Вопросы ихтиологии, 2023, T. 63, № 5, стр. 608-620

Липидный профиль мышечной ткани некоторых мезопелагических видов рыб семейств Stomiidae и Myctophidae с разных глубин моря Ирмингера, Северная Атлантика

В. П. Воронин 1*, Д. В. Артеменков 2, А. М. Орлов 345, С. А. Мурзина 1

1 Институт биологии Карельского научного центра РАН – ИБ КарНЦ РАН
Петрозаводск, Россия

2 Всероссийский научно-исследовательский институт рыбного хозяйства и океанографии – ВНИРО
Москва, Россия

3 Институт океанологии РАН – ИО РАН
Москва, Россия

4 Институт проблем экологии и эволюции РАН – ИПЭЭ РАН
Москва, Россия

5 Томский государственный университет – ТГУ
Томск, Россия

* E-mail: voronen-viktor@mail.ru

Поступила в редакцию 17.11.2022
После доработки 30.12.2022
Принята к публикации 10.01.2023

Аннотация

Впервые исследован качественный и количественный липидный профиль (общие липиды, а также полярные и неполярные липиды) мышечной ткани шести видов мезопелагических рыб, являющихся представителями широко распространённых в Мировом океане двух глубоководных семейств – Stomiidae и Myctophidae. Для исследованных видов установлена видоспецифичность накопления липидов, указывающая на различия в механизмах компенсаторных реакций. Основной формой запасания липидов у изученных видов являются триацилглицерины. Однако у Borostomias antarcticus отмечено также накопление эфиров холестерина и восков – липидов, характерных для вертикальных мигрантов. Выявлены отличительные особенности миктофовых и стомиевых, связанные с накоплением холестерина и вариациями в содержании разных фосфолипидных фракций, что указывает на использование рыбами этих семейств различных механизмов регуляции и поддержания физико-химического состояния (проницаемость, жидкостность) биологических мембран при изменении комплекса факторов среды (температуры, солёности, гидростатического давления, специфического фотопериода) с увеличением глубины обитания.

Ключевые слова: липиды, фосфолипиды, мезопелагические рыбы, Myctophidae, Stomiidae, Северная Атлантика.

Список литературы

  1. Бердичевец И.Н., Тяжелова Т.В., Шимшилашвили Х.Р., Рогаев Е.И. 2010. Лизофосфатидная кислота – липидный медиатор с множеством биологических функций. Пути биосинтеза и механизм действия // Биохимия. Т. 75. № 9. С. 1213–1223.

  2. Болдырев А.А., Кяйвяряйнен Е.И., Илюха В.А. 2006. Биомембранология: учебное пособие. Петрозаводск: Изд-во КарНЦ РАН, 226 с.

  3. Веланский П.В., Костецкий Э.Я. 2008. Липиды морских холодноводных рыб // Биология моря. Т. 34. № 1. С. 53–57.

  4. Гершанович А.Д., Лапин В.И., Шатуновский М.И. 1991. Особенности обмена липидов у рыб // Успехи соврем. биологии. Т. 111. № 2. С. 207–219.

  5. Долгов А.В. 2011. Атлас-определитель рыб Баренцева моря. Мурманск: Изд- во ПИНРО, 187 с.

  6. Кабаков Р.И. 2016. Анализ и визуализация данных на языке R. М.: ДМК Пресс, 588 с.

  7. Каган В.Е., Тюрин В.А., Горбунов Н.В. и др. 1984. Являются ли изменения микровязкости и ассиметричное распределение фосфолипидов в мембране необходимыми условиями для передачи сигнала? Сравнение механизмов передачи сигнала в плазматических мембранах синапсов головного мозга и фоторецепторных мембранах сетчатки // Журн. эволюц. биохимии и физиологии. Т. 20. № 1. С. 6–11.

  8. Кольман Я., Рем К.Г. 2009. Наглядная биохимия. М.: Мир, 469 с.

  9. Костецкий Э.Я., Веланский П.В., Санина Н.М. 2013. Фазовые переходы фосфолипидов как критерий оценки способности рыб к термоадаптации // Биология моря. Т. 39. № 2. С. 136–143.

  10. Крепс Е.М. 1981. Липиды клеточных мембран. Эволюция липидов мозга. Адаптационная функция липидов. Л.: Наука, 339 с.

