Вопросы ихтиологии, 2022, T. 62, № 2, стр. 211-238

Рыбы как источники кайромонов – химических сигналов для водных животных

А. О. Касумян *

Московский государственный университет
Москва, Россия

* E-mail: alex_kasumyan@mail.ru

Поступила в редакцию 11.03.2021
После доработки 15.03.2021
Принята к публикации 16.03.2021

Аннотация

Систематизированы сведения об эффектах, оказываемых кайромонами (межвидовыми химическими сигналами) рыб, на водных животных – ракообразных, моллюсков, личинок и имаго насекомых, амфибий и других организмов, а также на некоторых животных вне воды. Рассмотрено разнообразие релизерных (поведенческих) и праймерных (фенотипических) реакций животных на запахи рыб и взаимоотношения, регулируемые этими сигналами. Оценено влияние биотических и абиотических факторов и условий существования (биотопическое сходство взаимодействующих видов, их ареал, образ жизни, тип питания и пищевое поведение, возраст и жизненная стадия, заражённость паразитами, накормленность, суточная и сезонная динамика и др.) на выделение кайромонов рыбами-донорами и восприимчивость к ним животных-реципиентов. Обобщены данные о химической природе кайромонов рыб. Обсуждается роль кайромонов рыб в регуляции связей между организмами в водных сообществах.

Ключевые слова: рыбы, гидробионты, кайромоны, хеморецепция, химические сигналы, хемокоммуникация, поведение, водная химическая экология.

Список литературы

  1. Гопко М.В., Михеев В.Н. 2017. Паразитические манипуляции фенотипом хозяина: эффекты во внутренней и внешней среде // Журн. общ. биологии. Т. 78. № 6. С. 16–48.

  2. Касумян А.О., Павлов Д.С. 2018. Стайное поведение рыб. М.: Т-во науч. изд. КМК, 273 с.

  3. Касумян А.О., Пономарев В.Ю. 1986. Исследование поведения данио-рерио Brachidanio rerio Hamilton-Buchanan (Cypriniformes, Cyprinidae) при действии естественных химических пищевых сигналов // Вопр. ихтиологии. Т. 26. Вып. 4. С. 665–673.

  4. Малюкина Г.А., Марусов Е.А., Карпов А.К. 1983. Некоторые особенности химической сигнализации у беломорской трески Gadus morhua marisalbi Derjugin (Gadidae) // Там же. Т. 23. Вып. 5. С. 839–844.

  5. Мантейфель Ю.Б., Жушев А.В. 1998. Поведенческие реакции личинок четырех видов бесхвостых амфибий на химические стимулы от хищников // Журн. общ. биологии. Т. 59. № 2. С. 192–208.

  6. Никифоров А.И., Гаврилов Б.А., Круглова Д.К. и др. 2018. Исследования с использованием выделенной из водной среды ДНК: состояния и перспективы // Успехи соврем. биологии. Т. 138. № 1. С. 18–30. https://doi.org/10.7868/S0040364418010039

  7. Åbjörnsson K., Wagner B.M.A., Axelsson A. et al. 1997. Responses of Acilius sulcatus (Coleoptera: Dytiscidae) to chemical cues from perch (Perca fluviatilis) // Oecologia. V. 111. P. 166–171. https://doi.org/10.1007/s004420050221

  8. Åbjörnsson K., Hansson L.-A., Brönmark C. 2004. Responses of prey from habitats with different predator regimes: local adaptation and heritability // Ecology. V. 85. № 7. P. 1859–1866. https://doi.org/10.1890/03-0074

  9. Alvarez M., Landeira-Dabarca A., Peckarsky B. 2014. Origin and specificity of predatory fish cues detected by Baetis larvae (Ephemeroptera; Insecta) // Anim. Behav. V. 96. P. 141–149. https://doi.org/10.1016/j.anbehav.2014.07.017

  10. Andersen T.H., Friberg N., Hansen H.O. et al. 1993. The effects of introduction of brown trout (Salmo trutta L.) on Gammarus pulex L. drift and density in two fishless Danish streams // Arch. Hydrobiol. V. 126. P. 361–371.

  11. Andersson K.G., Bronmark C., Herrmann J. et al. 1986. Presence of sculpins (Cottus gobio) reduces drift and activity of Gammarus pulex (Amphipoda) // Hydrobiologia. V. 133. P. 209–215. https://doi.org/10.1007/BF00005592

  12. Angelon K.A., Petranka J.W. 2002. Chemicals of predatory mosquitofish (Gambusia affinis) influence selection of oviposition site by Culex mosquitoes // J. Chem. Ecol. V. 28. № 4. P. 797–806. https://doi.org/10.1023/A:1015292827514

  13. Appelberg M., Söderbäck B., Odelström T. 1993. Predator detection of predation risk in the crayfish Astacus astacus L. // Nord. J. Freshwat. Res. V. 68. P. 55–62.

  14. Araújo C.V.M., Pereira K.C., Sparaventi E. et al. 2020. Contamination may induce behavioural plasticity in the habitat selection by shrimps: a cost-benefits balance involving contamination, shelter and predation // Environ. Pollut. V. 263B. Article 114545. https://doi.org/10.1016/j.envpol.2020.114545

  15. Atema J. 2012. Aquatic odour dispersal fields: opportunities and limits of detection, communication, and navigation // Chemical ecology in aquatic systems / Eds. Brönmark C., Hansson L.-A. Oxford: Oxford Univ. Press. P. 1–18.

  16. Auld J.R., Agrawal A.A., Relyea R.A. 2010. Re-evaluating the costs and limits of adaptive phenotypic plasticity // Proc. Roy. Soc. Biol. Sci. V. 277B. P. 503–511. https://doi.org/10.1098/rspb.2009.1355

  17. Balaa R.E., Blouin-Demers G. 2013. Does exposure to cues of fish predators fed different diets affect morphology and performance of Northern Leopard Frog (Lithobates pipiens) larvae? // Can. J. Zool. V. 91. P. 203–211. https://doi.org/10.1139/cjz-2012-0232

  18. Baldauf S.A., Thüken T., Frommen J.G. et al. 2007. Infection with an acanthocephalan manipulates an amphipod’s reaction to a fish predator’s odours // Int. J. Parasitol. V. 37. P. 61–65. https://doi.org/10.1016/j.ijpara.2006.09.003

  19. Baumgärtner D., Jungbluth A.-D., Koch U., von Elert E. 2002. Effects of infochemicals on microhabitat choice by the freshwater amphipod Gammarus roeseli // Arch. Hydrobiol. V. 155. P. 353–367. https://doi.org/10.1127/archiv-hydrobiol/155/2002/353

