Журнал высшей нервной деятельности им. И.П. Павлова, 2023, T. 73, № 3, стр. 311-333

Дорзальное ядро наружного коленчатого тела: анатомия, гистология, онтогенез

А. А. Михалкин 1, Н. С. Меркульева 1*

1 Институт физиологии им. И.П. Павлова РАН
Санкт-Петербург, Россия

* E-mail: mer-natalia@yandex.ru

Поступила в редакцию 17.12.2022
После доработки 24.02.2023
Принята к публикации 27.02.2023

Аннотация

Обзор посвящен структуре и функции основного зрительного таламического ядра – дорзального наружного коленчатого тела – и его формированию во время пренатального и постнатального онтогенеза. Также обозреваются структура и развитие связанных с ядром ганглиозных клеток сетчатки и нейронов первичной зрительной коры, ретино-геникулятных, геникуло-корковых и корково-геникулятных связей. Отдельное внимание уделено морфофункциональным различиям между элементами трех проводящих каналов: X, Y и W, а также различиям в развитии разных слоев дорзального ядра наружного коленчатого тела. Рассмотрены исследования, проведенные на классическом объекте – кошке.

Ключевые слова: дорзальное ядро наружного коленчатого тела, онтогенез, зрение, X-, Y- и W-каналы, слои А, слои С, кошка

Список литературы

  1. Меркульева Н.С. Проводящие каналы зрительной системы. основы классификации. Журн. высш. нерв. деят. им. И.П. Павлова. 2019. 69 (5): 541–549.

  2. Паникян К.К. Постнатальное развитие area centralis сетчатки глаза кошки. ФГБУН Институт физиологии им. И.П. Павлова РАН. 2009.

  3. Ackman J.B., Burbridge T.J., Crair M.C. Retinal waves coordinate patterned activity throughout the developing visual system. Nature. 2012. 490 (7419): 219–225.

  4. Adrien J., Roffwarg H.P. The development of unit activity in the lateral geniculate nucleus of the kitten. Exp. Neurol. 1974. 43 (1): 261–275.

  5. Albus K., Wolf W. Early post-natal development of neuronal function in the kitten’s visual cortex: a laminar analysis. J. Physiol. 1984. 348 (1): 153–185.

  6. Anderson J.C., Dehay C., Friedlander M.J., Martin K.A.C., Nelson J.C. Synaptic connections of physiologically identified geniculocortical axons in kitten cortical area 17. Proc. R. Soc. London Ser. B. Biol. Sci. 1992. 250 (1329): 187–194.

  7. Anker R.L. The prenatal development of some of the visual pathways in the cat. J. Comp. Neurol. 1977. 173 (1): 185–204.

  8. Antonini A., Gillespie D.C., Crair M.C., Stryker M.P. Morphology of single geniculocortical afferents and functional recovery of the visual cortex after reverse monocular deprivation in the kitten. J. Neurosci. 1998. 18 (23): 9896–9909.

  9. Antonini A., Stryker M. Development of individual geniculocortical arbors in cat striate cortex and effects of binocular impulse blockade. J Neurosci. 1993a. 13 (8): 3549–3573.

  10. Antonini A., Stryker M. Rapid remodeling of axonal arbors in the visual cortex. Science (80-). 1993b. 260 (5115): 1819–1821.

  11. Archer S., Dubin M., Stark L. Abnormal development of kitten retino-geniculate connectivity in the absence of action potentials. Science (80-). 1982. 217 (4561): 743–745.

  12. Beckmann R., Albus K. The geniculocortical system in the early postnatal kitten: An electrophysiological investigation. Exp. Brain Res. 1982. 47 (1): 144–150.

  13. Bickford M.E., Guido W., Godwin D.W. Neurofilament proteins in Y-cells of the cat lateral geniculate nucleus: Normal expression and alteration with visual deprivation. J. Neurosci. 1998. 18 (16): 6549–6557.

  14. Bishop P.O., Kozak W., Levick W.R., Vakkur G.J. The determination of the projection of the visual field on to the lateral geniculate nucleus in the cat. J. Physiol. 1962. 163 (3): 503–539.

