Геохимия, 2023, T. 68, № 8, стр. 757-894

Обзор основных исследований первого твердого вещества, образованного в Солнечной системе

М. А. Иванова *

Институт геохимии и аналитической химии им. В.И. Вернадского РАН
119991 Москва, ул. Косыгина, 19, Россия

* E-mail: meteorite2000@mail.ru

Поступила в редакцию 30.01.2023
После доработки 23.03.2023
Принята к публикации 28.03.2023

Аннотация

В работе представлен обзор основных современных исследований самого раннего твердого вещества Солнечной системы – тугоплавких объектов, к которым относятся Ca,Al-включения (CAIs), некоторые хондры и амебовидные оливиновые агрегаты. Большее внимание уделено Ca,Al-включениям. В обзоре не рассматриваются льды, так как они не относятся к каменному веществу, и досолнечные зерна, которые присутствовали в Солнечной системе на момент ее образования и сохранились в веществе примитивных хондритов. Обзор состоит из введения, нескольких глав, заключения, списка литературы и специальных сокращений. Дополнительные материалы опубликованы в двух приложениях. В литературном обзоре представлены результаты предыдущих исследований за последние 50 лет и освещены новые задачи, стоящие перед исследователями в изучении CAIs, далее приводятся описание современных методов изучения и подходов, результаты исследования хронологии процессов ранней Солнечной системы, морфология, минералогия и петрография новых, малоизученных представителей CAIs из разных типов хондритового вещества (CV3 и CH-CB), изотопные и геохимические характеристики этих объектов, включая распределение РЗЭ в ультратугоплавких CAIs. Поиску генетических связей между типами первичного вещества и изучению основных процессов формирования CAIs посвящена отдельная глава, в которой представлены результаты теоретического моделирования и эеспериментального исследования процесса испарения. В заключении суммируются основные выводы, сделанные на основе полученных данных и подводится итог многолетнего изучения тугоплавких объектов хондритов.

Ключевые слова: возраст Солнечной системы, хронология процессов ранней Солнечной системы, Ca,Al-включения (CAIs), пластическая деформация, ультратугоплавкие (UR) CAIs, химичекое и изотопное фракционирование, редко-земельные элементы, изотопный состав кислорода, испарение и конденсация

Список литературы

  1. Иванова М.А. (2016) Ca,Al-включения из углистых хондритов – самые древние образования Солнечной системы. Геохимия 54(5), 387-402.

  2. Ivanova M.A. (2016) Ca–Al-Rich Inclusions in Carbonaceous Chondrites: the Oldest Solar System Objects. Geochem. Int. 54(5), 387-402.

  3. Иванова М.А., Петаев М.И. (2015) Характеристика и происхождение компонентов углистого СН хондрита NWA 470. Петрология 23(2), 167-185.

  4. Иванов А.В., Ярошевский А.А., Иванова М.А. (2019) Минералы метеоритов – новый каталог. Геохимия 64(8), 869-932.

  5. Ivanov A.V., Yaroshevskiy A.A., Ivanova M.A. (2018) Meteorite Minerals. Geochem. Int. 57(8), 931-940.

  6. Казенас Е.К. (2004) Термодинамика испарения двойных оксидов. М.: Наука, 551 с.

  7. Коржинский Д.С. (1959) Кислотно-основное взаимодействие компонентов в силикатных расплавах и направление котектических линий. ДАН СССР 128(2), 383-386.

  8. Маркова О.М., Яковлев О.И., Семенов Г.А., Белов А.Н. (1986) Некоторые общие результаты экспериментов по испарению природных расплавов в камере Кнудсена. Геохимия 24(11), 1559-1569.

  9. Назаров М.А., Корина М.И., Ульянов А.А., Колесов Г.М., Щербовский Е.Я. (1984) Минералогия, петрография и химический состав богатых кальцием и алюминием включений метеорита Ефремовка. Метеоритика 43(10), 49-67.

  10. Пригожин И., Дефэй Р. (1970) Химическая термодинамика. Новосибирск: Наука, 509 с.

  11. Суворов А.В. (1970) Термодинамическая химия парообразного состояния (тензиметрические исследования гетерогенных равновесий) Л.: Химия, 208 с.

  12. Ульянов А.А., Кононкова Н.Н., Яковлев О.И., Коровкин М.А. (1990) О кальциевых алюминатах в тугоплавких включениях метеорита Ефремовка. Метеритика 49(2), 92-104.

  13. Яковлев О.И., Маркова О.М., Семенов Г.А., Белов А.Н. (1984) Результаты эксперимента по испарению хондрита Крымка. Метеоритика 43(10), 125-133.

  14. Яковлев О.И., Рязанцев К.М., Шорников С.И. (2017) Роль кислотности-основности в испарении тугоплавких включений в хондритах. Геохимия 62(3), 224-229.

  15. Yakovlev O.I., Ryazantsev K.M., Shornikov S.I. (2017) The Role of Acidity–Basicity in Evaporating Refractory Inclusions in Chondrites. Geochem. Int. 55(3), 251-256.

  16. Яковлев О.И., Шорников С.И. (2019) Теоретический анализ химического и изотопного фракционирования магния и кремния при испарении Ca,Al-включений хондритов. Геохимия 64(8), 777-793.

  17. Yakovlev O.I., Shornikov S.I. (2019) Theoretical Analysis of Mg and Si Chemical and Isotopic Fractionation at Vaporization of Ca–Al Inclusions of Chondrites. Geochem. Int. 57(8), 851-864.

  18. Шорников С.И. (2015) Коэффициенты испарения оксидов, содержащихся в расплавах Ca–Al-включений хондритов. Геохимия 60(12), 1110-1120.

  19. Shornikov S.I. (2015) Vaporization Coefficients of Oxides Contained in the Melts of Ca–Al-Inclusions in Chondrites. Geochem. Int. 53(12), 1080-1089.

  20. Шорников С.И. (2019) Термодинамическое моделирование процесса испарения лунного и метеоритного вещества. Геохимия 64(8), 794-802.

  21. Shornikov S.I. (2019) Thermodynamic Modeling of Evaporation Processes of Lunar and Meteorite Substance. Geochem. Int. 57(8) 865-872.

  22. Aleon J., Krot A.N., McKeegan K.D. (2002) Calcium–aluminum-rich inclusions and amoeboid olivine aggregates from the CR carbonaceous chondrites. Meteorit. Planet. Sci. 37, 1729-1755.

  23. Aleon J., Krot A.N, McKeegan K.D., MacPherson G.J., Ulyanov A.A. (2005) Fine-grained, spinel-rich inclusions from the reduced CV chondrite Efremovka: II. Oxygen isotopic compositions. Meteorit. Planet. Sci. 40, 1043-1058.

  24. Aléon J., El Goresy A., Zinner E. (2007) Oxygen isotope heterogeneities in the earliest protosolar gas recorded in a meteoritic calcium–aluminum-rich inclusion. Earth Planet. Sci. Lett. 263(1-2), 114-127.

  25. Aléon J., McKeegan K.D., El Goresy A., Charon E. (2010) Oxygen isotopes in the ultrarefractory CAI Efremovka 101.1 and the solar nebula (abstract) 73rd Annu. Meteorit. Soc. Meet., 5185.

  26. Amelin Y., Kaltenbach A., Iizuka T., Stirling C.H., Ireland T.R., Petaev M., Jacobsen S.B. (2010) U–Pb chronology of the Solar System’s oldest solids with variable 238U/235U. Geochim. Cosmochim. Acta 69(4), 1059-1071.

  27. Amelin Yu., Kaltenbach A., Iizuka T., Stirling C.H., Ireland T.R., Petaev M.I., Jacobsen S.B. (2010) U–Pb chronology of the Solar System’s oldest solids with variable 238U/235U. Earth Planet. Sci. Lett. 300(3–4), 343-350

  28. Amelin Yu., Krot A.N., Hutcheon I.D., Ulyanov A.A. (2002). Lead isotopic ages of chondrules and calcium–aluminum-rich inclusions. Science 297(5587), 1678-1683.

  29. Anders E., Grevesse N. (1989) Abundances of the elements: Meteoritic and solar. Geochim. Cosmochim. Acta 53(1), 197-214.

  30. Asphaug E., Jutzi M., Movshovitz N. (2011) Chondrule formation during planetesimal accretion. Earth Planet. Sci. Lett. 308(3), 369-379.

  31. Asplund M., Grevesse N., Sauval A. J., Scott P. (2009) The Chemical Composition of the Sun. Annu. Rev. Astron. Astroph. 47(1), 481-522

  32. Bar-Matthews M., Hutcheon I.D., MacPherson G.J., and Grossman L. (1988) A corundum-rich inclusion in the Murchison carbonaceous chondrite. Geochim. Cosmochim. Acta 46, 31-41.

  33. Beckett J.R., Grossman L. (1988) The origin of type C inclusions from carbonaceous Chondrites. Earth Planet. Sci. Lett. 89, 1-14.

  34. Beckett J.R. (1986) The origin of calcium-, aluminum-rich inclusions from carbonaceous chondrites: An experimental study. Unpubished Ph.D. dissertation. University of Chicago. 1986. 373 p.

  35. Beckett J.R., Connolly H.C.Jr., Ebel D.S. (2006) Chemical processes in calcium–aluminum-rich inclusions. A mostly CMAS view of melting and crystallization. In Meteorites and the Early Solar System II (D.S. Lauretta and H.Y. McSween Jr., Eds.) Tucson: University of Arizona, 399-429.

  36. Bischoff A., Keil K. (1983) Ca–Al-rich chondrules and inclusions in ordinary chondrites. Nature 303(4), 588-592.

  37. Bischoff A., Palme H., Ash R.D., Clayton R.N., Schultz L., Herpers U., Stoffler D., Grady M.M., Pillinger C.T., Spettel B., Weber H., Grund T., Endress M., Weber D. (1993) Paired Renazzo-type (CR) carbonaceous chondrites from the Sahara. Geochim. Cosmochim. Acta 57(7), 1587-1604.

  38. Bischoff A., Palme H., Schultz L., Weber D., Weber H.W., Spettel B. (1993) Acfer 182 and paired samples, an iron-rich carbonaceous chondrite: Similarities with ALH 85085 and relationship to CR chondrites. Geochim. Cosmochim. Acta 57(11), 2631-2648.