  20. Baumgärtner D., Koch U., Rothhaupt K.-O. 2003. Alteration of kairomone-induced antipredator response of the freshwater amphipod Gammarus roeseli by sediment type // J. Chem. Ecol. V. 29. № 6. P. 1391–1401. https://doi.org/10.1023/A:1024213403537

  21. Beklioglu M., Telli M., Gozen A.G. 2006. Fish and mucus-dwelling bacteria interact to produce a kairomone that induces diel vertical migration in Daphnia // Freshwat. Biol. V. 51. P. 2200–2206. https://doi.org/10.1111/j.1365-2427.2006.01642.x

  22. Berendonk T.U. 1999. Influence of fish kairomones on the ovipositing behavior of Chaoborus imagines // Limnol. Oceanogr. V. 44. № 2. P. 454–458. https://doi.org/10.4319/lo.1999.44.2.0454

  23. Bernot R.J., Turner A.M. 2001. Predator identity and trait-mediated indirect effects in a littoral food web // Oecologia. V. 129. P. 139–146. https://doi.org/10.1007/s004420100705

  24. Bezirci G., Akkas S.B., Rinke K. et al. 2012. Impacts of salinity and fish-exuded kairomone on the survival and macromolecular profile of Daphnia pulex // Ecotoxicology. V. 21. P. 601–614. https://doi.org/10.1007/s10646-011-0820-0

  25. Binckley C.A., Resetarits W.J., Jr. 2003. Functional equivalence of non-lethal effects: generalized fish avoidance determines distribution of gray treefrog, Hyla chrysoscelis, larvae // Oikos. V. 102. P. 623–629. https://doi.org/10.1034/j.1600-0706.2003.12483.x

  26. Bjærke O., Andersen T., Titelman J. 2014. Predator chemical cues increase growth and alter development in nauplii of a marine copepod // Mar. Ecol. Prog. Ser. V. 510. P. 15–24. https://doi.org/10.3354/meps10918

  27. Blake M.A., Hart P.J.B. 1993. The behavioural responses of juvenile signal crayfish Pacifastacus leniusculus to stimuli from perch and eels // Freshwat. Biol. V. 29. № 1. P. 89–97. https://doi.org/10.1111/j.1365-2427.1993.tb00747.x

  28. Boersma M., De Meester L., Spaak P. 1999. Environmental stress and local adaptation in Daphnia magna // Limnol. Oceanogr. V. 44. № 2. P. 393–402. https://doi.org/10.4319/lo.1999.44.2.0393

  29. Boriss H., Boersma M., Wiltshire K.H. 1999. Trimethylamine induces migration of waterfleas // Nature. V. 398. P. 382–382. https://doi.org/10.1038/18796

  30. Bourdeau P.E., Butlin R.K., Brönmark C. et al. 2015. What can aquatic gastropods tell us about phenotypic plasticity: a review and meta-analysis // Heredity. V. 115. P. 312–321. https://doi.org/10.1038/hdy.2015.58

  31. Brewer M.C., Dawidiwicz P., Dodson S.I. 1999. Interactive effects of fish kairomone and light on Daphnia escape behavior // J. Plankton Res. V. 21. № 7. P. 1317–1335. https://doi.org/10.1093/plankt/21.7.1317

  32. Brodin T., Johansson F., Bergsten J. 2006. Predator related oviposition site selection of aquatic beetles (Hydroporus spp.) and effects on offspring life-history // Freshwat. Biol. V. 51. P. 1277–1285. https://doi.org/10.1111/j.1365-2427.2006.01563.x

  33. Brönmark C., Hansson L.-A. (eds.). 2012. Chemical ecology in aquatic systems. Oxford: Oxford Univ. Press, 291 p.

  34. Brönmark C., Lakowitz T., Hollander J. 2011. Predator-induced morphological plasticity across local populations of a freshwater snail // PLoS ONE. V. 6. № 7. Article e21773. https://doi.org/10.1371/journal.pone.0021773

  35. Castro B.B., Consciência S., Gonçalves F. 2007. Life history responses of Daphnia longispina to mosquitofish (Gambusia holbrooki) and pumpkinseed (Lepomis gibbosus) kairomones // Hydrobiologia. V. 594. P. 165–174. https://doi.org/10.1007/s10750-007-9074-5

  36. Chapman H.D. 1974. The behaviour of the cercaria of Cryptocotyle lingua // Z. Parasitenkunde. V. 44. P. 211–226.

  37. Charpentier C.L., Cohen J.H. 2015. Chemical cues from fish heighten visual sensitivity in larval crabs through changes in photoreceptor structure and function // J. Exp. Biol. V. 218. P. 3381–3390. https://doi.org/10.1242/jeb.125229

  38. Charpentier C.L., Cohen J.H. 2018. Kairomones from an estuarine fish increase visual sensitivity in brine shrimp (Artemia franciscana) from Great Salt Lake, Utah, USA // J. Comp. Physiol. V. 204 A. P. 197–208. https://doi.org/10.1007/s00359-017-1230-4

  39. Charpentier C.L., Angell C.S., Duffy P.I., Cohen J.H. 2019. Natural variations in estuarine fish, fish odor, and zooplankton photobehavior // Mar. Freshwat. Behav. Physiol. V. 52. № 3. P. 265−282. https://doi.org/10.1080/10236244.2020.1713701

  40. Chivers D.P., Mirza R.S. 2001. Predator diet cues and the assessment of predation risk by aquatic vertebrates a review and prospectus // Chemical signals in vertebrates / Eds. Marchlewska-Koj A. et al. N.Y.: Kluwer Acad. Plenum Publ. P. 277–284.

