Вопросы ихтиологии, 2023, T. 63, № 6, стр. 741-747

Влияние гипотиреоидизма на изменчивость каротиноидной окраски у самок Amatitlania nigrofasciata (Cichlidae)

Д. В. Праздников *

Институт проблем экологии и эволюции РАН – ИПЭЭ РАН
Москва, Россия

* E-mail: pdvfish3409@rambler.ru

Поступила в редакцию 01.03.2023
После доработки 07.04.2023
Принята к публикации 17.04.2023

Аннотация

Показано, что гипотиреоидизм, вызванный обработкой рыб тиомочевиной, влияет на развитие обратного полового дихроматизма у Amatitlania nigrofasciata – неотропической цихлиды, у которой самки, в отличие от самцов, имеют яркую каротиноидную окраску. У гипотиреоидных рыб выявлено замедление темпов метаморфных преобразований пигментного рисунка, приводящее к росту фенотипической изменчивости. Взрослая окраска на основе каротиноидов начинала развиваться у самок только после прекращения подавления синтеза эндогенных тиреоидных гормонов. Полученные данные указывают на потенциально важную роль гормонально опосредованной пластичности в диверсификации каротиноидной окраски у неотропических цихлид.

Ключевые слова: тиреоидные гормоны, пигментный рисунок, фенотипическая изменчивость, половой дихроматизм, цихлиды.

Список литературы

  1. Праздников Д.В. 2020. Влияние тиреоидных гормонов на развитие асимметричного пигментного рисунка у костистых рыб: экспериментальные данные на примере Amatitlania nigrofasciata (Cichlidae) и Poecilia wingei (Poeciliidae) // Изв. РАН. Сер. биол. № 2. С. 205–212. https://doi.org/10.31857/S000233292002006X

  2. Праздников Д.В., Шкиль Ф.Н. 2019. Роль гетерохроний в эволюции пигментного рисунка американских цихлид (Teleostei: Cichlidae: Cichlasomatinae): экспериментальный подход // Там же. № 1. С. 62–71. https://doi.org/10.1134/S0002332919010107

  3. Anderson C., Wong S.C., Fuller A. et al. 2015. Carotenoid-based coloration is associated with predation risk, competition, and breeding status in female convict cichlids (Amatitlania siquia) under field conditions // Environ. Biol. Fish. V. 98. № 4. P. 1005–1013. https://doi.org/10.1007/s10641-014-0333-9

  4. Anderson C., Jones R., Moscicki M. et al. 2016. Seeing orange: breeding convict cichlids exhibit heightened aggression against more colorful intruders // Behav. Ecol. Sociobiol. V. 70. № 5. P. 647–657. https://doi.org/10.1007/s00265-016-2085-3

  5. Beeching S.C., Gross S.H., Bretz H.S., Hariatis E. 1998. Sexual dichromatism in convict cichlids: the ethological significance of female ventral coloration // Anim. Behav. V. 56. № 4. P. 1021–1026. https://doi.org/10.1006/anbe.1998.0868

  6. Bertolesi G.E., McFarlane S. 2021. Melanin-concentrating hormone like and somatolactin. A teleost-specific hypothalamic-hypophyseal axis system linking physiological and morphological pigmentation // Pigment Cell Melanoma Res. V. 34. № 3. P. 564–574. https://doi.org/10.1111/pcmr.12924

  7. Blanton M.L., Specker J.L. 2007. The hypothalamic-pituitary-thyroid (HPT) axis in fish and its role in fish development and reproduction // Crit. Rev. Toxicol. V. 37. № 1–2. P. 97–115. https://doi.org/10.1080/10408440601123529

  8. Brown A.C., McGraw K.J., Clotfelter E.D. 2013. Dietary carotenoids increase yellow nonpigment coloration of female convict cichlids (Amantitlania nigrofasciata) // Physiol. Biochem. Zool. V. 86. № 3. P. 312–322. https://doi.org/10.1086/670734

  9. Campinho M.A. 2019. Teleost metamorphosis: the role of thyroid hormone // Front. Endocrinol. V. 10. Article 383. https://doi.org/10.3389/fendo.2019.00383