  15. Blakemore C., Van Sluyters R.C. Reversal of the physiological effects of monocular deprivation in kittens: further evidence for a sensitive period. J. Physiol. 1974. 237 (1): 195–216.

  16. Bonds A.B.B., Freeman R.D.D. Development of optical quality in the kitten eye. Vision Res. 1978. 18 (4): 391–398.

  17. Bowling D.B., Caverhill J.I. ON/OFF organization in the cat lateral geniculate nucleus: Sublaminae vs. columns. J. Comp. Neurol. 1989. 283 (1): 161–168.

  18. Bowling D.B., Michael C.R. Projection patterns of single physiologically characterized optic tract fibres in cat. Intergovernmental Panel on Climate Change, editor. Nature. Cambridge: Cambridge University Press, 1980. 286 (5776): 899–902.

  19. Bowling D.B., Michael C.R. Terminal patterns of single, physiologically characterized optic tract fibers in the cat’s lateral geniculate nucleus. J. Neurosci. 1984. 4 (1): 198–216.

  20. Bowling D.B., Wieniawa-Narkiewicz E. The distribution of on- and off-centre X- and Y-like cells in the A layers of the cat’s lateral geniculate nucleus. J. Physiol. 1986. 375: 561–572.

  21. Bowling D.B., Wieniawa-Narkiewicz E. Differences in the amplitude of X-cell responses as a function of depth in layer A of lateral geniculate nucleus in cat. J. Physiol. 1987. 390 (1): 201–212.

  22. Boyd J.D., Matsubara J.A. Laminar and columnar patterns of geniculocortical projections in the cat: Relationship to cytochrome oxidase. J. Comp. Neurol. 1996. 365 (4): 659–682.

  23. Braastad B.O., Heggelund P. Development of spatial receptive-field organization and orientation selectivity in kitten striate cortex. J. Neurophysiol. 1985. 53 (5): 1158–1178.

  24. Bruce L.L., Stein B.E. Transient projections from the lateral geniculate to the posteromedial lateral suprasylvian visual cortex in kittens. J. Comp. Neurol. 1988. 278 (2): 287–302.

  25. Chapman B. Necessity for afferent activity to maintain eye-specific segregation in ferret lateral geniculate nucleus. Science (80-). 2000. 287 (5462): 2479–2482.

  26. Chen C., Regehr W.G. Developmental remodeling of the retinogeniculate synapse. Neuron. 2000. 28 (3): 955–966.

  27. Clarke P.G.H., Martin K.A.C., Whitteridge D., Rao V.M. The dorsal lateral geniculate nucleus of the sheep and its retinal connections. Q. J. Exp. Physiol. 1988. 73 (3): 295–304.

  28. Colby C.L. Corticotectal circuit in the cat: a functional analysis of the lateral geniculate nucleus layers of origin. J. Neurophysiol. 1988. 59 (6): 1783–1797.

  29. Coleman L.A., Friedlander M.J. Intracellular injections of permanent tracers in the fixed slice: a comparison of HRP and biocytin. J. Neurosci. Methods. 1992. 44 (2–3): 167–177.

  30. Coleman L.A., Friedlander M.J. Postnatal dendritic development of Y-like geniculocortical relay neurons. Int. J. Dev. Neurosci. 2002. 20 (3–5): 137–159.

  31. Cragg B.G. The development of synapses in the visual system of the cat. J Comp Neurol. 1975. 160 (2): 147–166.

  32. Crair M.C., Gillespie D.C., Stryker M.P. The role of visual experience in the development of columns in cat visual cortex. Science (80-). 1998. 279 (5350): 566–570.

  33. Crair M.C., Horton J.C., Antonini A., Stryker M.P. Emergence of ocular dominance columns in cat visual cortex by 2 weeks of age. J. Comp. Neurol. 2001. 430 (2): 235–249.

  34. Cynader M. Prolonged sensitivity to monocular deprivation in dark-reared cats: Effects of age and visual exposure. Dev. Brain Res. 1983. 8 (2–3): 155–164.