  41. Chivers D.P., Wisenden B.D., Smith R.J.F. 1996. Damselfly larvae learn to recognize predators from chemical cues in the predator’s diet // Anim. Behav. V. 52. P. 315–320. https://doi.org/10.1006/anbe.1996.0177

  42. Chivers D.P., Mathiron A., Sloychuk J.R., Ferrari M.C.O. 2015. Responses of tadpoles to hybrid predator odours: strong maternal signatures and the potential risk/response mismatch // Proc. Roy. Soc. Biol. Sci. V. 282 B. Article 1809. https://doi.org/10.1098/rspb.2015.0365

  43. Cieri M.D., Stearns D.E. 1999. Reduction of grazing activity of two estuarine copepods in response to the exudate of a visual predator // Mar. Ecol. Prog. Ser. V. 177. P. 157–163. https://doi.org/10.3354/meps177157

  44. Cohen J.H., Forward R.B., Jr. 2003. Ctenophore kairomones and modified aminosugar disaccharides alter the shadow response in a larval crab // J. Plankton Res. V. 25. № 2. P. 203–213. https://doi.org/10.1093/plankt/25.2.203

  45. Cothran R.D., Monahan P.J., Relyea R.A. 2020. Antipredator behaviour affected by prey condition, food availability and pH-mediated info-disruption // Anim. Behav. V. 171. P. 111–118. https://doi.org/10.1016/j.anbehav.2020.11.007

  46. Coulter D.P., Wang P., Coulter A.A. et al. 2019. Nonlinear relationship between silver carp density and their eDNA concentration in a large river // PLoS ONE. V. 14. № 6. Article e0218823. https://doi.org/10.1371/journal.pone.0218823

  47. Dahl J., Nilsson P.A., Pettersson L.B. 1998. Against the flow: chemical detection of downstream predators in running waters // Proc. Roy. Soc. Biol. Sci. V. 265. № 1403. P. 1339–1344. https://doi.org/10.1098/rspb.1998.0439

  48. Dalesman S., Rundle S.D., Coleman R.A., Cotton P.A. 2006. Cue association and antipredator behavior in a pulmonate snail, Lymnaea stagnalis // Anim. Behav. V. 71. P. 789–797. https://doi.org/10.1016/j.anbehav.2005.05.028

  49. Dawidowicz P., Loose C.J. 1992. Metabolic costs during predator-induced diel vertical migration of Daphnia // Limnol. Oceanogr. V. 37. № 8. P. 1589–1595. https://doi.org/10.4319/lo.1992.37.8.1589

  50. Dawidowicz P., Pijanowska J., Ciechomski K. 1990. Vertical migration of Chaoborus larvae is induced by the presence of fish // Ibid. V. 35. № 7. P. 1631–1637. https://doi.org/10.4319/l0.1990.35.7.1631

  51. Dawidowicz P., Prędki P., Pietrzak B. 2010. Shortened lifespan: another cost of fish-predator avoidance in cladocerans? // Hydrobiologia. V. 643. P. 27–32. https://doi.org/10.1007/s10750-010-0132-z

  52. De Meester L. 1993. Genotype, fish-mediated chemicals, and phototactic behavior in Daphnia magna // Ecology. V. 74. № 5. P. 1467–1474. https://doi.org/10.2307/1940075

  53. Derby C.D. 2020. Chemoreception in aquatic invertebrates // The senses: a comprehensive reference. V. 3 / Ed. Meyerhof W. N.Y.: Acad. Press. P. 65–84. https://doi.org/10.1016/B978-0-12-809324-5.23775-9

  54. DeSantis D.L., Davis D.R., Gabor C.R. 2013. Chemically mediated predator avoidance in the Barton Springs salamander (Eurycea sosorum) // Herpetologica. V. 69. № 3. P. 291–297. https://doi.org/10.1655/HERPETOLOGICA-D-13-00017

  55. Devine G.J., Ingvarsdóttir A., Mordue W. et al. 2000. Salmon lice, Lepeophtheirus salmonis, exhibit specific chemotactic responses to semiochemicals originating from the salmonid, Salmo salar // J. Chem. Ecol. V. 26. № 8. P. 1833–1847. https://doi.org/10.1023/A:1005592606682

  56. Dini M.L., Carpenter S.R. 1991. The effect of whole-lake fish community manipulations on Daphnia migratory behavior // Limnol. Oceanogr. V. 36. № 2. P. 370–377. https://doi.org/10.4319/lo.1991.36.2.0370

  57. Dodson S.I. 1988. The ecological role of chemical stimuli for the zooplankton: predator-avoidance behavior in Daphnia // Ibid. V. 33. № 6. P. 1431–1439. https://doi.org/10.4319/lo.1988.33.6part2.1431

  58. Douglas P.L., Forrester G.T., Cooper S.D. 1994. Effects of trout on the diel periodicity of drifting in baetid mayflies // Oecologia. V. 98. P. 48–56. https://doi.org/10.1007/BF00326089

  59. Dzialowski A.R., Lennon J.T., O’Brien W.J., Smith V.H. 2003. Predator-induced phenotypic plasticity in the exotic cladoceran Daphnia lumholtzi // Freshwat. Biol. V. 48. P. 1593–1602. https://doi.org/10.1046/j.1365-2427.2003.01111.x

  60. Ejdung G. 1998. Behavioural responses to chemical cues of predation risk in a three-trophic-level Baltic Sea food chain // Mar. Ecol. Prog. Ser. V. 165. P. 137–144. https://doi.org/10.3354/meps165137

  61. Engel K., Tollrian R. 2009. Inducible defences as key adaptations for the successful invasion of Daphnia lumholtzi in North America? // Proc. R. Soc. B. V. 276. № 1663. P. 1865–1873. https://doi.org/10.1098/rspb.2008.1861.

  62. Engel K., Schreder T., Tollrian R. 2014. Morphological defences of invasive Daphnia lumholtzi protect against vertebrate and invertebrate predators // J. Plankton Res. V. 36. № 4. P. 1140–1145. https://doi.org/10.1093/plankt/fbu023

  63. Epp K.J., Gabor C.R. 2008. Innate and learned predator recognition mediated by chemical signals in Eurycea nana // Ethology. V. 114. P. 607–615. https://doi.org/10.1111/j.1439-0310.2008.01494.x

  64. Eveland L.L., Bohenek J.R., Silberbush A., Resetarits W.J., Jr. 2016. Detection of fish and newt kairomones by ovipositing mosquitoes // Chemical signals in vertebrates. V. 13 / Eds. Schulte B.A. et al. N.Y.: Springer. P. 247–259. https://doi.org/10.1007/978-3-319-22026-0_18.