  10. Deal C.K., Volkoff H. 2020. The role of the thyroid axis in fish // Ibid. V. 11. Article 596585. https://doi.org/10.3389/fendo.2020.596585

  11. Earley R.L., Anderson C.T., Moscicki M.K. et al. 2020. Carotenoid availability and tradeoffs in female convict cichlids, a reverse sexually-dichromatic fish // Environ. Biol. Fish. V. 103. № 12. P. 1541–1552. https://doi.org/10.1007/s10641-020-01036-w

  12. Eskova A., Frohnhöfer H.G., Nüsslein-Volhard C., Irion U. 2020. Galanin signaling in the brain regulates color pattern formation in zebrafish // Curr. Biol. V. 30. № 2. P. 298–303.e3. https://doi.org/10.1016/j.cub.2019.11.033

  13. Hendrick L.A., Carter G.A., Hilbrands E.H. et al. 2019. Bar, stripe and spot development in sand-dwelling cichlids from Lake Malawi // EvoDevo. V. 10. № 1. Article 18. https://doi.org/10.1186/s13227-019-0132-7

  14. Karagic N., Härer A., Meyer A., Torres-Dowdall J. 2022. Thyroid hormone tinkering elicits integrated phenotypic changes potentially explaining rapid adaptation of color vision in cichlid fish // Evolution. V. 76. № 4. P. 837–845. https://doi.org/10.1111/evo.14455

  15. Kitano J., Lema S.C., Luckenbach J.A. et al. 2010. Adaptive divergence in the thyroid hormone signaling pathway in the stickleback radiation // Curr. Biol. V. 20. № 23. P. 2124–2130. https://doi.org/10.1016/j.cub.2010.10.050

  16. Lema S.C. 2020. Hormones, developmental plasticity, and adaptive evolution: endocrine flexibility as a catalyst for ‘plasticity-first’ phenotypic divergence // Mol. Cell. Endocrinol. V. 502. Article 110678. https://doi.org/10.1016/j.mce.2019.110678

  17. Liang Y., Gerwin J., Meyer A., Kratochwil C.F. 2020. Developmental and cellular basis of vertical bar color patterns in the East African cichlid fish Haplochromis latifasciatus // Front. Cell Dev. Biol. V. 8. Article 62. https://doi.org/10.3389/fcell.2020.00062

  18. Maan M.E., Sefc K.M. 2013. Colour variation in cichlid fish: developmental mechanisms, selective pressures and evolutionary consequences // Semin. Cell Dev. Biol. V. 24. № 6–7. P. 516–528. https://doi.org/10.1016/j.semcdb.2013.05.003

  19. McMenamin S.K., Bain E.J., McCann A.E. et al. 2014. Thyroid hormone–dependent adult pigment cell lineage and pattern in zebrafish // Science. V. 345. № 6202. P. 1358–1361. https://doi.org/10.1126/science.1256251

  20. Parichy D.M. 2021. Evolution of pigment cells and patterns: recent insights from teleost fishes // Curr. Opin. Genet. Dev. V. 69. P. 88–96. https://doi.org/10.1016/j.gde.2021.02.006

  21. Parichy D.M., Liang Y. 2021. Evolution of pigment pattern formation in teleosts // Pigments, pigment cells and pigment patterns. Singapore: Springer. P. 309–342. https://doi.org/10.1007/978-981-16-1490-3_10

  22. Patterson L.B., Parichy D.M. 2019. Zebrafish pigment pattern formation: insights into the development and evolution of adult form // Annu. Rev. Genet. V. 53. P. 505–530. https://doi.org/10.1146/annurev-genet-112618-043741

  23. Prazdnikov D.V. 2021. Role of thyroid hormones in color diversity of male guppies: experimental data on Endler’s guppy (Poecilia wingei) // Environ. Biol. Fish. V. 104. № 6. P. 675–688. https://doi.org/10.1007/s10641-021-01102-x