  11. Кукуев Е.И., Гущин А.В., Гомолицкий В.Д. и др. 1980. Методические материалы по определению рыб открытых вод Северной Атлантики. Калининград: Изд-во АтлантНИРО, 145 с.

  12. Лапин В.И., Шатуновский М.И. 1981. Особенности состава, физиологическое и экологическое значение липидов // Успехи соврем. биологии. Т. 92. № 6. С. 380–394.

  13. Макарова И.И., Головко М.Ю. 2001. Асимметрия источника вторичных мессенджеров – фосфатидилинозита коры головного мозга крыс при усилении геомагнитной активности // Матер. науч. конф. “Актуальные вопросы функциональной межполушарной асимметрии”. М.: Изд-во МГУ. С. 103–104.

  14. Немова Н.Н., Нефедова З.А., Мурзина С.А. 2014. Оценка динамики липидов в раннем развитии атлантического лосося Salmo salar // Тр. КарНЦ РАН. № 5. С. 44–52.

  15. Осадчая Л.М., Галкина О.В., Ещенко Н.Д. 2004. Влияние кортизола на активность Na+/K+-АТФазы и интенсивность ПОЛ в нейронах и нейроглии // Биохимические и молекулярно-биологические основы физиологических функций. СПб.: Изд-во СПбГУ. С. 220–226.

  16. Панов В.П., Фалий С.С., Орлов А.М., Артеменков Д.В. 2019. Гистоструктура локомоторного аппарата трёх глубоководных видов (Myctophum punctatum, Notoscopelus kroyeri, Lampanyctus macdonaldi) светящихся анчоусов (Myctophidae) // Вопр. ихтиологии. Т. 59. № 6. С. 715. https://doi.org/10.1134/S0042875219060109

  17. Перевозчиков А.П. 2008. Стеролы и их транспорт в развитии животных // Онтогенез. Т. 39. № 3. С. 165–189.

  18. Пронина Г.И., Орлов А.М., Артеменков Д.В. 2021. Параметры периферической крови двух видов глубоководных рыб семейства веретенниковых (Paralepididae) // Изв. РАН. Сер. биол. № 4. С. 444–448. https://doi.org/10.31857/S1026347021030139

  19. Сидоров В.С. 1983. Экологическая биохимия рыб. Липиды. Л.: Наука, 240 с.

  20. Шитиков В.К., Мастицкий С.Э. 2017. Классификация, регрессия и другие алгоритмы Data Mining с использованием R, 351 с. (https://github.com/ranalytics/data-mining. Version 01/2023).

  21. Arduini A., Peschechera A., Dottori S. et al. 1996. High performance liquid chromatography of long-chain acylcarnitine and phospholipids in fatty acid turnover studies // J. Lipid Res. V. 37. № 3. P. 684–689. https://doi.org/10.1016/S0022-2275(20)37609-4

  22. Arts M.T., Kohler C.C. 2009. Health and conditions in fish: The influence of lipids on membrane competency and immune response // Lipids in aquatic ecosystems. N.Y.: Springer. P. 237–256. https://doi.org/10.1007/978-0-387-89366-2_10

  23. Ashjian C.J., Campbell R.G., Welch H.T. et al. 2003. Annual cycle in abundance, distribution, and size in relation to hydrography of important copepod species in the western Arctic Ocean // Deep Sea Res. Pt. I. Oceanogr. Res. Pap. V. 50. № 10–11. P. 1235–1261. https://doi.org/10.1016/S0967-0637(03)00129-8

  24. Baby L., Sankar T.V., Anandan R. 2014. Comparison of lipid profile in three species of myctophids from the south west coast of Kerala, India // Natl. Acad. Sci. Lett. V. 37. № 1. P. 33–37. https://doi.org/10.1007/s40009-013-0185-4

  25. Biogeography of the lantern fishes (Myctophidae) south of 30°S. 1982. Washington: AGU, 110 p. https://doi.org/10.1029/AR035

  26. Catul V., Gauns M., Karuppasamy P.K. 2011. A review on mesopelagic fishes belonging to family Myctophidae // Rev. Fish Biol. Fish. V. 21. № 3. P. 339–354. https://doi.org/10.1007/s11160-010-9176-4

  27. Connan M., Mayzaud P., Duhamel G. et al. 2010. Fatty acid signature analysis documents the diet of five myctophid fish from the Southern Ocean // Mar. Biol. V. 157. № 10. P. 2303–2316. https://doi.org/10.1007/s00227-010-1497-2

  28. Daleke D.L. 2003. Regulation of transbilayer plasma membrane phospholipid asymmetry // J. Lipid Res. V. 44. № 2. P. 233–242. https://doi.org/10.1194/jlr.R200019-JLR200

  29. Duhamel G., Hulley P.A., Causse R. et al. 2014. Biogeographic patterns of fish // Biogeographic atlas of the Southern Ocean. Cambridge: SCAR. P. 328–362.