  39. Bischoff A., Wurm G., Chaussidon M., Horstmann M., Metzler K., Weyrauch M., Bjerkeli P., van der Wiel M.H., Harsono D., Ramsey J.P., Jorgensen J.K. (2016) Resolved images of a protostellar outflow driven by an extended disk wind. Nature 540(7633), 406-409.

  40. Blake J.B., Schramm D.N. (1973) 247Cm as a Short-lived r-Process Chronometer. Nature 243(130), 138-140.

  41. Blichert-Toft J., Zanda B., Ebel D.S., Albarède F.A. (2010) The Solar System primordial lead. Earth Planet. Sci. Lett. 300(1-2), 152-163.

  42. Borisova A.Y., Freydier R., Polvé M., Jochum K.P., and Candaudap F. (2010) Multi-elemental of ATHO-G rhyolitic glass (MPI-DING reference material) by femtosecond and nanosecond LA-ICP-MS: Evidence for significant heterogeneity of B, V, Zn, Mo, Sn, Sb, Cs, W, Pt and Pb at the millimetre scale. Geostand. Geoanalyt. Res. 34, 245-255.

  43. Boss A.P., Alexander C.M. O’D., Podolak M. (2012) Cosmochemical consequences of particle trajectories during FU Orionis outbursts by the early Sun. Earth Planet Sci. Lett. 345, 18-26.

  44. Boss A.P., Graham J.A. (1993) Clumpy disk accretion and chondrule formation. Icarus 106(1), 168-178.

  45. Boss A.P. (2008) Mixing in the solar nebula: Implications for isotopic heterogeneity and large-scale transport of refractory grains. Earth Planet. Sci. Lett. 268, 102-109.

  46. Boss A.P., Alexander C.M. O’D., Podolak M. (2020) Evolution of CAI-sized particles during FU Orionis outbursts. I. Particle trajectories in protoplanetary disks with beta cooling. The Astrophys. J. 901(81), 26.

  47. Boss A.P., Durisen R.H. (2005) Sources of shock waves in the protoplanetary disk // In “Chondrites and the protoplanetary disk” (A.N. Krot, E.R.D. Scott, B. Reipurth, Eds.), ASP Conference Series 341, San Francisco, Astronomical Society of the Pacific, 821-838.

  48. Boss P., Durisen R.H. (2010) Chondrule-forming Shock Fronts in the Solar Nebula: A possible unified scenario for planet and chondrite formation. Astrophys. J. 621(2), L137-L140.

  49. Bouvier A., Wadhwa M. (2010) The age of the Solar System redefined by the oldest Pb–Pb age of a meteoritic inclusion. Nature Geosci. 3(9), 637-641.

  50. Boynton W.V. (1975) Fractionation in the solar nebula – Condensation of yttrium and the rare earth elements. Geochim. Cosmochim. Acta 39(5), 569-584.

  51. Boynton W.V., Frazier R.M., MacDougall J.D. (1980) Identification of an ultra-refractory component in the Murchison meteorite (abstract). 11th Lunar Planet. Sci. Conf. 103, 105.

  52. Brearley A.J., Krot A.N. (2012) Metasomatism in the early solar system: the record from chondritic meteorites. In Metasomatism and the Chemical Transformation of Rock – Lecture Notes in Earth System Sciences, 659-789.

  53. Brearley A.J., Jones R.H. (1998) Chondritic meteorites. In Planetary Materials, Ed. J.J. Papike, New York, 398 p.

  54. Brennecka G.A., Weyer S., Wadhwa M., Janney P.E., Zipfel J., Anbar A.D. (2010) 238U/235U Variations in Meteorites: Extant247Cm and Implications for Pb–Pb Dating. Science 327(5964). 449-451.

  55. Brennecka G.A., Wadhwa M. (2012) Uranium isotope compositions of the basaltic angrite meteorites and the chronological implications for the early Solar System. Proc. Nat. Acad. Sci. 109, 9299-9303.

  56. Brownlee D. et al. (2006) Comet 81P/Wild 2 under a microscope. Science 314(5806), 1711-1716.

  57. Bullock E.S., MacPherson G.J., Nagashima K., Krot A.N., Petaev M.I., Jacobsen S.B., Ulyanov A.A. (2012) Forsterite-bearing Type B refractory inclusions from CV3 chondrites: from aggregates to volatilized melt droplets. Meteorit. Planet Sci. 47(12), 2128-2148.

  58. Chandrasekhar S. (1965) The stability of a rotating liquid drop. Proc. R. Soc. Lond. 286, 1-26.

  59. Chapman D.R. (1964) On the unity and origin of the Australasian tektites. Geochim. Cosmochim. Acta 28(6), 841-850.

  60. Chase M.W. (1998) NIST-JANAF Themochemical Tables. J. Phys. Chem. Ref. Data 9, 1-1951.

  61. Ciesla F.J. (2007) Outward transport of high-temperature materials around the midplane of the solar nebula. Science 318(5850), 613-615.

  62. Ciesla F.J. (2009) Dynamics of high-temperature materials delivered by jets to the solar nebula. Meteorit. Planet. Sci. 44(10), 1663-1673.

  63. Ciesla F.J. (2010) The distributions and ages of refractory objects in the solar nebula. Icarus 208, 455-467.

  64. Clayton R.N., Onuma N., Grossman L, Mayeda T.K. (1977) Distribution of the pre-solar component in Allende and other carbonaceous chondrites. Earth Planet. Sci. Lett. 34(2), 209-224.

  65. Clayton R.N. (2002) Solar System: Self-shielding in the solar nebula. Nature 415(6874), 860-861.

  66. Clayton R.N., MacPherson G.J., Hutcheon I.D., Davis A.M., Grossman L., Mayeda T.K., Molini-Velsko C., Allen J.M., El Goresy A. (1984) Two forsterite-bearing FUN inclusions in the Allende meteorite. Geochim. Cosmochim. Acta 48(3), 533-548.

  67. Cleverly W.H. (1986) Australites from Hampton Hill Station, Western Australia. J.R. Soc. West Aust. 68(4), 81-93.

  68. Condon D.J., McLean N., Noble S.R. Bowring. (2010) Isotopic composition (238U/235U) of some commonly used uranium reference materials. Geochim. Cosmochim. Acta 74(24), 7127-7143.

  69. Connelly J.N., Amelin Y., Krot A.N., Bizzarro M. (2008) Chronology of the solar system’s oldest solids. Astrophys. J. 675(2), L121.

  70. Connelly J., Bizzarro M. (2009) Pb–Pb dating of chondrules from CV chondrites by progressive dissolution. Chem. Geol. 259(3-4), 143-151.

  71. Connelly J.N., Bizzarro M., Krot A.N., Nordlunds A., Wielandt D., Ivanova M.A. (2012) The absolute chronology and thermal processing of solids in the solar protoplanetary disk. Science 338(6107), 651-655.

  72. Cosarinsky M., McKeegan K.D., Hutcheon I.D., Weber P. and Fallon S. (2005a) Magnesium and oxygen isotopic study of the Wark–Lovering rim around a Fluffy Type-A inclusion from Allende. Lunar Planet. Sci. Conf. 36, 2105.

  73. Cosarinsky M., Taylor D.J., McKeegan K.D., and Hutcheon I.D. (2005b) Mg isotopic study of Wark–Lovering rims in Type A inclusions from CV chondrites: formation mechanisms and timing. 68th Annu. Meteorit. Soc. Meet., 5284.

  74. Curien H. (1956) Hibonite from metamorphic rocks. Compt. Rend. Acad. Sci. 242(12), 2845.

  75. Cuzzi J.N., Davis S.S., Dobrovolskis A.R. (2003) Blowing in the wind. II. Creation and redistribution of refractory inclusions in a turbulent protoplanetary nebula. Icarus 166, 385.

  76. D’Alessio P., Calvet N., Woolum D.H. (2005) Thermal structure of protoplanetary disc. In Chondrites and the Protoplanetary Disk, A.N. Krot, E.R.D. Scott, B. Reipurth, Eds. (Astrophysical Society of the Pacific) San Francisco, 341, 353.

  77. Davis A.M. (1984) A scandalously refractory inclusion in Ornans (abstract). Meteoritics 19, 214.

  78. Davis A.M., Grossman L. (1979) Condensation and fractionation of rare earths in the solar nebula. Geochm. Cosmochim Acta 43(10), 1611-1632.

  79. Davis A.M., Richter F.M. (2014) Condensation and evaporation of solar system materials. In Meteorites, Comets and Planets, Treatise on Geochemistry (A.M. Davis, Ed.), Oxford: Elsevier, 335-360.

  80. Davis A.M., Hashimoto A., Clayton R.N., Mayeda T.K. (1990) Isotope mass fractionation during evaporation of Mg2SiO4.Nature 347(6294), 655-658.

  81. Davis A.M., MacPherson G.J., Clayton R.N., Mayeda T.K., Sylvester P., Grossman L., Hinton R. W., Laughlin J.R. (1991) Melt solidification and late-stage evaporation in the evolution of a FUN inclusion from the Vigarano CV3 chondrite. Geochim. Cosmochim. Acta 55(2), 621-638.

  82. Davis A.M., MacKeegan K.D., MacPherson G.J. (2000) Oxygen isotopic compositions of individual minerals from the FUN inclusion Vigarano 1623-5. Meteorit. Planet. Sci. Supplement. 35, A47.

  83. Davis A.M., Richter F.M., Mendybaev R.A., Janney P.E., Wadhwa M., McKeegan K.D. (2015) Isotopic mass fractionation laws for magnesium and their effects on 26Al–26Mg systematics in solar system materials. Geochim. Cosmochim. Acta 158, 245-261.

  84. Delbos L. (1957) New occurrences of hibonite in metamorphic rocks. Compt. Rend. Acad. Sci. 244(1), 214-215.

  85. Desch S.J., Kalyaan A., Alexander C. O’D. (2018) The effect of Jupiter’s formation on the distribution of refractory elements and inclusions in meteorites. The Astrophys. J. Supplement. 238(1), 31.

