions on terrestrial planets and exoplanets (abstract). Exoplanets in our Backyard, #3062.

  130. Zolotov M.Yu. (2019) Chemical Weathering on Venus. Oxford University Press, 146. https://doi.org/10.1093/acrefore/9780190647926.013.146

Дополнительные материалы отсутствуют.