  65. Ferrari M.C.O., Brown M.R., Pollock M.S., Chivers D.P. 2007. The paradox of risk assessment: comparing responses of fathead minnows to capturereleased and diet-released alarm cues from two different predators // Chemoecology. V. 17. P. 157–161. https://doi.org/10.1007/s00049-007-0373-0

  66. Ferrari M.C.O., Chivers D.P., Wisenden B.D. 2010. Chemical ecology of predator-prey interactions in aquatic ecosystems: a review and prospectus // Can. J. Zool. V. 88. P. 698–724. https://doi.org/10.1139/Z10-029

  67. Fink P. 2007. Ecological functions of volatile organic compounds in aquatic systems // Mar. Freshwat. Behav. Physiol. V. 40. P. 155–168. https://doi.org/10.1080/10236240701602218

  68. Forward R.B., Rittschof D. 1993. Activation of photoresponses of brine shrimp nauplii involved in diel vertical migration by chemical cues from fish // J. Plankton Res. V. 15. P. 693–701. https://doi.org/10.1093/plankt/15.6.693

  69. Forward R.B., Rittschof D. 1999. Brine shrimp larval photoresponses involved in diel vertical migration: activation by fish mucus and modified amino sugars // Limnol. Oceanogr. V. 44. № 8. P. 1904–1916. https://doi.org/10.4319/lo.1999.44.8.1904

  70. Friberg N., Andersen T.H., Hansen H.O. et al. 1994. The effect of brown trout (Salmo trutta L.) on stream invertebrate drift, with special reference to Gammarus pulex L. // Hydrobiologia. V. 294. P. 105–110. https://doi.org/10.1007/BF00016850

  71. Gonzalo A., López P., Martín J. 2009. Learning, memorizing and apparent forgetting of chemical cues from new predators by Iberian green frog tadpoles // Anim. Cogn. V. 12. P. 745–750. https://doi.org/10.1007/s10071-009-0232-1

  72. Göz H. 1941. Űber den Art- und Individualgeruch bei Fischen // Z. Vergl. Physiol. V. 29. P. 1–45.

  73. Gu L., Lyu K., Dai Z. et al. 2017. Predator-specific responses of Moina macrocopa to kaironmones from different fishes // Int. Rev. Hydrobiol. V. 102. P. 83−89. https://doi.org/10.1002/iroh.201601872

  74. Gyssels F., Stoks R. 2006. Behavioral responses to fish kairomones and autotomy in a damselfly // J. Ethol. V. 24. P. 79–83. https://doi.org/10.1007/s10164-005-0165-3

  75. Haas W. 1994. Physiological analyses of host-finding behavior in trematode cercariae: adaptations for transmission success // Parasitology. V. 109. P. SI5–S29. https://doi.org/10.1017/S003118200008505X

  76. Haas W., Ostrowski de Nuñez M. 1988. Chemical signals of fish skin for the attachment response of Acanthostomum brauni cercariae // Parasitol. Res. V. 74. P. 552–557. https://doi.org/10.1007/BF00531633

  77. Haas W., Haberl B., Hofmann M. et al. 1999. Ichthyophthirius multifiliis invasive stages find their fish hosts with complex behavior patterns and in response to different chemical signals // Europ. J. Protistol. V. 35. P. 129–135. https://doi.org/10.1016/S0932-4739(99)80030-3

  78. Hagen N.T., Andersen Å., Stabell O.B. 2002. Alarm responses of the green sea urchin, Strongylocentrotus droebachiensis, induced by chemically labelled durophagous predators and simulated acts of predation // Mar. Biol. V. 140. P. 365–374. https://doi.org/10.1007/s002270100694

  79. Hamrén U., Hansson S. 1999. A mysid shrimp (Mysis mixta) is able to detect the odour of its predator (Clupea harengus) // Ophelia. V. 51. № 3. P. 187–191.

  80. Hazlett B.A., Schoolmaster D.R. 1998. Responses of cambarid crayfish to predator odor // J. Chem. Ecol. V. 24. P. 1757–1770. https://doi.org/10.1023/A:1022347214559

  81. Hirvonen H., Holopainen S., Lempiäinen N. et al. 2007. Sniffing the trade-off: Effects of eel odours on nocturnal foraging activity of native and introduced crayfish juveniles // Mar. Freshwat. Behav. Physiol. V. 40. № 3. P. 213–218. https://doi.org/10.1080/10236240701556919

  82. Hölker F., Stief P. 2005. Adaptive behaviour of chironomid larvae (Chironomus riparius) in response to chemical stimuli from predators and resource density // Behav. Ecol. Sociobiol. V. 58. № 3. P. 256–263. https://doi.org/10.1007/s00265-005-0932-8

  83. Holomuzki J.R., Hatchett L.A. 1994. Predator avoidance costs and habituation to fish chemicals by a stream isopod // Freshwat. Biol. V. 32. № 3. P. 585–592. https://doi.org/10.1111/j.1365-2427.1994.tb01149.x

  84. Holomuzki J.R., Hoyle J.D. 1990. Effect of predatory fish presence on habitat use and diel movement of the stream amphipod, Gammarus minus // Ibid. V. 24. № 3. P. 509–517. https://doi.org/10.1111/j.1365-2427.1990.tb00728.x

  85. Holomuzki J.R., Short T.M. 1988. Habitat use and fish avoidance behaviors by the stream-dwelling isopod Lirceus fontinalis // Oikos. V. 52. № 1. P. 79–86.

  86. Hülsmann S., Vijverberg J., Boersma M., Mooij W.M. 2004. Effects of infochemicals released by gape-limited fish on life history traits of Daphnia: a maladaptive response? // J. Plankton Res. V. 26. P. 535–543. https://doi.org/10.1093/plankt/fbh054

  87. Huryn A.D., Chivers D.P. 1999. Contrasting behavioural responses by detrivorous and predatory mayflies to chemicals released by injured conspecifics and their predators // J. Chem. Ecol. V. 25. P. 2729–2740. https://doi.org/10.1023/A:1020851524335

  88. Jakobsen P.J., Wedekind C. 1998. Copepod reaction to odor stimuli influenced by cestode infection // Behav. Ecol. V. 9. № 4. P. 414–418. https://doi.org/10.1093/beheco/9.4.414

  89. Jensen K.H., Jakobsen P.J., Kleiven O.T. 1998. Fish kairomone regulation of internal swarm structure in Daphnia pulex (Cladocera: Crustacea) // Hydrobiologia. V. 368. P. 123–127. https://doi.org/10.1023/A:1003233728870

  90. Kallert D.M., El-Matbouli M., Haas W. 2005. Polar filament discharge of Myxobolus cerebralis actinospores is triggered by combined non-specific mechanical and chemical cues // Parasitology. V. 131. P. 609–616. https://doi.org/10.1017/S0031182005008383

  91. Kallert D.M., Bauer W., Haas W., El-Matbouli M. 2011. No shot in the dark: myxozoans chemically detect fresh fish // Int. J. Parasitol. V. 41. P. 271–276. https://doi.org/10.1016/j.ijpara.2010.09.012

  92. Kamio M., Derby C.D. 2017. Finding food: how marine invertebrates use chemical cues to track and select food // Nat. Prod. Rept. V. 34. P. 514–528. https://doi.org/10.1039/C6NP00121A

  93. Kasumyan A.O. 2004. The olfactory system in fish: structure, function, and role in behavior // J. Ichthyol. V. 44. Suppl. 2. P. S180–S223.