  30. Eduardo L.N., Lucena-Frédou F., Mincarone M.M. et al. 2020. Trophic ecology, habitat, and migratory behaviour of the viperfish Chauliodus sloani reveal a key mesopelagic player // Sci. Rep. V. 10. № 1. Article 20996. https://doi.org/10.1038/s41598-020-77222-8

  31. Folch J., Lees M., Sloany Seanley G.H. 1957. A simple method for the isolation and purification of total lipids from animal tissue (for brain, liver and muscle) // J. Biol. Chem. V. 226. P. 497–509. https://doi.org/10.1016/S0021-9258(18)64849-5

  32. Goutx M., Guigue C., Striby L. 2003. Triacylglycerol biodegradation experiment in marine environmental conditions: definition of a new lipolysis index // Org. Geochem. V. 34. № 10. P. 1465–1473. https://doi.org/10.1016/S0146-6380(03)00119-0

  33. Hellwig J. 2005. Defining parameters for a reproducible TLC-separation of phospholipids using ADC 2: PhD Thesis. Windisch: Univ. Appl. Sci. Northw. Switzerland, p. 63

  34. Hidalgo M., Browman H.I. 2019. Developing the knowledge base needed to sustainably manage mesopelagic resources // ICES J. Mar. Sci. V. 76. № 3. P. 609–615. https://doi.org/10.1093/icesjms/fsz067

  35. Hochachka P.W., Somero G.N. 2002. Biochemical adaptation: mechanism and process in physiological evolution. N.Y.: Oxford Univ. Press, 466 p.

  36. ICES. 2015. Manual for the International deep pelagic ecosystem survey in the Irminger Sea and adjacent waters // Series of ICES Survey Protocol SISP 11 – IDEEPS VI. Copenhagen: ICES Headquarters, 49 p. https://doi.org/10.17895/ices.pub.7584

  37. Irigoien X., Klevjer T.A., Røstad A. et al. 2014. Large mesopelagic fishes biomass and trophic efficiency in the open ocean // Nat. Commun. V. 5. № 1. Article 3271. https://doi.org/10.1038/ncomms4271

  38. Kenaley C.P. 2008. Diel vertical migration of the loosejaw dragonfishes (Stomiiformes: Stomiidae: Malacosteinae): a new analysis for rare pelagic taxa // J. Fish Biol. V. 73. № 4. P. 888–901. https://doi.org/10.1111/j.1095-8649.2008.01983.x

  39. Klimpel S., Palm H.W., Busch M.W. et al. 2006. Fish parasites in the Arctic deep-sea: poor diversity in pelagic fish species vs. heavy parasite load in a demersal fish // Deep Sea Res. Pt. I. Oceanogr. Res. Pap. V. 53. № 7. P. 1167–1181. https://doi.org/10.1016/j.dsr.2006.05.009

  40. Lea M.A., Nichols P.D., Wilson G. 2002. Fatty acid composition of lipid-rich myctophids and mackerel icefish (Champsocephalus gunnari) – Southern Ocean food-web implications // Polar Biol. V. 25. № 11. P. 843–854. https://doi.org/10.1007/s00300-002-0428-1

  41. Macdonald A. 2021. Life at high pressure. Cham: Springer, 445 p. https://doi.org/10.1007/978-3-030-67587-5

  42. Munschy C., Spitz J., Bely N. et al. 2022. A large diversity of organohalogen contaminants reach the meso-and bathypelagic organisms in the Bay of Biscay (northeast Atlantic) // Mar. Pollut. Bull. V. 184. Article 114180. https://doi.org/10.1016/j.marpolbul.2022.114180

  43. Murzina S.A., Pekkoeva S.N., Kondakova E.A. et al. 2020. Tiny but fatty: lipids and fatty acids in the daubed shanny (Leptoclinus maculatus), a small fish in Svalbard waters // Biomolecules. V. 10. № 3. P. Article 368. https://doi.org/10.3390/biom10030368

