Журнал высшей нервной деятельности им. И.П. Павлова, 2022, T. 72, № 5, стр. 697-706

Meg study of somatosensory MMN evoked by electrical stimulation

O. E. Moiseenko a*, D. O. Bredikhin a, M. Herrojo Ruiz b, V. V. Moiseeva a, A. N. Shestakova a

a Centre for Cognition & Decision Making, National Research University Higher School of Economics
Moscow, Russia

b Goldsmiths, University of London, Psychology Department
London, United Kingdom

* E-mail: moiseenko12olesya@gmail.com

Поступила в редакцию 8.03.2022
После доработки 12.04.2022
Принята к публикации 26.04.2022

Аннотация

Abstract - Mismatch negativity (MMN) is a promising tool for studying the mechanisms of neuroplasticity, sensory memory, and other aspects of sensory function in health and disease. Despite numerous studies in the auditory modality, somatosensory MMN and its mechanisms remain under-examined. We employed “oddball” paradigm in which participants were presented with two blocks of standard (80%) and deviant (20%) stimuli to the second and fifth fingers of the right hand during video viewing. Permutation tests revealed significant differences between responses to standard and deviant stimuli in the condition associated with the perception of a standard stimulus by the second finger of the hand and a deviant stimulus by the fifth finger in the time window of 90–170 ms. We observed a fronto-central distribution of the MMN component, similar in spatiotemporal pattern to the somatosensory MMN known from the literature. Based on the results of our study, we consider it necessary to conduct additional studies to identify conditions in which the detection of MMN is reliable, as well as most comfortable for participants.

Keywords: somatosensory mismatch negativity, magnetoencephalography, oddball paradigm

Список литературы

  1. Благовещенский Е.Д., Агранович О.Е., Кононова Е.Л., Баиндурашвили А.Г., Назарова М.А., Шестакова А.Н., Габбасова Е.Л., Никулин В.В. Особенности электрофизиологической активности коры больших полушарий мозга у детей с артрогрипозом. Нервно-мышечные болезни. 2018. 8(2): 25–32. https://doi.org/10.17650/2222-8721-2018-8-2-25-32

  2. Blagovechtchenski E., Agranovich O., Kononova Y., Nazarova M., Nikulin Vadim V. Perspectives for the Use of Neurotechnologies in Conjunction With Muscle Autotransplantation in Children Frontiers in Neuroscience. 2019. 13.https://doi.org/10.3389/fnins.2019.00099

  3. Agranovich O.E., Kochenova E.A., Oreshkov A.B., Trofimova S.I., Petrova E.V., Gabbasova E.L., Blagovechtchenski E.D. Evaluation of unipolar transfer of the latissimus dorsi to flexor antebrachii in patients with arthrogryposis. Genij Ortop. 2019. 25: 42–48. https://doi.org/10.18019/1028-4427-2019-25-1-42-48

  4. Akatsuka K., Wasaka T., Nakata H., Inui K., Hoshiyama M., Kakigi R. Mismatch responses related to temporal discrimination of somatosensory stimulation. Clinical Neurophysiology. 2005. 116(8): 1930–1937. https://doi.org/https://doi.org/10.1016/j.clinph.2005.04.021

  5. Andersen L.M., Lundqvist D. Somatosensory responses to nothing: An MEG study of expectations during omission of tactile stimulations. NeuroImage. 2019. 184: 78–89. https://doi.org/https://doi.org/10.1016/j.neuroimage.2018.09.014

  6. Cascio C.J. Somatosensory processing in neurodevelopmental disorders. Journal of neurodevelopmental disorders. 2010. 2(2): 62–69. https://doi.org/10.1007/s11689-010-9046-3

  7. Chen J.-C., Macerollo A., Sadnicka A., Lu M.-K., Tsai C.-H., Korlipara P., Bhatia K., Rothwell J.C., Edwards M.J. Cervical dystonia: Normal auditory mismatch negativity and abnormal somatosensory mismatch negativity. Clinical Neurophysiology. 2018. 129(9): 1947–1954. https://doi.org/https://doi.org/10.1016/j.clinph.2018.05.028

