Журнал высшей нервной деятельности им. И.П. Павлова, 2023, T. 73, № 3, стр. 369-383

Нейровизуализационные (фМРТ покоя) и нейропсихологические особенности “неманифестировавших” пациентов из группы клинически высокого риска шизофрении

И. С. Лебедева 1*, Я. Р. Паникратова 1, Е. Г. Абдуллина 1, В. В. Мигалина 1, Д. В. Тихонов 1, М. А. Омельченко 1, В. Г. Каледа 1

1 ФГБНУ Научный центр психического здоровья
Москва, Россия

* E-mail: lebedeva-i@yandex.ru

Поступила в редакцию 17.10.2022
После доработки 16.02.2023
Принята к публикации 27.02.2023

Аннотация

В рамках концепции “клинически высокого риска манифестации психоза” была поставлена цель выявления функциональных особенностей головного мозга (по данным фМРТ покоя) и нейропсихологических характеристик у 27 больных с непсихотическими психическими заболеваниями с аттенуированными симптомами шизофрении, психоз у которых не манифестировал в течение длительного периода наблюдения, по сравнению с 24 пациентами с первым эпизодом шизофрении и 27 психически здоровыми испытуемыми. Основная группа характеризовалась более высокой согласованностью BOLD-сигнала в зрительной коре правого полушария и большей функциональной связанностью между затылочным компонентом зрительной сети и компонентом сети определения значимости в правой префронтальной коре (по сравнению с больными шизофренией). В обеих группах пациентов было обнаружено снижение показателей продуктивности вербальных ассоциаций. Выявленные нейровизуализационные и нейропсихологические особенности пациентов основной группы можно рассматривать как отражение действия “защитных” и “патологических” механизмов при высоком риске манифестации шизофрении.

Ключевые слова: фМРТ покоя, вербальные ассоциации, клинически высокий риск манифестации психоза, шизофрения

Список литературы

  1. Ахутина Т.В. (ред.) Методы нейропсихологического обследования детей 6–9 лет. М.: В. Секачев, 2016. С. 280.

  2. Омельченко М.А. Клинические предпосылки высокого риска развития эндогенного психоза: вопросы диагностики и терапии. Психиатрия. 2020. 18 (2): 82–91. https://doi.org/10.30629/2618-6667-2020-18-2-82-91

  3. Филимоненко Ю.И., Тимофеев В.И. Руководство к методике исследования интеллекта для взрослых Д. Векслера (WAIS). СПб.: ИМАТОН, 1995. С. 57.

  4. Adamek P., Langova V., Horacek J. Early-stage visual perception impairment in schizophrenia, bottom-up and back again. Schizophrenia (Heidelb). 2022. 8 (1): 27. https://doi.org/10.1038/s41537-022-00237-9

  5. Addington J., Farris M., Stowkowy J., Santesteban-Echarri O., Metzak P., Kalathil M.S. Predictors of Transition to Psychosis in Individuals at Clinical High Risk. Curr. Psychiatry Rep. 2019. 21 (6): 39. https://doi.org/10.1007/s11920-019-1027-y

  6. Addington J., Piskulic D., Liu L., Lockwood J., Cadenhead K.S., Cannon T.D., Cornblatt B.A., McGlashan T.H., Perkins D.O., Seidman L.J., Tsuang M.T., Walker E.F., Bearden C.E., Mathalon D.H., Woods S.W. Comorbid diagnoses for youth at clinical high risk of psychosis. Schizophr. Res. 2017. 190: 90–95. https://doi.org/10.1016/j.schres.2017.03.043

  7. Aita S.L., Beach J.D., Taylor S.E., Borgogna N.C., Harrell M.N., Hill B.D. Executive, language, or both? An examination of the construct validity of verbal fluency measures. Appl. Neuropsychol. Adult. 2019. 26 (5): 441–451. https://doi.org/10.1080/23279095.2018.1439830

  8. Andreou C., Borgwardt S. Structural and functional imaging markers for susceptibility to psychosis. Mol. Psychiatry. 2020. 25 (11): 2773–2785. https://doi.org/10.1038/s41380-020-0679-7