  44. Murzina S.A., Voronin V.P., Ruokolainen T.R. et al. 2022. Comparative analysis of lipids and fatty acids in beaked redfish Sebastes mentella Travin, 1951 collected in wild and in commercial products // J. Mar. Sci. Eng. V. 10. № 1. Article 59. https://doi.org/10.3390/jmse10010059

  45. Neighbors M.A. 1988. Triacylglycerols and wax esters in the lipids of deep midwater teleost fishes of the Southern California Bight // Mar. Biol. V. 98. № 1. P. 15–22. https://doi.org/10.1007/BF00392654

  46. Nevenzel J.C. 1970. Occurrence, function and biosynthesis of wax esters in marine organisms // Lipids. V. 5. № 3. P. 308–319. https://doi.org/10.1007/BF02531462

  47. Olivar M.P., Bernal A., Molí B. et al. 2012. Vertical distribution, diversity and assemblages of mesopelagic fishes in the western Mediterranean // Deep Sea Res. Pt. I. Oceanogr. Res. Pap. V. 62. P. 53–69. https://doi.org/10.1016/j.dsr.2011.12.014

  48. Olivar M.P., Hulley P.A., Castellón A. et al. 2017. Mesopelagic fishes across the tropical and equatorial Atlantic: biogeographical and vertical patterns // Prog. Oceanogr. V. 151. P. 116–137. https://doi.org/10.1016/j.pocean.2016.12.001

  49. Olsen R.E., Henderson R.J. 1989. The rapid analysis of neutral and polar marine lipids using double-development HPTLC and scanning densitometry // J. Exp. Mar. Biol. Ecol. V. 129. № 2. P. 189–197. https://doi.org/10.1016/0022-0981(89)90056-7

  50. Orlov A.M., Tokranov A.M. 2019. Checklist of deep-sea fishes of the Russian northwestern Pacific Ocean found at depths below 1000 m // Prog. Oceanogr. V. 176. Article 102143. https://doi.org/10.1016/j.pocean.2019.102143

  51. Özdemir N.S., Parrish C.C., Parzanini C., Mercier A. 2019. Neutral and polar lipid fatty acids in five families of demersal and pelagic fish from the deep Northwest Atlantic // ICES J. Mar. Sci. V. 76. № 6. P. 1807–1815. https://doi.org/10.1093/icesjms/fsz054

  52. Petursdottir H., Gislason A., Falk-Petersen S. et al. 2008. Trophic interaction of the pelagic ecosystem over the Reykjanes Ridge as evaluated by fatty acid and stable isotope analyses // Deep Sea Res. Pt. II. Top. Stud. Oceanogr. V. 55. № 1–2. P. 83–93. https://doi.org/10.1016/j.dsr2.2007.09.003

  53. Phleger C.F., Nelson M.M., Mooney B.D., Nichols P.D. 1999. Wax esters versus triacylglycerols in myctophid fishes from the Southern Ocean // Antarct. Sci. V. 11. № 4. P. 436–444. https://doi.org/10.1017/S0954102099000565

  54. Photo guide mesopelagic fish: North East Atlantic Ocean. 2019. IJmuiden: Wageningen Univ. Res., 121 p. https://doi.org/10.18174/478437

  55. Podrazhanskaya S.G. 1993. Feeding habits of mesopelagic species of fish and estimation of plankton graze in the Northwest Atlantic // NAFO Sci. Counc. Stud. V. 19. P. 79–85.

  56. Porteiro F.M., Sutton T.T., Byrkjedal I. et al. 2017. Fishes of the Northern Mid-Atlantic Ridge collected during the MAR-ECO cruise in June-July 2004: an annotated checklist // Arquipelago. Mar. Life Sci. Suppl. 10. 126 p. (https://nsuworks.nova.edu/occ_facreports/102. Version 01/2023).