  86. Dougill M.W. (1957) Crystal structure of calcium monoaluminate. Nature 180(4580), 292-293.

  87. Doyle P.M., Jogo K., Nagashima K., Krot A.N., Wakita S., Ciesla F.J., Hutcheon I.D. (2015) Early aqueous activity on the ordinary and carbonaceous chondrite parent bodies recorded by fayalite. Nature Comm. 6, 1-10.

  88. Doyle P.M., Jogo K., Nagashima K., Huss G.R., Krot A.N. (2016) Mn-Cr relative sensitivity factor in ferromagnesian olivines defined for SIMS measurements with a Cameca ims-1280 ion microprobe: Implications for dating secondary fayalite. Geochim. Cosmochim. Acta. 174, 102-121.

  89. Dullemont C.P., Monnier J.D. (2010) The inner regions of protoplanetary disks. Annu. Rev. Astron. Astrophys. 48, 205-239.

  90. Dunlap D.R., Koefoed P., Amelin Yu., Wadhwa M., Agee C.B. (2018) Pb–Pb age of the ungrouped achondrite Northwest Africa 11119: timing of extraterrestrial silica-rich volcanism. 49th Lunar Planet. Sci. Conf., abstract # 2302.

  91. Ebel D.S., Grossman L. (2000) Condensation in dust-enriched systems. Geochim. Cosmochim. Acta. 64(2), 339-366.

  92. El Goresy A., Nagel K., Ramdohr P. (1978) The Allende meteorite: fremdlinge and their noble relatives. Proceedings of 11th Lunar Planet. Sci. Conf., 292-284.

  93. El Goresy A., Zinner E., Matsunami, Palme H., Spettel B., Lin Y. and Nazarov M. (2002) Efremovka 101.1: A CAI with ultrarefractory REE patterns and enormous enrichments od Sc, Zr, and Y in fassaite and perovskite. Geochim. Cosmochim. Acta 66 (8), 771-781.

  94. Elkins-Tanton L.T. (1971) Asteroids, Meteorites, and Comets. Infobase Publishing. 289 p.

  95. Eriksson G. (1971) Thermodynamic studies of high temperature equilibria. III. SOLGAS, a computer program for calculating the composition and heat condition of an equilibrium mixture. Acta Chem. Scand. 25(7), 2651-2658.

  96. Evans N.J. II, Dunham M.M., Jorgensen J.K., Enoch M.L., Merín B., van Dishoeck E.F., Alcalá J.M., Myers P.C., Stapelfeldt K.R., Huard T.L., Allen L.E., Harvey P.M., van Kempen T., Blake G.A., Koerner D.W., Mundy L.G., Padgett D.L., Sargent A.I. (2009) The Spitzer c2d legacy results: star-formation rates and efficiencies; evolution and lifetimes. Astrophys. J. Supp. 181(2), 321-350.

  97. Fahey A.J., Goswami J.N., McKeegan K.D., and Zinner E.K. (1987) 16O excesses in Murchison and Murray hibonite: A case against a late supernova injection origin of isotopic anomalies in O, Mg, Ca and Ti. The Astrophys. J. 323, L91-L95.

  98. Fegley B., Cameron A.G.W. (1987). A vaporization model for iron / silicate fractionation in the Mercury protoplanet. Earth Planet. Sci. Lett. 82(3-4), 207-222.

  99. Floss C., El Goresy A., Zinner E., Kransel G., Rammensee W., Palme H. (1996) Elemental and isotopic fractionations produced through evaporation of the Allende CV chondrilte: Implications for the origin of HAL-type hibonite inclusions. Geochim. Cosmochim. Acta 60(11), 1975-1997.

  100. Floss C., El Goresy A., Zinner E., Palme H., Weckwerth G., Rammensee W. (1988) Corundum-bearing residues produced through the evaporation of natural and synthetic hibonite. Meteorit. Planet. Sci. 33(2), 191-206.

  101. Gautason B., Muehlenbachs K. (1993) Oxygen diffusion in perovskite: Implications for electrical conductivity in the lower mantle. Science 260(5107), 518-518.

  102. Gentile A.L., Foster W.R. (1963) Calcium hexaluminate and its stability relations in the system CaO–Al2O3–SiO2Jour. Amer. Ceram. Soc. 46, 74-76.

  103. Genzel P.-T., Bazi B., De Pauw E., Vekemans B., Vincze L., Garrevoet J., Lindner M., Falkenberg G., Ivanova M.A., Ma C., Davis A.M., Krot A.N., Brenker F.E. (2020) Rare earth element analysis of UR CAIs from CV3 chondrites by SRXRF. 51st Lunar Planet. Sci. Conf., 2002.

  104. Glavin D.P., Kubny A., Jagoutz E. and Lugmair G.W. (2004) Mn–Cr isotope systematics of the D’Orbigny angrite. Meteorit. Planet. Sci. 39(5), 693-700.

  105. Goodwin D.W., Lindop A.J. (1970) The crystal structure of CaO2Al2O3.Acta Cryst. B26, 1230-1235.

  106. Greshake A., Krot A.N., Meibom A., Weisberg M.K., Zolensky M.E., Keil K. (2002) Heavily-hydrated matrix lumps in the CH and metal-rich chondrites QUE 94411 and Hammadah al Hamra 237. Meteorit. Planet. Sci. 37(2), 281-294.

  107. Gross S. (1977) The mineralogy of the Hatrurim formation, Israel. Geol. SurVol. Isr. Bull. 70, 1-80.

  108. Grossman L. (1972) Condensation in the primitive solar nebular. Geochim. Cosmochim. Acta 36(5), 597-619.

  109. Grossman L. (1973) Refractory trace elements in Ca-Al-rich inclusions in the Allende meteorite. Geochim. Cosmochim. Acta 37(5), 1119-1140.

  110. Grossman L. (1975) Petrography and mineral chemistry of Ca-rich inclusions in the Allende meteorite. Geochim. Cosmochim. Acta 39(4), 433-454.

  111. Grossman L. (2010) Vapor-condensed phase processes in the early solar system. Meteorit. Planet. Sci. 45(1), 7-20.

  112. Grossman L., Larimer J.W. (1974) Early chemical history of the solar system. ReVol. Geophys. Space Phys. 12, 71-101.

  113. Grossman L., Ganapathy R. (1976) Trace elements in the Allende meteorite. I – Coarse-grained, Ca-rich inclusions. Geochim. Cosmochim. Acta 40(8), 331-344.

  114. Grossman J.N., Rubin A.E., MacPherson G.J. (1988) ALH85085: a unique volatile-poor carbonaceous chondrite with possible implications for nebular fractionation processes. Earth Planet. Sci. Lett. 91(1-2), 33-54.

  115. Grossman L., Ebel D.S., Simon S.B., Davis A.M., Richter F.M., Parsad N.M. (2000) Major element chemical and isotopic compositions of refractory inclusions in C3 chondrites: The separate roles of condensation and evaporation. Geochim. Cosmochim. Acta 64(16), 2879-2894.

  116. Grossman L., Ebel D.S., Simon S.B. (2002) Formation of refractory inclusions by evaporation of condensate precursors. Geochim. et Cosmochim. Acta 66(1), 145-161.

  117. Grossman L., Simon S.B., Rai V.K., Thiemens M.H., Hutcheon I.D., Williams R.W., Galy A., Ding T., Fedkin A.V., Clayton R.N., Mayeda T.K. (2008) Primordial compositions of refractory inclusions. Geochim. Cosmochim. Acta 72(12), 3001-3021.

  118. Han J., Keller L.P., Needham A.W., Messenger S., Simon J.I. (2015) Microstructural investigation of a Wark–Lovering rim on a Vigarano CAI. 78th Annu. Meet. Met. Soc., 5243.

  119. Hashimoto A. (1983) Evaporation metamorphism in the early solar nebula – evaporation experiments on the melt FeO–MgO–SiO2–CaO–Al2O3 and chemical fractionations of primitive materials. Geochem. J. 17(3), 111-145.

  120. Hastie J.W., Bonnell D.W. (1985) A predictive phase equilibrium model for multicomponent oxide mixtures. Part II: Oxides of Na–K–Ca–Mg–Al–Si. High Temp. Sci. 19, 275-306.

  121. Hastie J.W., Plante E.R., Horton W.S., Bonnell D.W. (1982) Thermodynamic models of alkali-metal vapor transport in silicate systems. High Temp. High Press. 14, 669-679.

  122. Hezel D.C., Palme H., Brenker F.E., Nasdala L. (2003) Evidence for fractional condensation and reprocessing at high temperatures in CH chondrites. Meteorit. Planet. Sci. 38(8), 1199-1215.

  123. Hinton R.W., Davis A.M., Scatena-Wachel D.E., Grossman L., Draus R.J. (1988) A chemical and isotopic study of hibonite-rich refractory inclusions in primitive meteorites. Geochim. Cosmochim. Acta 52(11), 2573-2598.

  124. Hiyagon H., Hashimoto A., Kimura M., Ushikubo T. (2003). First discovery of an ultrarefractory nodule in an Allende fine-grained inclusion (abstract). 34th Lunar Planet. Sci. Conf., 1552.

  125. Hu J., Mao S., Du G., Wu Y., Zhang P. (2011) A new thermodynamic analysis of the intergrowth of hedenbergite and magnetite with Ca–Fe-rich olivine. Am. Mineral. 96, 599-608.

  126. Hu J.Y., Dauphas N., Tissot F.L.H, Yokochi R., Ireland T.J., Zhang Z., Davis A.M., Ciesla F., Grossman L., Charlier B.L.A., Roskosz M., Alp E.E., Hu M.Y., Zhao J. (2021) Heating events in the nascent solar system recorded by rare earth element isotopic fractionation in refractory inclusions. Sci. Adv. 7, eabc2962.

  127. Hua J., Huss G.R., Tachibana S., Sharp T.G. (2005). Oxygen, silicon and Mn–Cr isotopes of fayalite in the Kaba oxidized CV3 chondrite: constraints for its formation history. Geochim. Cosmochim. Acta 69(5), 1333-1348.

  128. Hutcheon I.D., Krot A.N., Keil K., Phinney D.L., Scott E.R.D. (1998) 53Mn–53Cr dating of fayalite formation in the CV3 chondrite Mokoia: Evidence for asteroidal alteration. Science 282(5395), 1865-1867.