  9. Anticevic A., Haut K., Murray J.D., Repovs G., Yang G.J., Diehl C., McEwen S.C., Bearden C.E., Addington J., Goodyear B., Cadenhead K.S., Mirzakhanian H., Cornblatt B.A., Olvet D., Mathalon D.H., McGlashan T.H., Perkins D.O., Belger A., Seidman L.J., Tsuang M.T., van Erp T.G., Walker E.F., Hamann S., Woods S.W., Qiu M., Cannon T.D. Association of Thalamic Dysconnectivity and Conversion to Psychosis in Youth and Young Adults at Elevated Clinical Risk. JAMA Psychiatry. 2015. 72 (9): 882–891. https://doi.org/10.1001/jamapsychiatry.2015.0566

  10. Bolt L.K., Amminger G.P., Farhall J., McGorry P.D., Nelson B., Markulev C., Yuen H.P., Schafer M.R., Mossaheb N., Schlogelhofer M., Smesny S., Hickie I.B., Berger G.E., Chen E.Y.H., de Haan L., Nieman D.H., Nordentoft M., Riecher-Rossler A., Verma S., Thompson A., Yung A.R., Allott K.A. Neurocognition as a predictor of transition to psychotic disorder and functional outcomes in ultra-high risk participants: Findings from the NEURAPRO randomized clinical trial. Schizophr. Res. 2019. 206: 67–74. https://doi.org/10.1016/j.schres.2018.12.013

  11. Bosanac P., Castle D.J. Schizophrenia and depression. Med J Aust. 2013. 199 (S6): S36–39. https://doi.org/10.5694/mja12.10516

  12. Cao H., Chen O.Y., Chung Y., Forsyth J.K., McEwen S.C., Gee D.G., Bearden C.E., Addington J., Goodyear B., Cadenhead K.S., Mirzakhanian H., Cornblatt B.A., Carrion R.E., Mathalon D.H., McGlashan T.H., Perkins D.O., Belger A., Seidman L.J., Thermenos H., Tsuang M.T., van Erp T.G.M., Walker E.F., Hamann S., Anticevic A., Woods S.W., Cannon T.D. Cerebello-thalamo-cortical hyperconnectivity as a state-independent functional neural signature for psychosis prediction and characterization. Nat Commun. 2018. 9 (1): 3836. https://doi.org/10.1038/s41467-018-06350-7

  13. Catalan A., Salazar de Pablo G., Aymerich C., Damiani S., Sordi V., Radua J., Oliver D., McGuire P., Giuliano A.J., Stone W.S., Fusar-Poli P. Neurocognitive Functioning in Individuals at Clinical High Risk for Psychosis: A Systematic Review and Meta-analysis. JAMA Psychiatry. 2021. https://doi.org/10.1001/jamapsychiatry.2021.1290

  14. Chai X.J., Castanon A.N., Ongur D., Whitfield-Gabrieli S. Anticorrelations in resting state networks without global signal regression. Neuroimage. 2012. 59 (2): 1420–1428. https://doi.org/10.1016/j.neuroimage.2011.08.048

  15. Chechko N., Cieslik E.C., Muller V.I., Nickl-Jockschat T., Derntl B., Kogler L., Aleman A., Jardri R., Sommer I.E., Gruber O., Eickhoff S.B. Differential Resting-State Connectivity Patterns of the Right Anterior and Posterior Dorsolateral Prefrontal Cortices (DLPFC) in Schizophrenia. Front. Psychiatry. 2018. 9: 211. https://doi.org/10.3389/fpsyt.2018.00211

  16. Collin G., Seidman L.J., Keshavan M.S., Stone W.S., Qi Z., Zhang T., Tang Y., Li H., Anteraper S.A., Niznikiewicz M.A., McCarley R.W., Shenton M.E., Wang J., Whitfield-Gabrieli S. Functional connectome organization predicts conversion to psychosis in clinical high-risk youth from the SHARP program. Mol. Psychiatry. 2020. 25 (10): 2431–2440. https://doi.org/10.1038/s41380-018-0288-x

  17. Delis D.C., Kaplan E., Kramer J.H. Delis-Kaplan Executive Function System: Examiner’s Manual. San Antonio, TX: The Psychological Corporation, 2001. P. 388.