  94. Kats L.B. 1988. The detection of certain predators via olfaction by small-mouthed salamander larvae (Ambystoma texanum) // Behav. Neural. Biol. V. 50. P. 126–131.

  95. Kats L.B., Dill L.M. 1998. The scent of death: chemosensory assessment of predation risk by prey animals // Écoscience. V. 5. № 3. P. 361–394.

  96. Kats L.B., Petranka J.W., Sih A. 1988. Antipredator defenses and the persistence of amphibian larvae with fishes // Ecology. V. 69. № 6. P. 1865–1870. https://doi.org/10.2307/1941163

  97. Keller T.A., Moore P.A. 1999. Effects of ontogeny and odors on behavior: the influence of crayfish size and fish odors on crayfish movement // Mar. Freshwat. Behav. Physiol. V. 33. P. 35–50. https://doi.org/10.1080/10236249909387080

  98. Kenison E.K., Weldy P.Y., Williams R.N. 2018. There must be something in the water: assessing the behavioral responses of rusty crayfish (Orconectes rusticus) to fish and amphibian predator kairomones // J. Ethol. V. 36. P. 77–84. https://doi.org/10.1007/s10164-017-0529-5

  99. Kiesecker J.M., Chivers D.P., Blaustein A.R. 1996. The use of chemical cues in predator recognition by western toad tadpoles // Anim. Behav. V. 52. P. 1237–1245. https://doi.org/10.1006/anbe.1996.0271

  100. Laforsch C., Beccara L., Tollrian R. 2006. Inducible defenses: the relevance of chemical alarm cues in Daphnia // Limnol. Oceanogr. V. 51. № 3. P. 1466–1472. https://doi.org/10.4319/lo.2006.51.3.1466

  101. Lagrue C., Poulin R. 2007. Life cycle abbreviation in the trematode Coitocaecum parvum: can parasites adjust to variable conditions? // J. Evol. Biol. V. 20. P. 1189–1195. https://doi.org/10.1111/j.1420-9101.2006.01277.x

  102. Lakowitz T., Bronmark C., Nystrom P. 2008. Tuning in to multiple predators: conflicting demands for shell morphology in a freshwater snail // Freshwat. Biol. V. 53. P. 2184–2191. https://doi.org/10.1111/j.1365-2427.2008.02045.x

  103. Landeira-Dabarca A., Álvarez M., Peckarsky B. 2019. Mayflies avoid sweets: fish skin mucus amino sugars stimulate predator avoidance behaviour of Baetis larvae // Anim. Behav. V. 158. P. 35–45. https://doi.org/10.1016/j.anbehav.2019.10.003

  104. Lass S., Spaak P. 2003. Chemically induced anti-predator defences in plankton: a review // Hydrobiologia. V. 491. P. 221–239. https://doi.org/10.1023/A:1024487804497

  105. Lauridsen T.L., Lodge D.M. 1996. Avoidance by Daphnia magna of fish and macrophytes: chemical cues and predator-mediated use of macrophyte habitat // Limniol. Oceanol. V. 41. P. 794–798. https://doi.org/10.4319/lo.1996.41.4.0794

  106. Laurila A. 2000. Behavioural responses to predator chemical cues and local variation in antipredator performance in Rana temporaria tadpoles // Oikos. V. 88. P. 159–168. https://doi.org/10.1034/j.1600-0706.2000.880118.x

  107. Lima S.L., Dill L.M. 1990. Behavioral decisions made under the risk of predation: a review and prospectus // Can. J. Zool. V. 68. P. 619–640. https://doi.org/10.1139/z90-092

  108. Loose C.J., von Elert E., Dawidowicz P. 1993. Chemically induced diel vertical migration in Daphnia: a new bioassay for kairomones exuded by fish // Arch. Hydrobiol. V. 126. P. 329–337.

  109. Lürling M., Scheffer M. 2007. Info-disruption: pollution and the transfer of chemical information between organisms // Trends Ecol. Evol. V. 22. P. 374–379. https://doi.org/10.1016/j.tree.2007.04.002

  110. Macchiusi F., Baker R.L. 1992. Effects of predators and food availability on activity and growth of Chironomus tentans (Chironomidae: Diptera) // Freshwat. Biol. V. 28. P. 207–216. https://doi.org/10.1111/j.1365-2427.1992.tb00577.x

  111. Macháček J. 1995. Inducibility of life history chenges by fish kairomone in various developmental stages of Daphnia // J. Plankton Res. V. 17. P. 1513–1520. https://doi.org/10.1093/plankt/17.7.1513

  112. Mathis A., Hoback W.W. 1997. The influence of chemical stimuli from predators on precopulatory pairing by the amphipod, Gammarus pseudolimnaeus // Ethology. V. 103. P. 33–40. https://doi.org/10.1111/j.1439-0310.1997.tb00004.x

  113. McIntosh A.R., Peckarsky B.L. 1996. Differential behavioural responses of mayflies from streams with and without fish to trout odour // Freshwat. Biol. V. 35. P. 141–148. https://doi.org/10.1046/j.1365-2427.1996.00489.x

  114. McIntosh A.R., Peckarsky B.L. 2004. Are mayfly anti-predator responses to fish odour proportional to risk? // Arch. Hydrobiol. V. 160. № 2. P. 145–151. https://doi.org/10.1127/0003-9136/2004/0160-0145

  115. McIntosh A.R., Peckarsky B.L., Taylor B.W. 1999. Rapid size-specific changes in the drift of Baetis bicaudatus (Ephemeroptera) caused by alterations in fish odour concentration // Oecologia. V. 118. P. 256–264. https://doi.org/10.1007/s004420050726

  116. McKelvey L.M., Forward R.B., Jr. 1995. Activation of brine shrimp nauplii photoresponses involved in diel vertical migration by chemical cues from visual and non-visual predators // J. Plankton Res. V. 17. № 12. P. 2191–2206. https://doi.org/10.1093/plankt/17.12.2191

  117. Mitchell M.D., Bairos-Novak K.R., Ferrari M.C.O. 2017. Mechanisms underlying the control of responses to predator odours in aquatic prey // J. Exp. Biol. V. 220. P. 1937–1946. https://doi.org/10.1242/jeb.135137

  118. Mobley A.S., Michel W.C., Lucero M.T. 2008. Odorant responsiveness of squid olfactory receptor neurons // Anat. Rec. V. 291. P. 763–774. https://doi.org/10.1002/ar.20704

  119. Moore P.A., Bergman D.A. 2005. The smell of success and failure: the role of intrinsic and extrinsic chemical signals on the social behavior of crayfish // Integr. Comp. Biol. V. 45. P. 650–657. https://doi.org/10.1093/icb/45.4.650

  120. Moore R.D., Newton B., Sih A. 1996. Delayed hatching as a response of streamside salamander eggs to chemical cues from predatory sunfish // Oikos. V. 77. P. 331–335.