  129. Ireland T.R. (1988) Correlated morphological, chemical, and isotopic characteristics of hibonites from the Murchison carbonaceous chondrite. Geochim. Cosmochim. Acta 52(12), 2827-2839.

  130. Ireland T.R. (1990) Presolar isotopic and chemical signatures in hibonite-bearing refractory inclusions from the Murchison carbonaceous chondrite. Geochim. Cosmochim. Acta 54(11), 3219-3237.

  131. Ireland T.R., Fahey A.J., Zinner E.K. (1988) Trace element abundances in hibonites from the Murchison carbonaceous chondrite: Constraints on high-temperature processes in the solar nebula. Geochim. Cosmochim Acta 52(12), 2841-2854.

  132. Itoh S., Kojima H., Yurimoto H. (2004) Petrography and oxygen isotopic compositions in refractory inclusions from CO chondrites. Geochim. Cosmochim. Acta 68(1), 183-194.

  133. Ivanova M.A., Petaev M.I., MacPherson G.J., Nazarov M.A., Taylor L.A., Wood J.A. (2002) The first known natural occurrence of calcium monoaluminate, in a calcium aluminim-rich inclusion from the CH chondrite North West Africa 470. Meteorit. Planet. Sci. 37(10), 1337-1344.

  134. Ivanova M.A., Kononkova N.N., Krot A.N., Greenwood R.C., Franchi I.A., Verchovsky A.B., Trieloff M., Korochantseva E.V., Brandstaetter F. (2008) The Isheyevo meteorite: Mineralogy, petrology, bulk chemistry, oxygen, nitrogen, carbon isotopic compositions and 40Ar–39Ar ages. Meteorit. Planet. Sci. 43(5), 915-940.

  135. Ivanova M.A., Lorenz C.A., Nazarov M.A., Brandstaetter F., Franchi I.A., Moroz L.V., Clayton R.N. (2010) First non-Antarctic metamorphosed carbonaceous chondrites: Dhofar 225 and Dhofar 735. Meteorit. Planet. Sci. 45(7), 1108-1123.

  136. Ivanova M.A., Krot A.N., Nagashima K., MacPherson G.J. (2012) Compound ultrarefractory CAI-bearing inclusions from CV3 carbonaceous chondrites. Meteorit. Planet. Sci. 47(12), 2107-2127.

  137. Ivanova M.A., Krot A.N., Kononkova N.N. and MacPherson G.J. (2013a) Heterogeneity in bulk compositions of compound CAIs from NWA 3118 and Efremovka CV3 chondrites. 44th Lunar Plane. Sci. Conf., abstract#1661.

  138. Ivanova M.A., Lorenz C.A., Franchi I.A., Bychkov A.Yu., Post J. (2013b) Experimental simulation of oxygen isotopic exchange in olivine and implication for metamorphosed carbonaceous chondrites. Meteorit. Planet. Sci. 48(10), 2059-2070.

  139. Ivanova M.A., Park C., Lorenz C.A., Krot A.N., Bullock E.S., Nakashima D., Tenner T.J., Kita N.T., MacPherson G.J. (2014) Plastically-deformed forsterite-bearing type B CAI from NWA 3118 (CV3). 77th Annual Meeting of the Meteoritical Society, held September 7-12, Casablanca, Morocco. LPI Contribution № 1800, id. 5213.

  140. Ivanova M.A., Lorenz C.A., Krot A.N., MacPherson G.J. (2015) A compound Ca,Al-rich inclusion from CV3 chondrite North West Africa 3118: implication for understanding processes during CAI formation. Meteorit. Planet. Sci. 50(9), 1512-1528.

  141. Ivanova M.A., Lorenz C.A., Borisovskiy S.E., Burmistrov A.A., Korost D.V., Korochantsev A.V., Logunova M.N., Shornikov S.S., Petaev M.I. (2017) Composition and origin of holotype Al-Cu-Zn minerals in relation to quasicrystals in the Khatyrka meteorite. Meteorit. Planet. Sci. 52(5), 869-883.

  142. Ivanova M.A., Lorenz C.A., Borisovskiy S.E., Korochantsev A.V., Logunova M.N., Petaev M.I. (2018) Reply to the comment by Andronicos et al., 2017 on paper “Composition and origin of holotype Al-Cu-Zn minerals in relation to quasicrystals in the Khatyrka meteorite” by Ivanova et al. (2017) Meteorit. Planet. Sci. 53(11), 2441-2442.

  143. Ivanova M.A., Lorenz C.A., Humayun M., Corrigan C.M., Ludwig T., Trieloff M., Righter K., Franchi I.A., Verchovsky A.B., Korochantseva E.V., Kozlov V.V., Teplyakova S.N., Korochantsev A.V., Grokhovsky V.I. (2020) Sierra Gorda 009: a new member of the metal-rich G chondrites subgroup. Meteorit. Planet. Sci. 55(8) 1764-1792.

  144. Ivanova M.A., Mendybaev R.A., Shornikov S.I., Lorenz C.A., K.M., Glenn J., MacPherson G.J. (2021). Modeling the evaporation of CAI-like melts and constraining the origin of CH-CB CAIs // Geochim. Cosmochim. Acta 296, 97-116.

  145. Ito S., Suzuki K., Inagaki M., Naka S. (1980) High-pressure modifications of CaAl2O4 and CaGa2O4. Material Res. Bul. 15, 925-932.

  146. Jacobsen B., Yin Q.-Z., Moynier F., Amelin Y., Krot A.N., Nagashima K., Hutcheon I.D., Palme H. (2008) 26Al–26Mg and 207Pb–206Pb systematics of Allende CAIs: Canonical solar initial 26Al/27Al ratio reinstated. Earth Planet. Sci. Lett. 272(1-2), 353-364.

  147. Jogo K., Nakamura T., Noguchi T., Zolotov M.Y. (2009) Fayalite in the Vigarano CV3 carbonaceous chondrite: Occurrences, formation age and conditions. Earth Planet. Sci. Lett. 287(3-4), 320-328.

  148. Bodenan J.-D. J., Starkey N.A., Russell S.S., Wright I.P., Franchi I.A. (2020) One of the earliest refractory inclusions and its implications for solar system history. Geochim. Cosmochim. Acta 286, 214-226.

  149. Jerebtsov D.A., Mikhailov G.G. (2001) Phase diagram of CaO-Al2O3 system. Ceramics Internat. 27(1), 25-28.

  150. Jochum K.P., Weis U., Stoll B., Kuzmin D., Yang Q., Raczek I., Jacob D.E., Stracke A., Birbaum K., Frick D.A., Günther D. (2011) Determination of reference values for NIST SRM 610-617 glasses following ISO guidelines. Geostand. Geoanalyt. Res., 35, 397-429.

  151. Jones R.H., Grossman J.N., Rubin A.E. (2005) Chemical, mineralogical and isotopic properties of chondrules: clues to their origin // In Chondrites and the protoplanetary disk, A.N. Krot, E.R.D. Scott, B. Reipurth, Eds. (Astronomical Society of the Pacific), San Francisco 341, 251-285.

  152. Joung M.K., Mac Low M.-M., Ebel D.S. (2004) Chondrule formation and protoplanetary disk heating by current sheets in nonideal magnetohydrodynamic turbulence. Astrophys. J. 606(1), 532-541.

  153. Kawasaki N., Simon S.B., Grossman L., Sakamoto N., Yurimoto H. (2018) Crystal growth and disequilibrium distribution of oxygen isotopes in an igneous Ca–Al-rich inclusion from the Allende carbonaceous chondrite. Geochim. Cosmochim. Acta 221, 318-341.

  154. Kawasaki N., Wada S., Park C., Sakamoto N., Yurimoto H. (2020) Variations in initial 26Al/27Al ratios among fine-grained Ca-Al-rich inclusions from reduced CV chondrites. Geochim. Cosmochim. Acta 279, 1-15.

  155. Keller L.P., Needham A.W., Messenger S. (2014) A FIB/TEM study of a Wark-Lovering rim on a Vigarano CAI. 77th Ann. Meteorit. Soc. Meet., 5428.

  156. Kimura M., El Goresy A., Palme H., and Zinner E. (1993) Ca–Al-rich inclusions in the unique chondrite ALH85085: Petrology, chemistry, and isotopic compositions. Geochim. Cosmochim. Acta 57(10), 2329-2359.

  157. Kimura M., Hashimoto A., Hiyagon H., Ushikubo T. (2003) Mineralogical study of ultrarefractory-element-rich nodules in Allende, Efremovka and Murchison. National Institute of Polar Research, Symposium on Evolution of solar System Materials: A New Perspective from Antarctic (abstract). Meteoritics, 53.

  158. Kimura M., Mikouchi T., Suzuki A., Miyahara M., Ohtani E. (2009) Kushiroite, CaAlAlSiO6: A new mineral of the pyroxene group from the ALH85085 CH chondrite, and its genetic significance in refractory inclusions. Am. Mineral. 94, 1470-1482.

  159. Kita N.T., Huss G.R., Tachibana S., Hutcheon I.D. (2005) Constraints on the origin of chondrules and CAIs from short-lived and long-lived radionuclides. In Chondrites and the Protoplanetary Disk, A.N. Krot, E.R.D. Scott, B. Reipurth, Eds. Astronomical Society of the Pacific, San Francisco. 341, 558-587.

  160. Kita N.T., Ushikubo T., Knight K.B., Mendybaev R.A., Davis A.M., Richter F.M., Fournelle J.H. (2012) Internal 26Al–26Mg isotope systematics of a Type B CAI: Remelting of refractory precursor solids. Geochim. Cosmochim. Acta 86, 37-51.

  161. Kita N.T., Yin Q.-Z., MacPherson G.J., Ushikubo T., Jacobsen B., Nagashima K., Kurahashi E., Krot A.N., Jacobsen S.B. (2013) Al–Mg isotope systematics of the first solids in the early solar system. Meteorit. Planet. Sci. 48(8), 383-1400.

  162. Knight K.B., Kita N., Mendybaev R.A., Richter F.M., Davis A.M., Valley J.W. (2009) Silicon isotopic fractionation of CAI-like vacuum evaporation residues. Geochim. Cosmochim. Acta 73(20), 6390-6401.

  163. Kogure T. (2002) Identification of polytypic groups inhydrous phyllosilicates using electron back-scattering patterns. Am. Mineral. 87, 1678-1685.