  18. Ellis J.K., Walker E.F., Goldsmith D.R. Selective Review of Neuroimaging Findings in Youth at Clinical High Risk for Psychosis: On the Path to Biomarkers for Conversion. Front. Psychiatry. 2020. 11: 567534. https://doi.org/10.3389/fpsyt.2020.567534

  19. Gottesman I.I., Gould T.D. The endophenotype concept in psychiatry: etymology and strategic intentions. Am J Psychiatry. 2003. 160 (4): 636–645. https://doi.org/10.1176/appi.ajp.160.4.636

  20. Grill-Spector K., Malach R. The human visual cortex. Annu Rev Neurosci. 2004. 27: 649–677. https://doi.org/10.1146/annurev.neuro.27.0702-03.144220

  21. Gustavson D.E., Panizzon M.S., Franz C.E., Reynolds C.A., Corley R.P., Hewitt J.K., Lyons M.J., Kremen W.S., Friedman N.P. Integrating verbal fluency with executive functions: Evidence from twin studies in adolescence and middle age. J. Exp. Psychol Gen. 2019. 148 (12): 2104–2119. https://doi.org/10.1037/xge0000589

  22. Hafner H. From Onset and Prodromal Stage to a Life-Long Course of Schizophrenia and Its Symptom Dimensions: How Sex, Age, and Other Risk Factors Influence Incidence and Course of Illness. Psychiatry J. 2019. 2019: 9804836. https://doi.org/10.1155/2019/9804836

  23. Hamilton M. A rating scale for depression. J. Neurol. Neurosurg. 1960. 23: 56–62. https://doi.org/10.1136/jnnp.23.1.56

  24. Hedges E.P., Dickson H., Tognin S., Modinos G., Antoniades M., van der Gaag M., de Haan L., McGorry P., Pantelis C., Riecher-Rossler A., Bressan R., Barrantes-Vidal N., Krebs M.O., Nordentoft M., Ruhrmann S., Sachs G., Rutten B.P., van Os J., Study E.-G.H.R., Valmaggia L.R., McGuire P., Kempton M.J. Verbal memory performance predicts remission and functional outcome in people at clinical high-risk for psychosis. Schizophr. Res. Cogn. 2022. 28: 100222. https://doi.org/10.1016/j.scog.2021.100222

  25. Kapur S. Psychosis as a state of aberrant salience: a framework linking biology, phenomenology, and pharmacology in schizophrenia. Am. J. Psychiatry. 2003. 160 (1): 13–23. https://doi.org/10.1176/appi.ajp.160.1.13

  26. Kay S.R., Fiszbein A., Opler L.A. The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophr. Bull. 1987. 13 (2): 261–276. https://doi.org/10.1093/schbul/13.2.261

  27. Keri S., Benedek G. Visual contrast sensitivity alterations in inferred magnocellular pathways and anomalous perceptual experiences in people at high-risk for psychosis. Vis. Neurosci. 2007. 24 (2): 183–189. https://doi.org/10.1017/S0952523807070253

  28. Kim D., Kim J.W., Koo T.H., Yun H.R., Won S.H. Shared and distinct neurocognitive endophenotypes of schizophrenia and psychotic bipolar disorder. Clin. Psychopharmacol. Neurosci. 2015. 13 (1): 94–102. https://doi.org/10.9758/cpn.2015.13.1.94

  29. Kronke K.M., Wolff M., Shi Y., Kraplin A., Smolka M.N., Buhringer G., Goschke T. Functional connectivity in a triple-network saliency model is associated with real-life self-control. Neuropsychologia. 2020. 149: 107667. https://doi.org/10.1016/j.neuropsychologia.2020.-107667

  30. Liang S., Deng W., Wang Q., Ma X., Li M., Brown M.R., Hu X., Li X., Greenshaw A.J., Li T. Performance of Verbal Fluency as an Endophenotype in Patients with Familial versus Sporadic Schizophrenia and Their Parents. Sci. Rep. 2016. 6: 32597. https://doi.org/10.1038/srep32597

  31. Lombardo M.V., Pramparo T., Gazestani V., Warrier V., Bethlehem R.A.I., Carter Barnes C., Lopez L., Lewis N.E., Eyler L., Pierce K., Courchesne E. Large-scale associations between the leukocyte transcriptome and BOLD responses to speech differ in autism early language outcome subtypes. Nat. Neurosci. 2018. 21 (12): 1680–1688. https://doi.org/10.1038/s41593-018-0281-3

  32. Miller T.J., McGlashan T.H., Woods S.W., Stein K., Driesen N., Corcoran C.M., Hoffman R., Davidson L. Symptom assessment in schizophrenic prodromal states. Psychiatr Q. 1999. 70 (4): 273–287. https://doi.org/10.1023/a:1022034115078

