Известия РАН. Энергетика, 2023, № 3, стр. 3-17

Квалификационный анализ экспериментальных данных по высокотемпературному окислению в паре отечественных сплавов на основе циркония

И. С. Ахмедов 1*, Т. А. Юдина 1, Д. Ю. Томащик 1, К. С. Долганов 1, М. Ф. Филиппов 1

1 Федеральное государственное бюджетное учреждение науки Институт проблем безопасного развития атомной энергетики Российской академии наук (ИБРАЭ РАН)
Москва, Россия

* E-mail: akhmedov_ilver@ibrae.ac.ru

Поступила в редакцию 07.12.2022
После доработки 17.02.2023
Принята к публикации 20.02.2023

Аннотация

В статье представлены результаты квалификационного анализа экспериментальных данных по высокотемпературному окислению отечественных сплавов на основе циркония, который включает оценку согласованности результатов измерений и численного моделирования. Получены выводы о возможности применения экспериментальных программ ГНЦ НИИАР для проведения валидации тяжелоаварийных кодов и возможности программы для ЭВМ СОКРАТ-В1/В2 прогнозировать поведение оболочек из отечественных сплавов на основе циркония при высокотемпературном окислении в паре.

Ключевые слова: оболочка твэла, цирконий, окисление в паре, СОКРАТ, квалификационный анализ

Список литературы

  1. Кунгурцев И.А., Смирнов В.П., Жителев В.А., Ступина Л.Н. и др. Исследование кинетики окисления при температуре 1000°C в паро-аргоновой среде образцов оболочки твэла ВВЭР-440, отработавшего до выгорания 42.2 МВт сут/кг U. Отчет ГНЦ РФ НИИАР О-4652. Димитровград, 1997.

  2. Кунгурцев И.А., Чесанов В.В., Кузьмин И.В., Лебедюк И.В. Исследование окисления образцов оболочки отработавшего твэла ВВЭР-1000 и необлученной оболочки из сплава Э-110 при температуре 1200°С. Отчет ГНЦ РФ НИИАР. Димитровград, 1999.

  3. В Росатоме освоено производство циркониевой губки для ядерного топлива // http://atominfo.ru/ URL: http://atominfo.ru/newsz04/a0139.htm (дата обращения: 02.11.2021).

  4. Горячев А.В., Косвинцев Ю.Ю., Лещенко А.Ю. Особенности кинетики высокотемпературного окисления облученных оболочек ВВЭР. Журн. Физика и химия обработки материалов, 2009. № 2. С. 14–23.

  5. Yegorova L., Lioutov K., Jouravkova N., Konobeev A., Smirnov V., Chesanov V., Goryachev A. Experimental Study of Embrittlement of Zr-1%Nb VVER Cladding under LOCA-Relevant Conditions, NUREG/IA-0211, U.S. Nuclear Regulatory Commission, March 2005.

  6. Solyany V.I., Bibilashvili Yu.K., Tonkov V.Yu. High Temperature Oxidation and Deformation of Zr–1%Nb Alloy of VVER Fuels, Proceedings OECD-NEA-CSNI/IAEA Specialists’ Meeting on Water Reactor Fuel Safety and Fission Product Release in Off-Normal and Accident Condition. Riso/ Denmark, 16–20 May 1983. P. 163.

  7. Соколов Н.Б., Андреева-Андриевская Л.Н., Власов Ф.Ю., Карпов В.М., Нечаева О.А., Салатов А.В., Тонков В.Ю. Кинетики взаимодействия материалов активной зоны реактора типа ВВЭР. Рекомендации к использованию в рамках международной стандартной проблемы по эксперименту CORA-W2. Отчет № 8068. Всероссийский НИИ Неорганических Материалов им. акад. А.А. Бочвара. Москва, 1993.

  8. Freska J., Konczos G., Maroti L., Matus L. Oxidation and Hydriding of Zr–1%Nb Alloys by Steam. Report KFKI-1995-17/G, 1995.

  9. Vrtilkova V., Valach M., Molin M. Oxidation and Hydriding Properties of Zr–1%Nb cladding Materials in comparison with Zircaloys, Technical Committee Meeting on Influence of Water Chemistry on Fuel Cladding Behaviour, 4–8 October 1993.

  10. Steinbruck M., Ver N., Große M. Oxidation of Advanced Zirconium Cladding Alloysin Steam at Temperatures in the Range of 600–1200°C. Oxid Met 2011 № 76. P. 215–232.

  11. Cathcart J.V., Pawel R.E., McKee R.A., Druschel R.E., Yurek G.J., Campbell J.J., Jury S.H. Zirconium Metal-Water Oxidation Kinetics IV. Reaction Rate Studies. ORNL/NUREG-17, 1977.

  12. Leistikow S., Schanz G., Berg H.V., Aly A.E. Comprehensive presentation of Extended Zr-4/Steam Oxidation Results 600–1600°C. Proc.OECD-NEA-CSNI/IAEA Specialists’ Meeting on Water Reactor Fuel Safety and Fission Product Release in Off-Normal and Accident Conditions, Riso Nat. Lab. Denmark, 1983.

  13. Schanz G. Recommendations and Supporting information on the Choice of Zirconium Oxidation Models in Severe Accident Codes, FZKA 6827, SAM-COLOSS-P043, 2003.

  14. Berdyshev A.V., Matveev L.V., Veshchunov M.S. Development of the data base for the kinetic model of the zircaloy 4/steam oxidation at high temperatures (1000°C ≤ T ≤ 1825°C). Препринт № IBRAE-97-05. М.: Институт проблем безопасного развития атомной энергетики РАН, 1997. С. 32.

  15. Kiraly M., Kulacsy K., Hozer Z., Perez-Fero E., Novotny T. High-temperature steam oxidation kinetics of the E110G cladding alloy. Journal of Nuclear Materials. 2016. № 475. P. 27–36.

  16. Tomashchik D.Yu., Dolganov K.S., Kiselev A.E., Ryzhov N.I., Yudina T.A. Numerical Assessment of Parameter-Sf1 Test on Oxidation And Melting of Lwr Fuel Assembly under Top Flooding Conditions. Nuclear Engineering and Design. 1 December 2020. V. 369.

  17. Leistikow S., Schanz G., Berg H.V. Kinetik und Morphologie der isothermen Dampf-Oxidation von Zircaloy 4 bei 700–1300°C. KfK 2587, 1987.

  18. Dolganov K.S., Kiselev A.E., Ryzhov N.I., Filippov M.F., Chalyi R.V., Yudina T.A., Shevchenko S.A., Yashnikov D.A., Kozlova N.A. Evaluation of sokrat code possibility to model uranium-dioxide fuel dissolution by molten zirconium. Atomic Energy, 2018. V. 125. № 2.

Дополнительные материалы отсутствуют.