  164. Kööp L., Davis A.M., Nakashima D., Park C., Krot A.N., Nagashima K., Tenner T.J., Heck P.R., Kita N.T., (2016) A link between oxygen, calcium and titanium isotopes in 26Al-depleted hibonite-rich CAIs from Murchison and implications for the heterogeneity of dust reservoirs in the solar nebula. Geochim. Cosmochim. Acta 189, 70-95.

  165. Koop L., Nakashima D., Heck P.R., Kita N.T., Tenner T.J., Krot A.N., Nagashima K., Park C., Davis A. (2018) A multielement isotopic study of refractory FUN and F CAIs: Mass-dependent and mass-independent isotope effects. Geochim. Cosmochim. Acta 221, 296-317.

  166. Korzhinskiy D.S. (1959) The advancing wave of acidic components in ascending solutions and hydrothermal acid-base differentiation. Geochim.Cosmochim. Acta 17(1), 17-20.

  167. Krot A.N., Wasson J.T. (1995) Igneous rims on low-FeO and high-FeO chondrules in ordinary chondrites. Geochim. Cosmochim. Acta 59(23), 4951-4966.

  168. Krot A.N., Petaev M.I., Zolensky M.E., Keil K., Scott E.R.D., Nakamura K. (1998) Secondary calcium-iron minerals in the Bali-like and Allende-like oxidized CV3 chondrites and Allende dark inclusions. Meteoritics 33(4), 623-645.

  169. Krot A.N., Brearley A.J., Petaev M.I., Kallemeyn G.W., Sears D.W.G., Benoit P.H., Hutcheon I.D., Zolensky M.E., Keil K. (2000) Evidence for in situ growth of fayalite and hedenbergite in MacAlpine Hills 88107, ungrouped carbonaceous chondrite related to CM-CO clan. Meteorit. Planet. Sci. 35(6), 1365-1387.

  170. Krot A.N., McKeegan K.D., Russell S.S., Meibom A., Weisberg M.K., Zipfel J., Krot T.V., Fagan T.J., Keil K. (2001a) Refractory Ca,Al-rich inclusions and Al diopside-rich chondrules in the metal-rich chondrites Hammadah al Hamra 237 and QUE 94411. Meteorit. Planet. Sci. 36(9), 1189-1217.

  171. Krot A.N., Petaev M.I., Meibom A., Keil K. (2001b) In situ growth of Ca-rich rims around Allende dark inclusions. Geochem. International. 36(2), 351-368.

  172. Krot A.N., Ulyanov A.A., Meibom A., Keil K. (2001c) Forsterite-rich accretionary rims around Ca, Al-rich inclusions from the reduced CV3 chondrite Efremovka. Meteori. Planet. Sci. 36(5), 611-628.

  173. Krot A.N., Meibom A., Weisberg M.K., Keil K. (2002) The CR chondrite clan: implications for early solar system processes. Meteorit. Planet. Sci. 37(11), 1490.

  174. Krot A.N., Petaev M.I., Russell S.S., Itoh S., Fagan T., Yurimoto H., Chizmadia L., Weisberg M.K., Komatsu M., Ulyanov A.A., Keil K. (2004a) Amoeboid olivine aggregates in carbonaceous chondrites: Records of nebular and asteroidal processes. (Invited review). Chem. Er. 64(3), 185-239.

  175. Krot A.N., MacPherson G.J., Ulyanov A.A., Petaev M.I. (2004b) Fine-grained, spinel-rich inclusions from the reduced CV chondrites Efremovka and Leoville: I. Mineralogy, petrology, and bulk chemistry. Meteorit. Planet. Sci. 39(9), 1517-1553.

  176. Krot A.N., Amelin Yu., Cassen P., Meibom A. (2005) Young chondrules in CB chondrites from a giant impact in the early Solar System. Nature 436(7053), 989-992.

  177. Krot A.N., Hutcheon I.D., Brearley A.J., Pravdivtseva O.V., Petaev M.I., Hohenberg C.M. (2006) Timescales and settings for alteration of chondritic meteorites. In Meteorites and the Early Solar System II, (D.S. Lauretta and H.Y. McSween Jr. eds.), Tucson: University of Arizona, 525-553.

  178. Krot A.N., Yurimoto H., Hutcheon I.D., Libourel G., Chaussidon M., Tissander L., Petaev M.I., MacPherson J.G., Paque-Heather J., Wark D. (2007) Type C Ca,Al-rich inclusions from Allende: Evidence for multistage formation. Geochimica et Cosmochimica Acta. 71(17), 4342-4364.

  179. Krot A.N., Chaussidon M., Yurimoto H., Sakamoto N., Nagashima K., Hutcheon I.D., MacPherson G.J. (2008a) Oxygen isotopic compositions of Allende Type C CAIs: Evidence for isotopic exchange during nebular melting and asteroidal metamorphism. Geochim. Cosmochim. Acta 72(10), 2534-2555.

  180. Krot A.N., Ulyanov A.A., Ivanova M.A. (2008b) Refractory inclusions in the CH/CB-like carbonaceous chondrite Isheyevo: 1. Mineralogy and petrography. Meteorit. Planet. Sci. 43(9), 1531-1550.

  181. Krot A.N., Amelin Y., Bland P., Ciesla F.J., Connelly J., Davis A.M., Huss G.R., Hutcheon I.D., Makide K., Nagashima K., Nyquist L.E., Russell S.S., Scott E.R.D., Thrane K., Yurimoto H., Yin Q.Z. (2009) Origin and chronology of chondritic components: A review. Geochim. Cosmochim. Acta 73(17), 4963-4997.

  182. Krot A.N., Nagashima K., Ciesla F.J. Meyer B.S., Hutcheon I.D., Davis A.M., Huss G.R., Scott E. R.D. (2010) Oxygen isotopic composition of the Sun and mean oxygen isotopic composition of the protosolar silicate dust: Evidence from refractory inclusions. The Astrophys. J. 713(2), 1159-1166.

  183. Krot A.N., Makide K., Nagashima K., Huss G.R., Hellebrand E., Petaev M.I. (2012a) Heterogeneous Distribution of 26Al at the Birth of the Solar System: Evidence from Corundum-Bearing Refractory Inclusions. 43rd Lunar Planet. Sci. Conf., 2255.

  184. Krot A.N., Nagashima K., Petaev M.I. (2012b) Isotopically uniform, 16O-depleted calcium, aluminum-rich inclusions in CH and CB carbonaceous chondrites. Geochim. Cosmochim. Acta 83, 159-178.

  185. Krot A.N., Nagashima K., Wasserburg G.J., Huss G.R., Papanastassiou D., Davis A.M., Hutcheon I.D., Bizzarro M. (2014) Calcium-aluminum-rich inclusions with fractionation and unknown nuclear effects (FUN CAIs): I. Mineralogy, petrology, and oxygen-isotope compositions. Geochim. Cosmochim. Acta 145, 206-247.

  186. Krot A.N., Nagashima K., van Kooten E.M.M., Bizzarro M. (2017) High-temperature rims around calcium-aluminum-rich inclusions from the CR, CB and CH carbonaceous chondrites. Geochim. Cosmochim. Acta 201, 155-184.

  187. Krot A.N., Nagashima K., Fintor K., Pál-Molnár E. (2019a) Evidence for oxygen-isotope exchange in refractory inclusions from Kaba (CV3.1) carbonaceous chondrite during fluid-rock interaction on the CV parent asteroid. Geochim. Cosmochim. Acta 246, 419-435.

  188. Krot A.N., Ma C., Nagashima K., Davis A.M., Beckett J.R., Simon S.B., Komatsu M, Fagan T.J., Genzel P.T., Brenker F., Ivanova M.A., Bischoff A. (2019b) Mineralogy, petrography and oxygen isotopic compositions of ultrarefractory inclusions from carbonaceous chondrites. Chem. Er. 79, 125519.

  189. Krot A.N., Petaev M.I., Nagashima K. (2021) Infiltration metasomatism of the Allende coarse-grained calcium-aluminum-rich inclusions. Progress Earth Planet. Sci. 8(1), 61.

  190. Larimer J.W. (1967) Chemical fractionations in meteorites – I. Condensation of the elements. Geochim. Cosmochim. Acta 31(8), 1215-1238.

  191. Larsen K., Trinqueir A., Paton C., Schiller M., Wielandt D., Ivanova M.A., Connelly J.N., Nordlund A., Krot A.N., Bizzarro M. (2011) Evidence for magnesium isotope heterogeneity in the Solar protoplanetary disk. The Astrophys. J. Lett. 735(7), L37.

  192. Larsen K.K., Wielandt D., Schiller M., Krot A.N., Bizzarro M. (2020) Episodic formation of refractory inclusions in the Solar System and their presolar heritage. Earth Planet. Sci. Lett. 535, 116088.

  193. Lee T., Papanastassiou D.A., Wasserburg G.J. (1977) Protostellar Cosmic Rays and Extinct Radioactivities in Meteorites. Astrophys. J. 322, L107.

  194. Lee T., Mayeda T.K., Clayton R.N. (1980) Oxygen isotopic anomalies in Allende inclusion HAL. Geophys. Res. Lett. 7(7), 493-496.

  195. Lewis G.N., Randall M. (1923) Thermodynamics and the free energy of chemical substances. New York: McGraw-Hill. 653 p.

  196. Libourel G., Krot A.N. (2007) Evidence for the presence of planetesimal material among the precursors of magnesian chondrules of nebular origin. Earth Planet. Sci. Lett. 254(1–2), 1-8.

  197. Liffman K., Cuello N., Paterson D.A. (2016) A unified framework for producing CAI melting, Wark-Lovering rims and bowl-shaped CAIs. Mon. Not. Royal Astron. Soc. 462(2), 1137-1163.

  198. Lin Y., Kimura M., Miao B., Dai D., Monoi A. (2006) Petrographic comparison of refractory inclusions from different chemical groups of chondrites. Meteorit. Planet. Sci. 4(1), 67-81.

  199. Liu M.-C., McKeegan K.D., Goswami J.N., Marhas K.K., Sahijpal S., Ireland T.R., Davis A.M. (2009) Isotopic records in CM hibonites: Implications for timescales of mixing of isotope reservoirs in the solar nebula. Geochim. Cosmochim. Acta 73, 5051-5079.