  35. Dalva M.B., Ghosh A., Shatz C.J. Independent control of dendritic and axonal form in the developing lateral geniculate nucleus. J. Neurosci. 1994. 14 (6): 3588–3602.

  36. Daniels J.D., Pettigrew J.D., Norman J.L. Development of single-neuron responses in kitten’s lateral geniculate nucleus. J. Neurophysiol. 1978. 41 (6): 1373–1393.

  37. Derrington A.M., Fuchs A.F. Spatial and temporal properties of X and Y cells in the cat lateral geniculate nucleus. J. Physiol. 1979. 293 (1): 347–364.

  38. Derrington A.M., Hawken M.J. Spatial and temporal properties of cat geniculate neurones after prolonged deprivation. J. Physiol. 1981. 314 (1): 107–120.

  39. Doty R.W., Glickstein M., Calvin W.H. Lamination of the lateral geniculate nucleus in the squirrel monkey, Saimiri sciureus. J. Comp. Neurol. 1966. 127 (3): 335–340.

  40. Dreher B., Leventhal A.G., Hale P.T. Geniculate input to cat visual cortex: a comparison of area 19 with areas 17 and 18. J. Neurophysiol. 1980. 44 (4): 804–826.

  41. Dubin M., Stark L., Archer S. A role for action-potential activity in the development of neuronal connections in the kitten retinogeniculate pathway. J. Neurosci. 1986. 6 (4): 1021–1036.

  42. Duffy K.R., Holman K.D., Mitchell D.E. Shrinkage of X cells in the lateral geniculate nucleus after monocular deprivation revealed by FoxP2 labeling. Vis. Neurosci. 2014. 31 (3): 253–261.

  43. Duffy K.R., Lingley A.J., Holman K.D., Mitchell D.E. Susceptibility to monocular deprivation following immersion in darkness either late into or beyond the critical period. J. Comp. Neurol. 2016. 524 (13): 2643–2653.

  44. Elgeti H., Elgeti R., Fleischhauer K. Postnatal growth of the dorsal lateral geniculate nucleus of the cat. Anat. Embryol. (Berl). 1976. 149 (1): 1–13.

  45. Enroth-Cugell C., Robson J.G. The contrast sensitivity of retinal ganglion cells of the cat. J. Physiol. 1966. 187 (3): 517–552.

  46. Enroth-Cugell C., Robson J.G. Functional characteristics and diversity of cat retinal ganglion cells. Basic characteristics and quantitative description. Invest. Ophthalmol. Vis. Sci. 1984. 25 (3): 250–267.

  47. Enroth-Cugell C., Robson J.G., Schweitzer-Tong D.E., Watson A.B. Spatio-temporal interactions in cat retinal ganglion cells showing linear spatial summation. J. Physiol. 1983. 341 (November 2015): 279–307.

  48. Erişir A., Van Horn S.C., Sherman S.M., Erisir A., Van Horn S.C., Sherman S.M. Distribution of synapses in the lateral geniculate nucleus of the cat: Differences between laminae A and A1 and between relay cells and interneurons. J. Comp. Neurol. 1998. 390 (2): 247–255.

  49. Espinosa J.S., Stryker M.P. Development and plasticity of the primary visual cortex. Neuron. 2012. 75 (2): 230–249.

  50. Eysel U.T., Wolfhard U. Morphological fine tuning of retinotopy within the cat lateral geniculate nucleus. Neurosci. Lett. 1983. 39 (1): 15–20.

  51. Feller M.B., Scanziani M. A precritical period for plasticity in visual cortex. Curr. Opin. Neurobiol. 2005. 15 (1): 94–100.

  52. Ferster D., Levy S. The axonal arborizations of lateral geniculate neurons in the striate cortex of the cat. J. Comp. Neurol. 1978. 182 (5): 923–944.

  53. Firth S.I., Wang C.T., Feller M.B. Retinal waves: Mechanisms and function in visual system development. Cell Calcium. 2005. 37 (5 SPEC. ISS.): 425–432.

  54. Frascella J., Lehmkuhle S. A comparison between Y-cells in A-laminae and lamina C of cat dorsal lateral geniculate nucleus. J. Neurophysiol. 1984. 52 (5): 911–920.