  33. Montchal M.E., Reagh Z.M., Yassa M.A. Precise temporal memories are supported by the lateral entorhinal cortex in humans. Nat. Neurosci. 2019. 22 (2): 284–288. https://doi.org/10.1038/s41593-018-0303-1

  34. Morosini P.L., Magliano L., Brambilla L., Ugolini S., Pioli R. Development, reliability and acceptability of a new version of the DSM-IV Social and Occupational Functioning Assessment Scale (SOFAS) to assess routine social funtioning. Acta Psychiatrica Scandinavica. 2000. 101 (4): 323–329. https://doi.org/10.1034/j.1600-0447.2000.10100-4323.x

  35. Murphy K., Birn R.M., Handwerker D.A., Jones T.B., Bandettini P.A. The impact of global signal regression on resting state correlations: are anti-correlated networks introduced? Neuroimage. 2009. 44 (3): 893–905. https://doi.org/10.1016/j.neuroimage.2008.09.036

  36. Newton R., Rouleau A., Nylander A.G., Loze J.Y., Resemann H.K., Steeves S., Crespo-Facorro B. Diverse definitions of the early course of schizophrenia-a targeted literature review. NPJ Schizophr. 2018. 4 (1): 21. https://doi.org/10.1038/s41537-018-0063-7

  37. Panikratova Y.R., Vlasova R.M., Akhutina T.V., Korneev A.A., Sinitsyn V.E., Pechenkova E.V. Functional connectivity of the dorsolateral prefrontal cortex contributes to different components of executive functions. Int. J. Psychophysiol. 2020. 151: 70–79. https://doi.org/10.1016/j.ijpsycho.2020.02.013

  38. Patel K.R., Cherian J., Gohil K., Atkinson D. Schizophrenia: Overview and Treatment Options. Pharmacy & Therapeutics. 2014. 39 (9): 638–645.

  39. Riecher-Rossler A., Pflueger M.O., Aston J., Borgwardt S.J., Brewer W.J., Gschwandtner U., Stieglitz R.D. Efficacy of using cognitive status in predicting psychosis: a 7-year follow-up. Biol Psychiatry. 2009. 66 (11): 1023–1030. https://doi.org/10.1016/j.biopsych.2009.07.020

  40. Shao Z., Janse E., Visser K., Meyer A.S. What do verbal fluency tasks measure? Predictors of verbal fluency performance in older adults. Front. Psychol. 2014. 5: 772. https://doi.org/10.3389/fpsyg.2014.00772

  41. Smieskova R., Fusar-Poli P., Riecher-Rossler A., Borgwardt S. Neuroimaging and resilience factors–staging of the at-risk mental state? Curr. Pharm. Des. 2012. 18 (4): 416–421. https://doi.org/10.2174/138161212799316046

  42. van der Werf M., Hanssen M., Kohler S., Verkaaik M., Verhey F.R., Investigators R., van Winkel R., van Os J., Allardyce J. Systematic review and collaborative recalculation of 133,693 incident cases of schizophrenia. Psychol. Med. 2014. 44 (1): 9–16. https://doi.org/10.1017/S0033291712002796

  43. van Os J., Guloksuz S. A critique of the “ultra-high risk” and “transition” paradigm. World Psychiatry. 2017. 16 (2): 200–206. https://doi.org/10.1002/wps.20423

  44. Wang C., Lee J., Ho N.F., Lim J.K.W., Poh J.S., Rekhi G., Krishnan R., Keefe R.S.E., Adcock R.A., Wood S.J., Fornito A., Chee M.W.L., Zhou J. Large-Scale Network Topology Reveals Heterogeneity in Individuals With at Risk Mental State for Psychosis: Findings From the Longitudinal Youth-at-Risk Study. Cereb. Cortex. 2018. 28 (12): 4234–4243. https://doi.org/10.1093/cercor/bhx278

  45. Wang L., Mruczek R.E., Arcaro M.J., Kastner S. Probabilistic Maps of Visual Topography in Human Cortex. Cereb. Cortex. 2015. 25 (10): 3911–3931. https://doi.org/10.1093/cercor/bhu277

  46. Williams D. Hierarchical Bayesian models of delusion. Conscious Cogn. 2018. 61: 129–147. https://doi.org/10.1016/j.concog.2018.03.003

Дополнительные материалы отсутствуют.