  8. Duncan C.C., Barry R.J., Connolly J.F., Fischer C., Michie P.T., Näätänen R., Polich J., Reinvang I., Van Petten C. Event-related potentials in clinical research: Guidelines for eliciting, recording, and quantifying mismatch negativity, P300, and N400. Clinical Neurophysiology. 2009. 120(11): 1883–1908. https://doi.org/https://doi.org/10.1016/j.clinph.2009.07.045

  9. Golosheykin S.A., Blagoveschenskiy E.D., Agranovich O.E., Nazarova, M.A., Nikulin V.V, Moiseenko O.E., Chan R.W., Shestakova A.N. Feasibility and Challenges of Performing Magnetoencephalography Experiments in Children With Arthrogryposis Multiplex Congenita. In Frontiers in Pediatrics. 2021. 9. 1031. https://www.frontiersin.org/article/10.3389/fped.2021.626734

  10. Hautasaari P., Kujala U.M., Tarkka I.M. Detecting differences with magnetoencephalography of somatosensory processing after tactile and electrical stimuli. Journal of Neuroscience Methods. 2019. 311: 331–337. https://doi.org/https://doi.org/10.1016/j.jneumeth.2018.09.014

  11. Job X.E., Brady D., de Fockert J.W., Luft C., Hill E.L., van Velzen J. Adults with probable developmental coordination disorder selectively process early visual, but not tactile information during action preparation. An electrophysiological study. Human movement science. 2019. 66: 631–644. S0167-9457(18)30812-1. https://doi.org/10.1016/j.humov.2019.02.018

  12. Justo-Guillén E., Ricardo-Garcell J., Rodríguez-Camacho M., Rodríguez-Agudelo Y., Lelo de Larrea-Mancera E.S., Solís-Vivanco R. Auditory mismatch detection, distraction, and attentional reorientation (MMN-P3a-RON) in neurological and psychiatric disorders: A review. International Journal of Psychophysiology. 2019. 146: 85–100. https://doi.org/https://doi.org/10.1016/j.ijpsycho.2019.09.010

  13. Kekoni J., Hämäläinen H., Saarinen M., Gröhn J., Reinikainen, K., Lehtokoski A., Näätänen R. Rate effect and mismatch responses in the somatosensory system: ERP-recordings in humans. Biological Psychology. 1997. 46(2): 125–142. https://doi.org/https://doi.org/10.1016/S0301-0511(97)05249-6

  14. Kirby A., Sugden D.A. Children with developmental coordination disorders. Journal of the Royal Society of Medicine. 2007. 100(4): 182–186. https://doi.org/10.1177/014107680710011414

  15. Kujala T., Leminen M. Low-level neural auditory discrimination dysfunctions in specific language impairment—A review on mismatch negativity findings. Developmental Cognitive Neuroscience. 2017. 28: 65–75. https://doi.org/https://doi.org/10.1016/j.dcn.2017.10.005

  16. Moberget T., Karns C.M., Deouell L.Y., Lindgren M., Knight R.T., Ivry R.B. Detecting violations of sensory expectancies following cerebellar degeneration: A mismatch negativity study. Neuropsychologia. 2008. 46(10): 2569–2579. https://doi.org/https://doi.org/10.1016/j.neuropsychologia.2008.03.016

  17. Näätänen R., Kujala T., Escera, C., Baldeweg T., Kreegipuu K., Carlson S., Ponton C. The mismatch negativity (MMN) – A unique window to disturbed central auditory processing in ageing and different clinical conditions. Clinical Neurophysiology. 2012. 123(3): 424–458. https://doi.org/https://doi.org/10.1016/j.clinph.2011.09.020

  18. Näätänen R., Paavilainen P., Rinne T., Alho K. The mismatch negativity (MMN) in basic research of central auditory processing: A review. Clinical Neurophysiology. 2007. 118(12): 2544–2590. https://doi.org/https://doi.org/10.1016/j.clinph.2007.04.026

  19. Näätänen R., Pakarinen S., Rinne T., Takegata R. The mismatch negativity (MMN): towards the optimal paradigm. Clinical Neurophysiology. 2004. 115(1): 140–144. https://doi.org/https://doi.org/10.1016/j.clinph.2003.04.001