  55. Freeman R.D., Lai C.E. Development of the optical surfaces of the kitten eye. Vision Res. 1978. 18 (4): 399–407.

  56. Freund T.F., Martin K.A.C., Whitteridge D. Innervation of cat visual areas 17 and 18 by physiologically identified X- and Y- type thalamic afferents. I. Arborization patterns and quantitative distribution of postsynaptic elements. J. Comp. Neurol. 1985. 242 (2): 263–274.

  57. Friedlander M.J. Structure of physiologically classified neurones in the kitten dorsal lateral geniculate nucleus. Nature. 1982. 300 (5888): 180–183.

  58. Friedlander M.J. The changing roles of neurons in the cortical subplate. Front Neuroanat. 2009. 3 (AUG): 1–8.

  59. Friedlander M.J., Lin C.S., Sherman S.M. Structure of physiologically identified X and Y cells in the cat’s lateral geniculate nucleus. Science (80-). 1979. 204 (4397): 1114–1117.

  60. Friedlander M.J., Lin C.S., Stanford L.R., Sherman S.M. Morphology of functionally identified neurons in lateral geniculate nucleus of the cat. J. Neurophysiol. 1981. 46 (1): 80–129.

  61. Friedlander M.J., Martin K.A., Vahle-Hinz C. The structure of the terminal arborizations of physiologically identified retinal ganglion cell Y axons in the kitten. J. Physiol. 1985. 359 (1): 293–313.

  62. Friedlander M.J., Stanford L.R. Effects of monocular deprivation on the distribution of cell types in the LGNd: A sampling study with fine-tipped micropipettes. Exp. Brain Res. 1984. 53 (2): 451–461.

  63. Friedlander M.J., Stanford L.R., Sherman S.M. Effects of monocular deprivation on the structure-function relationship of individual neurons in the cat’s lateral geniculate nucleus. J. Neurosci. 1982. 2 (3): 321–330.

  64. Garraghty P.E. Mixed cells in the cat lateral geniculate nucleus: Functional convergence or error in development? Brain Behav Evol. 1985. 26 (1): 58–64.

  65. Garraghty P.E., Roe A., Sur M. Specification of retinogeniculate X and Y axon arbors in cats: fundamental differences in developmental programs. Brain Res. Dev. Brain Res. 1998. 107 (2): 227–231.

  66. Garraghty P.E., Frost D.O., Sur M. The morphology of retinogeniculate X-and Y-cell axonal arbors in dark-reared cats. Exp. Brain Res. 1987. 66 (1): 85–92.

  67. Geisert E.E. Cortical projections of the lateral geniculate nucleus in the cat. J. Comp. Neurol. 1980. 190 (4): 793–812.

  68. Geisert E.E. The projection of the lateral geniculate nucleus to area 18. J. Comp. Neurol. 1985. 238 (1): 101–106.

  69. Ghosh A., Shatz C.J. Pathfinding and target selection by developing geniculocortical axons. J. Neurosci. 1992. 12 (1): 39–55.

  70. Gilbert C.D., Kelly J.P. The projections of cells in different layers of the cat’s visual cortex. J. Comp. Neurol. 1975. 163 (1): 81–105.

  71. Graham J. An autoradiographic study of the efferent connections of the superior colliculus in the cat. J. Comp. Neurol. 1977. 173 (4): 629–54.

  72. Grubb M.S., Thompson I.D. Biochemical and anatomical subdivision of the dorsal lateral geniculate nucleus in normal mice and in mice lacking the β2 subunit of the nicotinic acetylcholine receptor. Vision Res. 2004. 44 (28 SPEC.ISS.): 3365–3376.

  73. Guillery R.W. A study of Golgi preparations from the dorsal lateral geniculate nucleus of the adult cat. J. Comp. Neurol. 1966. 128 (1): 21–50.

  74. Guillery R.W., Geisert E.E., Polley E.H., Mason C.A. An analysis of the retinal afferents to the cat’s medial interlaminar nucleus and to its rostral thalamic extension, the “geniculate wing.” J. Comp. Neurol. 1980. 194 (1): 117–142.