  200. Liu M.-C., Chaussidon M., Gopel C., Lee T. (2012) A heterogeneous solar nebula as sampled by CM hibonite grains. Earth Planet Sci. Let. 327-328, 75-83.

  201. Lodders K. (2003) Solar system abundances and condensation temperatures of the elements. Astrophys. J. 591(2), 1220-1247.

  202. Lodders K. (2010) Solar system abundances of the elements. In Principles and Perspectives in Cosmochemistry. Springer, 379-417.

  203. Lorenz C.A., Ivanova M.A., Shuvalov V.V. (2012) Aerodynamic deformation of molten CAIs as a possible mechanism of early solids processing in the solar nebula. Meteorit. Planet. Sci. 47, A252.

  204. Lorenz C., Ivanova M., Krot A., Shuvalov V. (2019). Formation of disk- and bowl-shaped igneous Ca,Al-rich inclusions:Constraints from their morphology, textures, mineralogy and modelling // Chem. Er. 79(4), 125523.

  205. Loss R.D., Lugmair G.W., MacPherson G.J., Davis A.M. (1994) Isotopically distinct reservoirs in the solar nebula: Isotope anomalies in Vigarano meteorite inclusions. Astrophys. J. 436, L193–L196.

  206. Lyons J.R., Young E.D. (2005) CO self-shielding as the origin of oxygen isotope anomalies in the early solar nebula. Nature 435(7040), 317-320.

  207. Ma C., Rossman G.R. (2008) Discovery of tazheranite (cubic zirconia) in the Allende meteorite. Geochim. Cosmochim. Acta 72 (Supplement), A577.

  208. Ma C., Rossman G.R. (2009a) Ca Ti3+AlSiO6, a new pyroxene from the Allende meteorite. Am. Mineral. 94(10), 1491-1494.

  209. Ma C., Beckett J.R., Rossman G.R. (2009b) Allendeite and hexamolybdenum: two new ultrarefractory minerals in Allende and two missing links (abstract). 40th Lunar Planet. Sci. Conf., 1402.

  210. Ma C., Sweeney Smith S.A., Connolly H.C., Beckett J.R., Rossman G.R., Schrader D.L. (2010) Discovery of Cl-bearing Mayenite, Ca12Al14O32Cl2, a new mineral in a CV3 meteorite. Meteorit. Planet. Sci. Supplement., 5134.

  211. Macdougall J.D. (1979) Refractory-element-rich inclusions in CM meteorites. Earth Planet. Sci. Let. 42, 1-6.

  212. Macdougall J.D. (1981) Refractory spherules in the Murchison meteorite: Are they chondrules? Geophys. Res. Let. 8, 966-969.

  213. MacKeegan K.D., Kallio A.P.A., Heber V.S., Jarzebinski G., Mao P.H., Coath C.D., Kunihiro T., Wiens R.C., Nordholt J.E., Moses R.W., Reisenfeld D.B., Jurewicz A.J.G., Burnett D.S. (2011) The oxygen isotopic composition of the Sun inferred from captured solar wind. Science 289(6037), 1334-1337.

  214. MacPherson G.J. (2014) Calcium-aluminum-rich inclusions in chondritic meteorites. In Meteorites, Comets and Planets. Treatise on Geochemistry (second edition), 1. (Edited by A.M. Davis). (Eds: H.D. Holland and K.K. Turekian). Amsterdam: Elsevier, 139-179.

  215. MacPherson G.J., Grossman L. (1984) Fluffy Type-A inclusions in the Allende meteorite // Geochim. Cosmochim. Acta 48(1), 29-46.

  216. MacPherson G.J., Davis A.M. (1992) Evolution of a Vigarano forsterite-bearing CAI. Meteoritics 27(3), 253.

  217. MacPherson G.J., Davis A.M. (1994) Refractory inclusions in the prototypical CM chondrite, Mighei. Geochim. Cosmochim. Acta 58(24), 5599-5625.

  218. MacPherson G.J., Huss G.R. (2005) Petrogenesis of Al-rich chondrules: Evidence from bulk compositions and phase equilibria. Geochim. Cosmochim. Acta 69(12), 3099-3127.

  219. MacPherson G.J., Krot A.N. (2014) Distribution of Ca-Fe-silicates in CV3 chondrites: Controls by parent-body compaction. Meteorit. Planet. Sci. 49(7), 1250-1270.

  220. MacPherson G.J., Bar-Matthews M., Tanaka T., Olsen E., Grossman L. (1983) Refractory inclusions in the Murchison meteorite. Geochim. Cosmochim. Acta 47, 823-839.

  221. MacPherson G.J., Hashimoto A., Grossman L. (1985) Accretionary rims on inclusions in the Allende meteorite. Geochim. Cosmochim. Acta 49(11), 2267-2279.

  222. MacPherson G.J., Davis A.M., Grossman J.N. (1989) Refractory inclusions in the unique chondrite ALH85085. Meteoritics 24, 297.

  223. MacPherson G.J., Davis A.M., Zinner E.K. (1995) The distribution of 26Al in the early solar system. A reappraisal. Meteoritics 30, 365-386.

  224. MacPherson G.J., Huss G.R., Davis A.M. (2003) Extinct 10Be in Type A CAIs from CV Chondrites. Geochim. Cosmochim. Acta 67(17), 3165-3179.

  225. MacPherson G.J., Simon S.B., Davis A.M., Grossman L., Krot A.N. (2005) Calcium-aluminum-rich inclusions: Major unanswered questions. In Chondrites and the Protoplanetary Disk (A.N. Krot, E.R.D. Scott, B. Reipurth, eds). Astronomical Society of the Pacific Conference, San Francisco. 341, 225-250.

  226. MacPherson G.J., Kita N.T., Ushikubo T., Bullock E.S., Davis A.M. (2012) Well-resolved variations in formation ages for Ca-Al-rich inclusions in the early solar system. Earth Planet. Sci. Lett. 331, 43-54.

  227. MacPherson G.J., Nagashima K., Krot A.N., Doyle P.M., Ivanova M.A. (2015) 53Mn–53Cr systematics of Ca-Fe silicates in CV3 chondrites. 46th Lunar Planet. Sci. Conf., 2760.

  228. MacPherson G.J., Bullock E.S., Tenner T.J., Nakashima D., Ivanova M.A., Krot A.N., Petaev M.I., Jacobsen S.B. (2017a) High precision Al–Mg systematics of forsterite-bearing Type B CAIs from CV3 chondrites. Geochim. Cosmochim. Acta 201, 65-82.

  229. MacPherson G.J., Nagashima K., Krot A.N., Doyle P.M., Ivanova M.A. (2017b) 53Mn–53Cr chronology of Ca-Fe silicates in CV3 chondrites. Geochim. Cosmochim. Acta. 201, 260-274.

  230. MacPherson G.J., Defouilloy C., Kita N.T. (2018) High-precision Al–Mg isotopic systematics in USNM 3898 – The benchmark “ALL” for initial 87Sr/86Sr in the earliest Solar System. Earth Planet. Sci. Lett. 491, 238-243.

  231. Magidson I.A., Basov A.V., Smirnov N.A. (2010) Surface tension of CaO–Al2O3–SiO2 oxide melts. Russian Metallurgy. Metally. 631-635.

  232. Makide K., Nagashima K., Krot A.N., Huss G.R., Hutcheon I.D., Bischoff A.(2009) Oxygen- and magnesium-isotope compositions of calcium-aluminium rich inclusions from CR2 carbonaceous chondrites. Geochim. Cosmochim. Acta 73(17), 5018-5050.

  233. Mane P., Bose M., Wadhwa M. (2015) Resolved time difference between calcium aluminum rich inclusions and their Wark–Lovering rims inferred from Al–Mg chronology of two inclusions from a CV3 carbonaceous chondrite. 46th Lunar Plane. Sci. Con., 2898.

  234. Mason B., Martin P.M. (1977) Geochemical differences among components of the Allende meteorite. Smithsonian Contrib. Earth Sci. 19, 84-95.

  235. Matzel J.E.P., Simon J.I., Hutcheon I.D., Weber P.K., Jacobsen B., Wasserburg G.J. (2011) Oxygen isotope zoning in an Allende CAI, Egg-6. Workshop on Formation of the First Solids in the Solar System, 9149.

  236. McKeegan K.D., Chaussidon M., Robert F. (2000) Incorporation of Short-Lived 10Be in a Calcium-Aluminum-Rich Inclusion from the Allende Meteorite. Science 289(5483), 1334-1337.

  237. McKeegan K.D., Kallio A.P.A., Heber V.L.S., Jarzebinski G., Mao P.H., Coath C.D., Kunihiro T., Wiens R.C., Nordholt J.E., Moses R.W. Jr., Reisenfeld D.B., Jurewicz A.J.G., Burnett D.S. (2011) The oxygen isotopic composition of the Sun inferred from captured solar wind. Science 332(6037), 1528-1532.

  238. McKibbin S.J., Ireland T.R., Amelin Y., O’Neill H.S.C., Holden P. (2013) Mn–Cr relative sensitivity factors for secondary ion mass spectrometry analysis of Mg–Fe–Ca olivine and implications for the Mn–Cr chronology of meteorites. Geochim. Cosmochim. Acta 110, 216−228.

  239. Mendybaev R.A., Richter F.M., Davis A.M. (2006). Crystallization of melilite from CMAS-liquids and the formation of the melilite mantle of Type B1 CAIs: Experimental simulations. Geochim. Cosmochim. Acta 69(10), 211-220.

  240. Mendybaev R.A., Richter F.M., Georg R.B., Janney P.E., Spicuzza M.J., Davis A.M., Valley J.W. (2013) Experimental evaporation of Mg- and Si-rich melts: implications for the origin and evolution of FUN CAIs. Geochim. Cosmochim. Acta 123, 368-384.

  241. Mendybaev R.A., Richter F.M. (2016) Chemical and isotopic fractionation during evaporation of AOA- and FoB-like materials. 47th Lunar Planet. Sci. Conf., 2929.