  57. Roe H.S.J., Badcock J. 1984. The diel migrations and distributions within a mesopelagic community in the North East Atlantic. 5. Vertical migrations and feeding of fish // Prog. Oceanogr. V. 13. № 3–4. P. 389–424. https://doi.org/10.1016/0079-6611(84)90014-4

  58. Salvanes A.G.V., Kristofersen J.B. 2001. Mesopelagic fishes // Encyclopedia of ocean sciences. N.Y. et al.: Acad. Press. P. 1711–1717. https://doi.org/10.1006/rwos.2001.0012

  59. Sandel E., Nixon O., Lutzky S. et al. 2010. The effect of dietary phosphatidylcholine/phosphatidylinositol ratio on malformation in larvae and juvenile gilthead sea bream (Sparus aurata) // Aquaculture. V. 304. № 1–4. P. 42–48. https://doi.org/10.1016/j.aquaculture.2010.03.013

  60. Scott C.L., Kwasniewski S., Falk-Petersen S., Sargent J.R. 2002. Species differences, origins and functions of fatty alcohols and fatty acids in the wax esters and phospholipids of Calanus hyperboreus, C. glacialis and C. finmarchicus from Arctic waters // Mar. Ecol. Prog. Ser. V. 235. P. 127–134. https://doi.org/10.3354/meps235127

  61. Shillito B., Desurmont C., Barthélémy D. et al. 2020. Lipidome variations of deep-sea vent shrimps according to acclimation pressure: a homeoviscous response? // Deep Sea Res. Pt. I. Oceanogr. Res. Pap. V. 161. Article 103285. https://doi.org/10.1016/j.dsr.2020.103285

  62. Stegeman J.J., Schlezinger J.J., Craddock J.E., Tillitt D.E. 2001. Cytochrome P450 1A expression in midwater fishes: potential effects of chemical contaminants in remote oceanic zones // Environ. Sci. Technol. V. 35. № 1. P. 54–62. https://doi.org/10.1021/es0012265

  63. Sutton T.T. 2005. Trophic ecology of the deep-sea fish Malacosteus niger (Pisces: Stomiidae): An enigmatic feeding ecology to facilitate a unique visual system? // Deep Sea Res. Pt. I. Oceanogr. Res. Pap. V. 52. № 11. P. 2065–2076. https://doi.org/10.1016/j.dsr.2005.06.011

  64. Sutton T.T., Hulley P.A., Wienerroither R. et al. 2020. Identification guide to the mesopelagic fishes of the central and south east Atlantic Ocean. Rome: FAO, 346 p. https://doi.org/10.4060/cb0365en

  65. Sweetman C.J., Sutton T.T., Vecchione M., Latour R.J. 2014. Diet composition of Bathylagus euryops (Osmeriformes: Bathylagidae) along the northern Mid-Atlantic Ridge // Deep Sea Res. Pt. I. Oceanogr. Res. Pap. V. 92. P. 107–114. https://doi.org/10.1016/j.dsr.2014.06.010

  66. Tocher D.R. 2003. Metabolism and functions of lipids and fatty acids in Teleost fish // Rev. Fish. Sci. V. 12. № 2. P. 107–184. https://doi.org/10.1080/713610925

  67. Tocher D.R., Bell J.G., Dick J.R. et al. 2000. Polyunsaturated fatty acid metabolism in Atlantic salmon (Salmo salar) undergoing parr-smolt transformation and the effects of dietary linseed and rapeseed oils // Fish Physiol. Biochem. V. 23. № 1. P. 59–73. https://doi.org/10.1023/A:1007807201093

  68. Verma S.K., Leikina E., Melikov K. et al. 2017. Cell-surface phosphatidylserine regulates osteoclast precursor fusion // J. Biol. Chem. V. 293. № 1. P. 254–270. https://doi.org/10.1074/jbc.M117.809681

  69. Voronin V.P., Nemova N.N., Ruokolainen T.R. et al. 2021. Into the deep: new data on the lipid and fatty acid profile of redfish Sebastes mentella inhabiting different depths in the Irminger Sea // Biomolecules. V. 11. № 5. Article 704. https://doi.org/10.3390/biom11050704

  70. Voronin V.P., Artemenkov D.V., Orlov A.M., Murzina S.A. 2022. Lipids and fatty acids in some mesopelagic fish species: general characteristics and peculiarities of adaptive response to deep-water habitat // J. Mar. Sci. Eng. V. 10. № 7. Article 949. https://doi.org/10.3390/jmse10070949

  71. Winnikoff J.R., Haddock S.H., Budin I. 2021. Depth-and temperature-specific fatty acid adaptations in ctenophores from extreme habitats // J. Exp. Biol. V. 224. № 21. Article jeb242800. https://doi.org/10.1242/jeb.242800

Дополнительные материалы отсутствуют.