  75. Guimarães A., Zaremba S., Hockfield S., Guimaraes A., Zaremba S., Hockfield S. Molecular and morphological changes in the cat lateral geniculate nucleus and visual cortex induced by visual deprivation are revealed by monoclonal antibodies Cat-304 and Cat-301. J. Neurosci. 1990. 10 (9): 3014–3024.

  76. Hamasaki D.I., Flynn J.T. Physiological properties of retinal ganglion cells of 3-week-old kittens. Vision Res. 1977. 17 (2): 275–284.

  77. Hartline H.K. The response of single optic nerve fibers of the vertebrate eye to illumination of the retina. Am. J. Physiol. Content. 1938. 121 (2): 400–415.

  78. Hayhow W.R. The cytoarchitecture of the lateral geniculate body in the cat in relation to the distribution of crossed and uncrossed optic fibers. J. Comp. Neurol. 1958. 110 (1): 1–63.

  79. Hebb D.O. The organization of begaviour. New York: Wiley; 1949.

  80. Henderson Z. An anatomical investigation of projections from lateral geniculate nucleus to visual cortical areas 17 and 18 in newborn kitten. Exp. Brain Res. 1982. 46 (2): 177–185.

  81. Herbin M., Miceli D., Repérant J., Massicotte G., Roy G., Réperant J. Postnatal development of thalamocortical projections upon striate and extrastriate visual cortical areas in the cat. Anat. Embryol. (Berl). 2000. 202 (5): 431–442.

  82. Hickey T.L. Development of the dorsal lateral geniculate nucleus in normal and visually deprived cats. J. Comp. Neurol. 1980. 189 (3): 467–481.

  83. Hickey T.L., Hitchcock P.F. Genesis of neurons in the dorsal lateral geniculate nucleus of the cat. J. Comp. Neurol. 1984. 228 (2): 186–199.

  84. Hickey T.L., Spear P.D., Kratz K.E. Quantitative studies of cell size in the cat’s dorsal lateral geniculate nucleus following visual deprivation. J. Comp. Neurol. 1977. 172 (2): 265–281.

  85. Hitchcock P.F., Hickey T.L., Dunkel C.G. Genesis of morphologically identified neurons in the dorsal lateral geniculate nucleus of the cat. J. Comp. Neurol. 1984. 228 (2): 200–209.

  86. Hoffmann K-P., Sireteanu R. Interlaminar differences in the effects of early and late monocular deprivation on the visual acuity of cells in the lateral geniculate nucleus of the cat. Neurosci. Lett. 1977. 5 (3–4): 171–175.

  87. Hoffmann K-P., Stone J., Sherman S.M. Relay of receptive-field properties in dorsal lateral geniculate nucleus of the cat. J. Neurophysiol. 1972. 35 (4): 518–531.

  88. Holländer H., Vanegas H. The projection from the lateral geniculate nucleus onto the visual cortex in the cat. A quantitative study with horseradish-peroxidase. J. Comp. Neurol. 1977. 173 (3): 519–536.

  89. Hooks B.M., Chen C. Distinct roles for spontaneous and visual activity in remodeling of the retinogeniculate synapse. Neuron. 2006. 52 (2): 281–291.

  90. Van Horn S.C., Erişir A., Sherman S.M. Relative distribution of synapses in the A-laminae of the lateral geniculate nucleus of the cat. J. Comp. Neurol. 2000. 416 (4): 509–520.

  91. Hubel D.H., Wiesel T.N. The period of susceptibility to the physiological effects of unilateral eye closure in kittens. J. Physiol. 1970. 206 (2): 419–36.

  92. Huberman A.D., Feller M.B., Chapman B. Mechanisms Underlying Development of Visual Maps and Receptive Fields. Annu. Rev. Neurosci. 2008. 31 (1): 479–509.

  93. Huberman A.D., Murray K.D., Warland D.K., Feldheim D.A., Chapman B. Ephrin-As mediate targeting of eye-specific projections to the lateral geniculate nucleus. Nat. Neurosci. NIH Public Access; 2005. 8 (8): 1013–1021.