  242. Mendybaev R.A., Williams C., Spicuzza M.J., Richter F.M., Valley J. W., Fedkin A.V., Wadhwa M. (2017) Thermal and chemical evolution in the early Solar System as recorded by FUN CAIs: Part II – Laboratory evaporation of potential CMS-1 precursor material. Geochim. Cosmochim. Acta 201, 49-64.

  243. Mendybaev R.A., Kamibayashi M., Teng F.-Z., Savage P.S., Georg R.B., Richter F.M., Tachibana S. (2021) Experiments quantifying elemental and isotopic fractionations during evaporation of CAI-like melts in low-pressure hydrogen and in vacuum: Constraints on thermal processing of CAI in the protoplanetary disk. Geochim. Cosmochim. Acta 292, 557-576.

  244. Mikouchi T., Zolensky M., Ivanova M., Tachikawa O., Le L., Komatsu M, Gounelle M. (2009) Dmitryivanovite: a high-pressure calcium aluminum oxide from the Northwest Africa 470 CH3 chondrite characterized using electron back-scatter diffraction analysis. Am. Mineral. 94, 746-750.

  245. Nakamura T., Tomeoka K., Sekine T., Takeda H. (1995). Impact-induced chondrule flattening in the Allende CV3 carbonaceous chondrite: Shock experiments. Meteoritics 30, 344-347.

  246. Needham A.W., Messenger S., Keller L.P., Simon J.I., Han J., Mishra R.K., Marhas K.K. (2015) Aluminum-magnesium isotope systematics in Wark–Lovering rims. 78th Annu. Met. Soc. Meet., 5014.

  247. Noonan A.F., Nelen J., Fredriksson K., Newbury D. (1977) Zr-Y oxides and high-alkali glass in an amoeboid inclusion from Ornans (abstract). Meteoritics 12, 332-335.

  248. Ogliore R.C., Huss G.R., Nagashima K. (2011) Ratio estimation in SIMS analysis. In Nuclear instruments and methods in physics research section B: beam interactions with materials and atoms. 269, 1910-1918.

  249. Osborne E.F., Muan A. (1960) Phase equilibrium diagrams of oxide systems. The System CaO–Al2O3–SiO2. Plate I. American Ceramic Society and the Edward Orton Jr. Ceramic Foundation, Columbus, Ohio. 1960.

  250. Palme H., Jones A. (2003) Solar System Abundances of the Elements. In Treatise on geochemistry, (H.D. Holland, K.K. Turekian, Eds.). Meteorites, Comets and Planets, (A.M. Davis, Ed.), Oxford: Elsevier 1, 41-61.

  251. Papanastassiou D.A. (1986) Chromium isotopic anomalies in the Allende meteorite. Astrophys. J. 308, L27−L30.

  252. Paton C. J., Hellstrom J., Paul P., Woodhead J., Hergt J. (2011) Iolite: Freeware for the visualisation and processing of mass spectrometric data. J. Anal. At. Spectrom. 26, 2508-2518.

  253. Paquette J.A., Engrand C., Stenzel O., Hilchenbach M., Kissel J. (2016) Searching for calciumaluminum-rich inclusions in cometary particles with Rosetta/COSIMA. Meteorit. Planet. Sci. 51(7), 1340-1352.

  254. Petaev M.I., Wood J.A. (1998) The condensation with partial isolation (CWPI) model of condensation in the solar nebula. Meteorit. Planet Sci. 33, 1123-1137.

  255. Petaev M.I., Krot A.N. (1999) Condensation of CH chondrite materials: inferences from the CWPI model (abstract). 30th Lunar Planet. Sci. Conf., 1775.

  256. Petaev M.I., Jacobsen S.B. (2009) SJ101, a new forsterite – bearing CAI from the Allende CV3 chondrite: SEM and EPMA studies. Geochim. Cosmochim. Acta 73(17), 5100-5114.

  257. Podosek F.A., Zinner E.K., MacPherson G.J., Lundberg L., Brannon J.C., Fahey A.F. (1991) Correlated study of initial 87Sr/86Sr and Al–Mg isotopic systematics and petrologic properties in a suite of refractory inclusions from the Allende meteorite. Geochim. Cosmochim. Acta 55(4), 1083-1110.

  258. Rankin G.A., Merwin H.W. (1916) The ternary system CaO–Al2O3–MgO. Jour. Amer. Chem. Soc. 38(3), 568-588.

  259. Richter F.M., Davis A.M., Ebel D.S., Hashimoto A. (2002) Elemental and isotopic fractionation of Type B calcium-, aluminum-rich inclusions: Experiments, theoretical considerations, and constraints on their thermal evolution. Geochim. Cosmochim. Acta 66(3), 521-540.

  260. Richter F.M., Janney P.E., Mendybaev R. A., Davis A.M., Wadhwa M. (2007) Elemental and isotopic fractionation of Type B CAI-like liquids by evaporation. Geochim. Cosmochim. Acta 71(22), 5544-5564.

  261. Richter F.M., Mendybaev R.A., Davis A.M. (2006) Conditions in the protoplanetary diskas seen by the Type B CAIs. Meteorit. Planet. Sci. 41(1), 83-93.

  262. Rubin A.E., Swindle T.D. (2011) Flattened chondrules in the LAP 04581 LL5 chondrite. Evidence for an oblique impact into LL3 material and subsequent collisional heating. Meteorit. Planet. Sci. 46, 587-600.

  263. Rubin A.E., Wasson J.T. (2005) Non-spherical lobate chondrules in CO3.0 Y-81020: General implications for the formation of low-FeO porphyritic chondrules in CO chondrites. Geochim. Cosmochim. Acta 69(1), 211-220.

  264. Ruzicka A. (1997) Mineral layers around coarse-grained, Ca-Al-rich inclusions in CV3 carbonaceous chondrites: formation by high-temperature metasomatism. J. Geophys. Res. 102(E6), 13.387-13.402.

  265. Ryazantsev K.M. (2014) Formation of high-aluminum refractory inclusions in carbonaceous chondrites as a result of evaporation. 45th Lunar Planet. Sci. Conf., P. 1109.

  266. Sahijpal S., Goswami J.N. (1998) Refractory Phases in Primitive Meteorites Devoid of 26Al and 41Ca: Representative Samples of First Solar System Solids? The Astrophys. J. 509(2), L137-L140.

  267. Sahijpal S., Goswami J.N., Davis A.M. (2000) K, Mg, Ti, and Ca isotopic compositions and refractory trace element abundances in hibonites from CM and CV meteorites: Implications for early solar system processes. Geochim. Cosmochim. Acta 64, 1989-2005.

  268. Sakaguchi I., Haneda H. (1996) Oxygen tracer diffusion in single-crystal CaTiO3. J. Solid State Chem. 124(1), 195-197.

  269. Salmeron R., Ireland T.R. (2012) Formation of chondrules in magnetic winds blowing through the proto-asteroid belt. Earth Planet. Sci. Lett. 327, 61-67.

  270. Schaefer L., Fegley B.A. (2004) A thermodynamic model of high temperature lava vaporization on Io. Icarus 169(1), 216-241.

  271. Schoonjans T., Vincze L., Solé V.A., del Rio M.S., Brondeel P., Silversmit G., Appel K., Ferrerro C. (2012) A general Monte Carlo simulation of energy dispersive X-ray fluorescence spectrometers – Part 5: Polarized radiation, stratified samples, cascade effects, M-lines. Spectrochim. Act. Part B: Atomic Spectroscopy 70, 10-23.

  272. Scott E.R.D. (2007) Chondrites and protoplanetary disk. Annu. Rev. Earth Planet. Sci. Lett. 35, 577-620.

  273. Scott E.R.D., Krot A.N. (2014) Chondrites and their components. In Meteorites, Comets and Planets, Treatise on Geochemistry (A. M. Davis, Ed.), Oxford: Elsevier, 1, 65-137.

  274. Shu F.H., Shang H., Lee T. (1996) Toward an astrophysical theory of chondrites. Science 271(5255), 1545-1552.

  275. Simon S.B., Grossman L. (2004) A preferred method for the determination of bulk compositions of coarse-grained refractory inclusions and some implications of the results. Geochim. Cosmochim. Acta 68(20), 4237-4248.

  276. Simon S.B., Davis A.M., Grossman L. (1996) A unique ultrarefractory inclusions from the Murchison meteorite. Meteorit. Planet. Sci. 31(1), 106-115.

  277. Simon S.B., Davis A.M., Grossman L., McKeegan K.D. (2002) A hibonite–corundum inclusion from Murchison: A first-generation condensate from the solar nebula. Meteorit. Planet. Sci. 37(4), 533-548.

  278. Simon S.B., Joswiak D.J., Ishii H.A., Bradley J.P., Chi M., Grossman L., Aleon J., Brownlee D.E., Fallon S., Hutcheon I.D., Matrajt G., McKeegan K.D. (2008). A refractory inclusion returned by Stardust from comet 81P/Wild 2. Meteorit. Planet. Sci. 43(11), 1861-1877.

  279. Simon J.I., Hutcheon I.D., Simon S.B., Matzel J., Ramon E.C., Weber P.K., Grossman L., and Depaolo D.J. (2011) Oxygen isotope variations at the margin of a CAI records circulation within the solar nebula. Science 331(6021), 1175-1178.

  280. Simon J.I., Matzel J.E.P., Simon S.B., Weber P.K., Grossman L., Ross D.K., Hutcheon I.D. (2012) Coordinated oxygen isotopic and petrologic studies of CAIs record varying composition of protosolar gas. 43rd Lunar Planet. Sci.Conf., 1340.

  281. Simon J.I., Matzel J.E.P., Simon S.B., Weber P.K., Grossman L., Ross D.K., Hutcheon I.D. (2013) Does oxygen isotopic heterogeneity in refractory inclusions and their Wark–Lovering rims record nebular reprocessing? 44th Lunar Planet. Sci. Conf. 44, 1828.

  282. Simon J.I., Matzel J.E.P., Simon S.B., Weber P.K., Grossman L., Ross D.K., Hutcheon I.D. (2014) Heterogeneous oxygen isotopic composition of a complex Wark–Lovering rim and the margin of a refractory inclusion from Leoville. 45th Lunar Planet. Sci. Conf. 45, 1233.