  20. Naeije G., Vaulet T., Wens V., Marty B., Goldman S., De Tiège X. Multilevel Cortical Processing of Somatosensory Novelty: A Magnetoencephalography Study. Frontiers in human neuroscience. 2016. 10. 259. https://doi.org/10.3389/fnhum.2016.00259

  21. Naeije G., Vaulet T., Wens V., Marty B., Goldman S., De Tiège X. (2018). Neural Basis of Early Somatosensory Change Detection: A Magnetoencephalography Study. Brain Topography. 2018. 31: 242–256. https://doi.org/10.1007/s10548-017-0591-x

  22. Oishi S.N., Agranovich O., Pajardi G.E., Novelli C., Baindurashvili A.G., Trofimova S.I., Abdel-Ghani H., Kochenova E., Prosperpio G., Jester A., Yilmaz G., Şenaran H., Kose O., Butler L. Treatment of the upper extremity contracture/deformities. J Pediatr Orthop. 2017. 37: 9–15. https://doi.org/10.1097/BPO.0000000000001002

  23. Oostenveld R., Fries P., Maris E., Schoffelen J.M. FieldTrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Computational intelligence and neuroscience. 2011. 156869. https://doi.org/10.1155/2011/156869

  24. Quintiliani M., Battaglia D.I., Restuccia D., Musto E., Perulli M., Contaldo I., Gambardella M.L., Palazzese G., Meloni A., Dravet C., Mercuri E., Guzzetta F. Somatosensory mismatch negativity in Dravet Syndrome. European Journal of Paediatric Neurology. 2017. 21(1): e143–e144. https://doi.org/https://doi.org/10.1016/j.ejpn.2017.04.1292

  25. Restuccia D., Marca G. Della, Valeriani M., Leggio M.G., Molinari M. Cerebellar damage impairs detection of somatosensory input changes. A somatosensory mismatch-negativity study. Brain. 2006. 130(1): 276–287. https://doi.org/10.1093/brain/awl236

  26. Restuccia D., Zanini S., Cazzagon M., Del Piero I., Martucci L., Della Marca G. Somatosensory mismatch negativity in healthy children. Developmental Medicine Child Neurology. 2009. 51(12): 991–998. https://doi.org/10.1111/j.1469-8749.2009.03367.x

  27. Schwartz S., Shinn-Cunningham B., Tager-Flusberg H. Meta-analysis and systematic review of the literature characterizing auditory mismatch negativity in individuals with autism. Neuroscience & Biobehavioral Reviews. 2018. 87: 106–117. https://doi.org/https://doi.org/10.1016/j.neubiorev.2018.01.008

  28. Shen G., Smyk N., Meltzoff A., Marshall P. Using somatosensory mismatch responses as a window into somatotopic processing of tactile stimulation. Psychophysiology. 2018a. 55: e13030. https://doi.org/10.1111/psyp.13030

  29. Shen G., Weiss S.M., Meltzoff A.N., Marshall P.J. The somatosensory mismatch negativity as a window into body representations in infancy. International Journal of Psychophysiology. 2018b. 134: 144–150.

  30. Shestakova A., Brattico E., Huotilainen M., Galunov V., Soloviev A., Sams M., Ilmoniemi R., Näätänen R. Abstract phoneme representations in the left temporal cortex: magnetic mismatch negativity study, NeuroReport. 2002. 13(14): 1813–1816.

  31. Stefanics G., Kremláček J., Czigler I. Visual mismatch negativity: A predictive coding view. Frontiers in Human Neuroscience. 2014. 8: 666. https://doi.org/10.3389/fnhum.2014.00666

  32. Strömmer J.M., Tarkka I.M., Astikainen P. Somatosensory mismatch response in young and elderly adults. In Frontiers in Aging Neuroscience. 2014. 6: 293. https://www.frontiersin.org/article/10.3389/fnagi.-2014.00293

  33. Zhang Z., Guo G., Zhang J., Li C., Huang Q., Go R., Fukuyama H., Funahashi S., Yan T., Wu J. Do theta oscillations explain the somatosensory change detection mechanism? Biological psychology. 2019. 143: 103–112. https://doi.org/10.1016/j.biopsycho.2019.02.001

Дополнительные материалы отсутствуют.