  121. Motti C.A., Bose U., Roberts R.E. et al. 2018. Chemical ecology of chemosensation in Asteroidea: insights towards management strategies of pest species // J. Chem. Ecol. V. 44. P. 147–177. https://doi.org/10.1007/s10886-018-0926-4

  122. Naddafi R., Rudstam L.G. 2013. Predator-induced behavioural defences in two competitive invasive species: the zebra mussel and the quagga mussel // Anim. Behav. V. 86. P. 1275–1284. https://doi.org/10.1016/j.anbehav.2013.09.032

  123. Naddafi R., Eklöv P., Pettersson K. 2007. Non-lethal predator effects on the feeding rate and prey selection of the exotic zebra mussel Dreissena polymorpha // Oikos. V. 116. P. 1289–1298. https://doi.org/10.1111/j.2007.0030-1299.15695.x

  124. Nevitt G.A. 2008. Sensory ecology on the high seas: the odor world of the procellariiform seabirds // J. Exp. Biol. V. 211. P. 1706–1713. https://doi.org/10.1242/jeb.015412

  125. Nevitt G.A., Veit R.R., Kareiva P. 1995. Dimethyl sulphide as a foraging cue for Antarctic procellariiform seabirds // Nature. V. 376. P. 681–682. https://doi.org/10.1038/376680ao

  126. Nyström P., Åbjörnsson K. 2000. Effects of fish chemical cues on the interactions between tadpoles and crayfish // Oikos. V. 88. № 1. P. 181–190. https://doi.org/10.1034/j.1600-0706.2000.880120.x

  127. O’Bryan L.M., Forrester G.E. 1997. Effects of fish presence and simulated moonlight gradients on nighttime horizontal movements of a predatory zooplankter, Chaoborus punctipennis // J. Plankton Res. V. 19. № 10. P. 1441–1453. https://doi.org/10.1093/plankt/19.10.1441

  128. Ostrowski de Nuñez M., Haas W. 1991. Penetration stimuli of fish skin for Acanthostomum brauni cercariae // Parasitology. V. 102. P. 101–104. https://doi.org/10.1017/S003118200006039X

  129. Paterson R.A., Pritchard D.W., Dick J.T.A. et al. 2013. Predator cue studies reveal strong trait-mediated effects in communities despite variation in experimental designs // Anim. Behav. V. 86. P. 1301–1313. https://doi.org/10.1016/j.anbehav.2013.09.036

  130. Paul V.J., Arthur K.E., Ritson-Williams R. et al. 2007. Chemical defenses: from compounds to communities // Biol. Bull. V. 213. P. 226–251. https://doi.org/10.2307/25066642

  131. Peckarsky B.L., McIntosh A.R. 1998. Fitness and community consequences of avoiding multiple predators // Oecologia. V. 113. P. 565–576. https://doi.org/0.1007/s004420050410

  132. Petranka J.W., Fakhoury K. 1991. Evidence of a chemically mediated avoidance response of ovipositing insects to bluegills and green frog tadpoles // Copeia. № 1. P. 234–239. https://doi.org/10.2307/1446271

  133. Petranka J.W., Kats L.B., Sih A. 1987. Predator-prey interactions among fish and larval amphibians: use of chemical cues to detect predatory fish // Anim. Behav. V. 35. P. 420–425. https://doi.org/10.1016/S0003-3472(87)80266-X

  134. Pijanowska J., Kowalczewski A. 1997. Predators can induce swarming behaviour and locomotory responses in Daphnia // Freshwat. Biol. V. 37. P. 649–656. https://doi.org/10.1046/j.1365-2427.1997.00192.x

  135. Pijanowska J., Stolpe G. 1996. Summer diapause in Daphnia as a reaction to the presence of fish // J. Plankton Res. V. 18. № 8. P. 1407–1412. https://doi.org/10.1093/plankt/18.8.1407

  136. Pijanowska J., Dawidowicz P., Howe A., Weider L.J. 2006a. Predator-induced shifts in Daphnia life-histories under different food regimes // Arch. Hydrobiol. V. 167. № 1–4. P. 37–54. https://doi.org/10.1127/0003-9136/2006/0167-0037

  137. Pijanowska J., Dawidowicz P., Weider L.J. 2006b. Predator-induced escape response in Daphnia // Ibid. V. 167. № 1–4. P. 77–87. https://doi.org/10.1127/0003-9136/2006/0167-0077

  138. Pijanowska J., Markowska M., Ruszczyńska A. et al. 2020. Kairomone-like activity of bile and bile components: a step towards revealing the chemical nature of fish kairomone // Sci. Rept. V. 10. Article 7037. https://doi.org/10.1038/s41598-020-63456-z

  139. Pohnert G., von Elert E. 2000. No ecological relevance of trimethylamine in fish – Daphnia interactions // Limnol. Oceanogr. V. 45. P. 1153–1156. https://doi.org/10.4319/lo.2000.45.5.1153

  140. Purcell J.E., Anderson P.A.V. 1995. Electrical responses to water soluble components of fish mucus recorded from the cnidocytes of a fish predator, Physalia physalis // Mar. Freshwat. Behav. Physiol. V. 26. P. 149–162. https://doi.org/10.1080/10236249509378936

  141. Rahman Y.J., Forward R.B., Jr., Rittschof D. 2000. Responses of mud snails and periwinkles to environmental odors and disaccacharide mimics of fish odor // J. Chem. Ecol. V. 26. № 3. P. 679–696. https://doi.org/10.1023/A:1005428221952

  142. Ramberg-Pihl N.C., Yurewicz K.L. 2020. Behavioral responses of northern crayfish (Faxonius virilis) to conspecific alarm cues and predator cues from smallmouth bass (Micropterus dolomieu) // Mar. Freshwat. Behav. Physiol. V. 53. № 1. P. 1−16. https://doi.org/10.1080/10236244.2020.1717338