  283. Srinivasan G., Ulyanov A.A., Goswami J.N. (1994) 41Ca in the early solar system. The Astrophys. J. 431, L67-L70.

  284. Srinivasan G., Shijpal S., Ulyanov A.A., Goswami G.N. (1996) Ion microprobe studies of Efremovka CAIs: II Potassium isotope composition and 41Ca in the early solar system. Geochim. Cosmochim. Acta 60(10), 2159-2180.

  285. Stirling C.H., Halliday A.N., Porcelli D. (2005) In search of live 247Cm in the early solar system. Geochim. Cosmochim. Acta. 69(4), 1059-1071.

  286. Stöffler D., Keil K., Scott E.R.D. (1991) Shock metamorphism in ordinary chondrites. Geochim. Cosmochim. Acta 55(12), 3845-3867.

  287. Stojic A.N., Brenker F.E. (2010) Argon ion slicing (ArIS): A new tool to prepare super large TEM thin films from Earth and planetary materials. Eur. Jour. Mineral. 22(2), 17-21.

  288. Stolper E. (1982) Crystallization sequences of Ca-Al-rich inclusions from Allende: An experimental study. Geochim. Cosmochim. Acta 46(11), 2159-2180.

  289. Taillifet E., Baillié K., Charnoz S., Aléon J. (2014) Origin of refractory inclusion diversity by turbulent transport in the inner solar nebula. 45th Lunar Planet. Sci. Conf., 2086.

  290. Trinquier A., Birck J.-L., Allègre C.G. (2007) Evidence fora late supernova injection of 60Fe into the protoplanetary disk. Astrophys. J. 655(5828), 1179-1181.

  291. Trinquier A., Birck J.-L., Allègre C.J., Göpel C., Ulfbeck D. (2008) 53Mn–53Cr systematics of the early Solar System revisited. Geochim. Cosmochim. Acta 72(20), 5146-5163.

  292. Trinquier A., Elliott T., Ulfbeck D., Coath C., Krot A.N., Bizzarro M. (2009) Origin of nucleosynthetic isotope heterogeneity in the solar protoplanetary disk. Science 324(5925), 374-376.

  293. Tsuchiyama A., Shigeyoshi R., Kawabata T., Nakano T., Uesugi K., Shirono S. Three-dimensional structures of chondrules and their high-speed rotation. (2003) 34th Lunar Plan. Sci. Conf., 1271.

  294. Uchiyama K., Hiyagon H., Takahata N., Sano Y., Ushikubo T., Kimura M., Hashimoto A. (2008) Ion microprobe analyses of rare earth elements in an extremely ultrarefractory nodule from the Efremovka CV3 chondrite (abstract). 39th Lunar Planet. Sci. Conf., 1519.

  295. Ulianov A.A., Kononkova N.N., Yakovlev O.I., Korovkin M.A. (1989). A compositionally unusual calcium aluminate in one of the high-melting inclusions of the Efremovka meteorite. Geochem. Int. 12(10), 1804-1810.

  296. Ushikubo T., Kimura M. (2021) Oxygen-isotope systematics of chondrules and olivine fragments from Tagish Lake C2 chondrite: Implications of chondrule-forming regions in protoplanetary disk. Geochim. Cosmochim. Acta 293, 328-343.

  297. Ushikubo T., Hiyagon H., Hashimoto A., Kimura M. (2004) Oxygen Isotopic Composition and REE Abundances of a Zr-rich-Oxide-bearing Inclusion from Murchison. (abstract). Meteorit. Planet. Sci. (Supplement.) 39, 5111.

  298. Ushikubo T., Kimura M., Kita N.T., Valley J.W. (2012) Primordial oxygen isotope reservoirs of the solar nebula recorded in chondrules in Acfer 094 carbonaceous chondrite. Geochim. Cosmochim. Acta 90, 242-264.

  299. Vetere F., Behrens H., Holtz F., Vilardo J., Ventura G. (2010) Viscosity of crystal-bearing melts and its implication for magma ascent. J. Min. Pet. Sci. 105(3), 151-163.

  300. Vorobyov E.I., Basu S. (2010) The burst mode of accretion and disk fragmentation in the early embedded stages of star formation. Astrophys. J. 719(2), 1896-1911.

  301. Wadhwa M., Janney P.E., Krot A.N. (2009) Al–Mg isotope systematics in the Efremovka E60 CAI: Evidence of re-equilibration. Meteorit. Planet. Sci. (Supplement.), 5431.

  302. Wakaki S., Itoh S., Tanaka T., Yurimoto H. (2013) Petrology, trace element abundances and oxygen isotopic compositions of a compound CAI-chondrule object from Allende. Geochim. Cosmochim. Acta 102, 261-279.

  303. Walas S.M. (1985) Phase equilibria in chemical engineering. Boston: Butterworth Publ. 688 p.

  304. Wang J., Davis A.M., Clayton R.N., Mayeda T.K., Hashimoto A. (2001) Chemical, and isotopic fractionation during the evaporation of the FeO–MgO–SiO2–CaO–Al2O3–TiO2–rare earth element melt system. Geochim. Cosmochim. Acta 65(3), 479-494.

  305. Wark D.A., Lovering J.F. (1977) Marker events in the early evolution of the solar system: Evidence from rims on Ca-Al-rich inclusions from carbonaceous chondrites. Proc. of Lunar Planet. Sci. Conf. 8, 95-112.

  306. Wark D.A., Boynton W.V., Keays R.R. Palme H. (1987) Trace element and petrologic clues to the formation of forsterite-bearing Ca–Al-rich inclusions in the Allende meteorite. Geochim. Cosmochim. Acta 51(3), 607-622.

  307. Wark D.A. (1987) Plagioclase-rich inclusions in carbonaceous chondrite meteorites – Liquid condensates? Geochim. Cosmochim. Acta 51(3), 221-242.

  308. Wark D.A., Boynton W.V. (2001) The formation of rims on calcium-aluminum-rich inclusions: Step I – Flash heating. Meteorit. Planet. Sci. 36(8), 1135-1166.

  309. Wasserburg G.J., Lee T., Papanastassiou D.A. (1977) Correlated O and MG isotopic anomalies in Allende inclusions. II – Magnesium. Geophys. Res. Lett. 4, 299-302.

  310. Wasson, J.T. (1985) Meteorites. Their Record of Early Solar-system history. New York: W.H. Freeman, 567 p.

  311. Wasson J.T., Kallemeyn G.W. (1990) Allan Hills 85085: A subchondritic meteorite of mixed nebular and regolith heritage. Earth Planet. Sci. Lett. 101(2-4), 148-161.

  312. Wasson J.T., Krot A.N., Lee M.S., Rubin A.E. (1995) Compound chondrules. Geochim. Cosmochim. Acta 59(9), 1847-1869.

  313. Weber D., Bischoff A. (1994) The occurrence of grossite (CaAl4O7) in chondrites. Geochim. Cosmochim. Acta 58(18), 3855-3877.

  314. Weber D., Zinner E., Bischoff A. (1995) Trace elements abundance and Mg, Ca and Ti isotopic compositions of grossite containing inclusions from the carbonaceous chondrite Acfer 182. Geochim. Cosmochim. Acta 59(4), 803-823.

  315. Weidenschilling S.J., Marzari F., Hood L.L. (1998) The origin of chondrules at Jovian resonances. Science 279(5351), 681.

  316. Wielandt D., Nagashima K., Krot A.N., Huss G.R., Ivanova M.A., Bizzarro M. (2012) Evidence for multiple sources of 10Be in the early Solar system. The Astrophys. J. Lett. 748(2), L25.

  317. Weinauer J. (2017). The Allende multicompound chondrule (ACC) – Chondrule formation in a local super-dense region of the early solar system. Meteorit. Planet. Sci. 52(5), 906-924.

  318. Weisberg M.F., Prinz M., Clayton R.N., Mayeda T.K., Grady M.M., Pillinger C.T. (1995) The CR chondrite clan. Proc. 8th NIPR Symp. Antarct. Met., 11-32.

  319. Weisberg M.K., Prinz M., Clayton R.N., Mayeda T.K., Sugiura N., Zashu S., Ebihara M. (2001) A new metal-rich chondrite grouplet. Meteorit. Planet. Sci. 36(3), 401-418.

  320. Wood J.A., Hashimoto A. (1993) Mineral equilibrium in fractionated nebular systems. Geochim. Cosmochim. Acta 57(10), 2377-2388.

  321. Wood B.J., Smyth D.J., Harrison T. (2019) The condensation temperatures of the elements: A reappraisal. Am. Mineral. 104, 844-856.

  322. Xiong Y., Zhang A.-C., Kawasaki N., Ma V., Sakamoto N., Chen J.-N., Gu L.-X., Yurimoto H. Mineralogical and oxygen isotopic study of a new ultrarefractory inclusion in the Northwest Africa 3118 CV3 chondrite. Meteorit. Planet. Sci. 55(10), 2184-2205

  323. Yang L., Ciesla F.J. (2012) The effects of disk building on the distributions of refractory materials in the solar nebula. Meteorit. Planet. Sci. 47(1), 99-119.

  324. Yoneda S., Grossman L. (1995) Condensation of CaO–MgO–Al2O3–SiO2 liquids from cosmic gases. Geochim. Cosmochim. Acta 59(16), 3413-3444.

  325. Yoshitake M., Koide Y. and Yurimoto H. (2002) Distributions of O isotopes in Wark–Lovering rim of a Type B2 CAI from the Vigarano meteorite. 33rd Lunar Planet. Sci. Conf. 33, 1502.

  326. Yurimoto H., Krot A.N., Choi B.-G., Aléon J., Kunihiro T., Brearley A.J. (2008) Oxygen isotopes of chondritic components. In Oxygen in the solar system (ed. MacPherson G. J.), 68, 141-187.

  327. Zanni C., Ferrari A., Rosner R., Bodo G., Massaglia S. (2007) MHD simulations of jet acceleration from Keplerian accretion disks. The effects of disk resistivity. Astron. Astroph 469(3), 811-828.

  328. Zhang A., Hsu W. (2009) Refractory inclusions and aluminum-rich chondrules in Sayh Uhaymir 290 CH chondrite: Petrography and mineralogy. Meteorit. Planet. Sci. 44(6), 787-804.

Дополнительные материалы

скачать ESM.zip
Приложение 1. Рис. П1. - Рис. П11.
Приложение 2. Таблица П1. - Таблица П16.