  24. Prazdnikov D.V. 2022. Thyroid hormone signaling in the evolution of carotenoid coloration in Neotropical cichlids with reversed sexual dichromatism // Ibid. V. 105. №. 11. P. 1659–1672. https://doi.org/10.1007/s10641-022-01364-z

  25. Prazdnikov D.V., Shkil F.N. 2019. Experimental evidence of the role of heterochrony in evolution of the Mesoamerican cichlids pigment patterns // Evol. Dev. V. 21. № 1. P. 3–15. https://doi.org/10.1111/ede.12272

  26. Říčan O., Musilová Z., Muška M., Novák J. 2005. Development of coloration patterns in Neotropical cichlids (Teleostei: Cichlidae: Cichlasomatinae) // Folia Zool. V. 54. Monogr. 1. 46 p.

  27. Říčan O., Piálek L., Dragová K., Novák J. 2016. Diversity and evolution of the Middle American cichlid fishes (Teleostei: Cichlidae) with revised classification // Vertebr. Zool. V. 66. № 1. P. 1–102. https://doi.org/10.3897/vz.66.e31534

  28. Robart A.R., Sinervo B. 2018. Parental response to intruder females altered by ornamentation and mate quality in a biparental fish // Behav. Ecol. V. 29. № 3. P. 701–710. https://doi.org/10.1093/beheco/ary028

  29. Roberts R.B., Moore E.C., Kocher T.D. 2017. An allelic series at pax7a is associated with colour polymorphism diversity in Lake Malawi cichlid fish // Mol. Ecol. V. 26. № 10. P. 2625–2639. https://doi.org/10.1111/mec.13975

  30. Ronco F., Matschiner M., Böhne A. et al. 2021. Drivers and dynamics of a massive adaptive radiation in cichlid fishes // Nature. V. 589. № 7840. P. 76–81. https://doi.org/10.1038/s41586-020-2930-4

  31. Salis P., Lorin T., Laudet V., Frédérich B. 2019. Magic traits in magic fish: understanding color pattern evolution using reef fish // Trends Genet. V. 35. № 4. P. 265–278. https://doi.org/10.1016/j.tig.2019.01.006

  32. Salzburger W. 2009. The interaction of sexually and naturally selected traits in the adaptive radiations of cichlid fishes // Mol. Ecol. V. 18. № 2. P. 169–185. https://doi.org/10.1111/j.1365-294X.2008.03981.x

  33. Saunders L.M., Mishra A.K., Aman A.J. et al. 2019. Thyroid hormone regulates distinct paths to maturation in pigment cell lineages // eLife. V. 8. Article e45181. https://doi.org/10.7554/eLife.45181

  34. Schindelin J., Arganda-Carreras I., Frise E. et al. 2012. Fiji: an open-source platform for biological-image analysis // Nat. Methods. V. 9. № 7. P. 676–682. https://doi.org/10.1038/nmeth.2019

  35. Sefc K.M., Brown A.C., Clotfelter E.D. 2014. Carotenoid-based coloration in cichlid fishes // Comp. Biochem. Physiol. Pt. A. Mol. Integr. Physiol. V. 173. P. 42–51. https://doi.org/10.1016/j.cbpa.2014.03.006

  36. Smirnov S.V., Kapitanova D.V., Borisov V.B. et al. 2012. Lake Tana large barbs diversity: developmental and hormonal bases // J. Ichthyol. V. 52. № 11. P. 861–880. https://doi.org/10.1134/S0032945212110082

  37. Tobler M. 2007. Reversed sexual dimorphism and courtship by females in the Topaz cichlid, Archocentrus myrnae (Cichlidae, Teleostei), from Costa Rica // Southwest. Nat. V. 52. № 3. P. 371–377. https://doi.org/10.1894/0038-4909(2007)52[371:RSDACB]2.0.CO;2

  38. Vancamp P., Houbrechts A.M., Darras V.M. 2019. Insights from zebrafish deficiency models to understand the impact of local thyroid hormone regulator action on early development // Gen. Comp. Endocrinol. V. 279. P. 45–52. https://doi.org/10.1016/j.ygcen.2018.09.011

Дополнительные материалы отсутствуют.