  143. Reede T. 1995. Life history shifts in response to different levels of fish kairomones in Daphnia // J. Plankton Res. V. 17. № 8. P. 1661–1633. https://doi.org/10.1093/plankt/17.8.1661

  144. Relyea R.A. 2001. Morphological and behavioral plasticity of larval anurans in response to different predators // Ecology. V. 82. № 2. P. 523–540. https://doi.org/10.1890/0012-9658(2001)082[0523:MABPOL]2.0.CO;2

  145. Relyea R.A. 2003. Predators come and predators go: the reversibility of predator-induced traits // Ibid. V. 84. № 7. P. 1840–1848. https://doi.org/10.1890/0012-9658(2003)084[1840:PCAPGT]2.0.CO;2

  146. Resetarits W.J., Jr., Binckley C.A. 2013. Is the pirate really a ghost? Evidence for generalized chemical camouflage in an aquatic predator, pirate perch Aphredoderus sayanus // Amer. Naturalist. V. 181. № 5. P. 690–699. https://doi.org/10.1086/670016

  147. Resetarits W.J., Jr., Wilbur H.M. 1989. Choice of oviposition site by Hyla chrysoscelis: role of predators and competitors // Ecology. V. 70. № 1. P. 220–228. https://doi.org/10.2307/1938428

  148. Ringelberg J. 1995. Changes in light intensity and diel vertical migration: a comparison of marine and freshwater environments // J. Mar. Biol. Assoc. UK. V. 75. № 1. P. 15–25. https://doi.org/10.1017/S0025315400015162

  149. Ringelberg J., van Gool E. 1998. Do bacteria, not fish, produce “fish kairomone”? // J. Plankton Res. V. 20. № 9. P. 1847–1852. https://doi.org/10.1093/plankt/20.9.1847

  150. Ringelberg J., Flik B.J.G., Ljndenaar D., Royackers K. 1991. Diel vertical migration of Daphnia hyalina (sensu latiori) in Lake Maarsseveen: Part I. Aspects of seasonal and daily timing // Arch. Hydrobiol. V. 121. P. 129–145.

  151. Ritchie S.A., Laidlaw-Bell C. 1994. Do fish repel oviposition by Aedes taeniorhychus? // J. Amer. Mosquito Control Assoc. V. 10. № 3. P. 380–384.

  152. Rittschof D., Cohen J.H. 2004. Crustacean peptide and peptide-like pheromones and odor // Peptides. V. 25. P. 1503–1516. https://doi.org/10.1016/j.peptides.2003.10.024

  153. Roca J.R., Baltanas A., Uiblein F. 1993. Adaptive responses in Cypridopsis vidua (Crustacea: Ostracoda) to food and shelter offered by a macrophyte (Chara fragilis) // Hydrobiologia. V. 262. P. 127–131. https://doi.org/10.1007/BF00007513

  154. Rundle S.D., Brönmark C. 2001. Inter- and intraspecific trait compensation of defense mechanisms in freshwater snails // Proc. Roy. Soc. Biol. Sci. V. 268. P. 1463–1468. https://doi.org/10.1098/rspb.2001.1682

  155. Scheibling R.E., Hamm J. 1991. Interactions between sea urchins (Strongylocentrotus droebachiensis) and their predators in field and laboratory experiments // Mar. Biol. V. 110. P. 105–116. https://doi.org/10.1007/BF01313097

  156. Schwarzenberger A., Courts C., von Elert E. 2009. Target gene approaches: gene expression in Daphnia magna exposed to predator-borne kairomones or to microcystin-producing and microcystin-free Microcystis aeruginosa // BMC Genomics. V. 10. Article 527. https://doi.org/10.1186/1471-2164-10-527

  157. Scrimgeour G.J., Culp J.M., Kevin J. 1994. Anti-predator responses of mayfly larvae to conspecific and predator stimuli // J. N. Amer. Bentholog. Soc. V. 13. № 2. P. 299–309.

  158. Short T.M., Holomuzki J.R. 1992. Indirect effects of fish on foraging behaviour and leaf processing by the isopod Lirceus fontinalis // Freshwat. Biol. V. 27. P. 91–97. https://doi.org/10.1111/j.1365-2427.1992.tb00526.x

  159. Sih A., Kats L.B. 1991. Effects of refuge availability on the responses of salamander larvae to chemical cues from predatory green sunfish // Anim. Behav. V. 42. P. 330–332. https://doi.org/10.1016/S0003-3472(05)80569-X

  160. Smith G.R., Burgett A.A., Temple K.G. et al. 2008. The ability of three species of tadpoles to differentiate among potential fish predators // Ethology. V. 114. P. 701–710. https://doi.org/10.1111/j.1439-0310.2008.01505.x

  161. Sorensen P.W., Wisenden B.D. (eds.). 2015. Fish pheromones and related cues. Iowa: Wiley Blackwell, 296 p.

  162. Spaak P., Boersma M. 1997. Tail spine length in the Daphnia galeata complex: costs and benefits of induction by fish // Aquat. Ecol. V. 31. P. 89–98. https://doi.org/10.1023/A:1009935100804

  163. Stabell O.B. 2005. Latent alarm signals: are they present in vertebrates // Chemical signals in vertebrates. V. 10 / Eds. Mason R.T. et al. N.Y.: Springer. P. 381–388.

  164. Stabell O.B., Ogbebo F., Primicerio R. 2003. Inducible defences in Daphnia depend on latent alarm signals from conspecific prey activated in predators // Chem. Senses. V. 28. P. 141–153. https://doi.org/10.1093/chemse/28.2.141

  165. Staufer H.-P., Semlitsch R.D. 1993. Effects of visual, chemical and tactile cues of fish on the behavioural response of tadpoles // Anim. Behav. V. 46. P. 355–364. https://doi.org/10.1006/anbe.1993.1197

  166. Stibor H. 1992. Predator induced life-history shifts in a freshwater cladoceran // Oecologia. V. 92. P. 162–165. https://doi.org/10.1007/BF00317358

  167. Stibor H., Lampert W. 2000. Components of additive variance in life-history traits of Daphnia hayalina: seasonal differences in the response to predator signals // Oikos. V. 88. № 1. P. 129–138. https://doi.org/10.1034/j.1600-0706.2000.880115.x

  168. Stoks E., De Block M., Slos S. et al. 2006. Time constrains mediate predator-induced plasticity in immune function, condition, and life history // Ecology. V. 87. P. 809–815. https://doi.org/10.1890/0012-9658(2006)87[809:TCMPPI]2.0.CO;2

  169. Takahara T., Kohmatsu Y., Maruyama A., Yamaoka R. 2003. Effects of fish chemical cues on tadpole survival // Ecol. Res. V. 18. P. 793–796. https://doi.org/10.1111/j.1440-1703.2003.00598.x

  170. Tams V., Lüneburg J., Seddar L. et al. 2018. Intraspecific phenotypic variation in life history traits of Daphnia galeata populations in response to fish kairomones // PeerJ. V. 6. Article e5746. https://doi.org/10.7717/peerj.5746

  171. Teplitsky C., Plenet S., Lena J.-P. et al. 2005. Escape behaviour and ultimate causes of specific induced defences in an anuran tadpole // J. Evol. Biol. V. 18. P. 180–190. https://doi.org/10.1111/j.1420-9101.2004.00790.x

  172. Tollrian R. 1994. Fish-kairomone induced morphological changes in Daphnia lumholtzi (Sars) // Arch. Hydrobiol. V. 130. P. 69–75.

  173. Tollrian R., Heibl C. 2004. Phenotypic plasticity in pigmentation in Daphnia induced by UV radiation and fish kairomones // Function. Ecol. V. 18. P. 497–502. https://doi.org/10.1111/j.0269-8463.2004.00870.x

  174. Tollrian R., von Elert E. 1994. Enrichment and purification of Chaoborus kairomone from water: further steps toward its chemical characterization // Limnol. Oceanogr. V. 39. № 4. P. 788–796. https://doi.org/10.4319/lo.1994.39.4.0788

  175. Turner A.M., Montgomery S.L. 2003. Spatial and temporal scales of predator avoidance: experiments with fish and snails // Ecology. V. 84. № 3. P. 616–622. https://doi.org/10.1890/0012-9658(2003)084[0616:SATSOP]2.0.CO;2

  176. Turner A.M., Fetterolf S.A., Bernot R.J. 1999. Predator identity and consumer behavior: differential effects of fish and crayfish on the habitat use of a freshwater snail // Oecologia. V. 118. P. 242–247. https://doi.org/10.1007/s004420050724

  177. Valentinčič T. 1991. Behavioral responses of the brittle star Ophiura ophiura to chemical stimuli during adaptation of amino acid chemoreceptors // Chem. Senses. V. 16. P. 267–275. https://doi.org/10.1093/chemse/16.3.267

  178. Van Dam A.R., Walton W.E. 2008. The effect of predatory fish exudates on the ovipostional behaviour of three mosquito species: Culex quinquefasciatus, Aedes aegypti and Culex tarsalis // Med. Vet. Entomol. V. 22. P. 399–404. https://doi.org/10.1111/j.1365-2915.2008.00764.x

  179. Van Gool E., Ringelberg J. 1995. Swimming of Daphnia galeata × hyalina in response to changing light intensity: influence of food availability and predator kairomone // Mar. Freshwat. Behav. Physiol. V. 26. P. 259–265. https://doi.org/10.1080/10236249509378944

  180. Van Gool E., Ringelberg J. 1998. Light-induced migration behavior of Daphnia modified by food and predator kairomone // Anim. Behav. V. 56. P. 741–747. https://doi.org/10.1006/anbe.1998.0821

  181. Von Elert E., Loose C.J. 1996. Predator-induced diel vertical migration in Daphnia: enrichment and preliminary chemical characterization of a kairomone exuded by fish // J. Chem. Ecol. V. 22. № 5. P. 885–895. https://doi.org/10.1007/BF02029942

  182. Von Elert E., Pohnert G. 2000. Predator specificity of kairomones in diel vertical migration of Daphnia: a chemical approach // Oikos. V. 88. № 1. P. 119–128. https://doi.org/10.1034/j.1600-0706.2000.880114.x

  183. Von Elert E., Stibor H. 2006. Predator-mediated life history shifts in Daphnia: enrichment and preliminary chemical characterisation of a kairomone exuded by fish // Arch. Hydrobiol. V. 167. P. 21–35. https://doi.org/10.1127/0003-9136/2006/0167-0021

  184. Vonesh J.R., Blaustein L. 2010. Predator-induced shifts in mosquito oviposition site selection: a meta-analysis and implications for vector control // Isr. J. Ecol. Evol. V. 56. P. 123–139. https://doi.org/10.1560/IJEE.56.2-3.123

  185. Wahle R.A. 1992. Body-size dependent anti-predator mechanisms of the American lobster // Oikos. V. 65. № 1. P. 52–60.

  186. Weber A., Declerck S. 1997. Phenotypic plasticity of Daphnia life history traits in response to predator kairomones: genetic variability and evolutionary potential // Hydrobiologia. V. 360. P. 89–99. https://doi.org/10.1023/A:1003188331933

  187. Williams D.D., Moore K.A. 1982. The effect of environmental factors on the activity of Gammarus pseudolimnaeus (Amphipoda) // Ibid. V. 96. P. 137–147. https://doi.org/10.1007/BF02185429

  188. Williams D.D., Moore K.A. 1985. The role of semiochemicals in benthic community relationships of the lotic amphipod Gammarus pseudolimnaeus: a laboratory analysis // Oikos. V. 44. № 2. P. 280–286.

  189. Wisenden B.D. 2015. The cue–signal continuum: a hypothesized evolutionary trajectory for chemical communication in fishes // Fish pheromones and related cues / Eds. Sorensen P.W., Wisenden B.D. Iowa: Wiley Blackwell, 296 p.

  190. Wisenden B.D., Chivers D.P., Smith R.J.F. 1997. Learned recognition of predation risk by Ennalagma damselfly larvae (Odonata, Zygoptera) on the basis of chemical cues // J. Chem. Ecol. V. 23. № 1. P. 137–121. https://doi.org/10.1023/B:JOEC.0000006350.66424.3d

  191. Wooster D., Sih A. 1995. A review of the drift and activity responses of stream prey to predator presence // Oikos. V. 73. P. 3–8.

  192. Wootton R.J. 1998. Ecology of teleost fishes. Dordrecht: Kluwer Acad. Publ., 386 p.

  193. Wrede W.L. 1932. Versiche űber den Artduft der Elritzen // Z. Vergl. Physiol. V. 17. № 3. P. 510–519.

  194. Wudkevich K.N., Wisenden B.D., Chivers D.P., Smith R.J.F. 1997. Reactions of Gammarus lacustris to chemical stimuli from natural predators and injured conspecifics // J. Chem. Ecol. V. 23. № 4. P. 1163–1173. https://doi.org/10.1023/B:JOEC.0000006393.92013.36

Дополнительные материалы отсутствуют.