  94. Huberman A.D., Speer C.M., Chapman B. Spontaneous Retinal Activity Mediates Development of Ocular Dominance Columns and Binocular Receptive Fields in V1. Neuron. 2006. 52 (2): 247–254.

  95. Humphrey A.L., Sur M., Uhlrich D.J., Sherman S.M. Projection patterns of individual X- and Y-cell axons from the lateral geniculate nucleus to cortical area 17 in the cat. J. Comp. Neurol. 1985a. 233 (2): 159–189.

  96. Humphrey A.L., Sur M., Uhlrich D.J., Sherman S.M. Termination patterns of individual X- and Y-cell axons in the visual cortex of the cat: Projections to area 18, to the 17/18 border region, and to both areas 17 and 18. J. Comp. Neurol. 1985b. 233 (2): 190–212.

  97. Humphrey A.L., Weller R.E. Functionally distinct groups of X-cells in the lateral geniculate nucleus of the cat. J. Comp. Neurol. 1988a. 268 (3): 429–447.

  98. Humphrey A.L., Weller R.E. Structural correlates of functionally distinct X-cells in the lateral geniculate nucleus of the cat. J. Comp. Neurol. 1988b. 268 (3): 448–468.

  99. Ikeda H., Tremain K.E. The development of spatial resolving power of lateral geniculate neurones in kittens. Exp. Brain Res. 1978. 31 (2): 193–206.

  100. Kageyama G.H., Wong-Riley M.T.T. The histochemical localization of cytochrome oxidase in the retina and lateral geniculate nucleus of the ferret, cat, and monkey, with particular reference to retinal mosaics and on/off-center visual channels. J. Neurosci. 1984. 4 (10): 2445–2459.

  101. Kalil R. Dark rearing in the cat: effects on visuomotor behavior and cell growth in the dorsal lateral geniculate nucleus. J. Comp. Neurol. 1978a. 178(3): 451–467.

  102. Kalil R. Development of the dorsal lateral geniculate nucleus in the cat. J. Comp. Neurol. 1978b. 182 (2): 265–291.

  103. Kato N., Kawaguchi S., Miyata H. Geniculocortical projection to layer I of area 17 in kittens: orthograde and retrograde HRP studies. J. Comp. Neurol. 1984. 225 (3): 441–447.

  104. Kawano J. Cortical projections of the parvocellular laminae C of the dorsal lateral geniculate nucleus in the cat: an anterograde wheat germ agglutinin conjugated to horseradish peroxidase study. J. Comp. Neurol. 1998. 392 (4): 439–457.

  105. Kennedy H., Salin P., Bullier J., Horsburgh G. Topography of developing thalamic and cortical pathways in the visual system of the cat. J. Comp. Neurol. 1994. 348 (2): 298–319.

  106. Kind P.C., Beaver C.J., Mitchell D.E. Effects of early periods of monocular deprivation and reverse lid suture on the development of cat-301 immunoreactivity in the dorsal lateral geniculate nucleus (dLGN) of the cat. J. Comp. Neurol. 1995. 359 (4): 523–536.

  107. Kratz K.E. Spatial and temporal sensitivity of lateral geniculate cells in dark-reared cats. Brain Res. 1982. 251 (1): 55–63.

  108. Kratz K.E., Sherman S.M., Kalil R. Lateral geniculate nucleus in dark-reared cats: Loss of Y cells without changes in cell size. Science (80-). 1979. 203 (4387): 1353–1355.

  109. Kratz K.E., Webb S.V., Sherman S.M. Effects of early monocular lid suture upon neurons in the cat’s medial interlaminar nucleus. J. Comp. Neurol. 1978. 181 (3): 615–625.

  110. Kuffler S.W. Discharge patterns and functional organization of mammalian retina. J. Neurophysiol. 1953. 16 (1): 37–68.

  111. Laemle L., Benhamida C., Purpura D.P. Laminar distribution of geniculo-cortical afferents in visual cortex of the postnatal kitten. Brain Res. 1972. 41 (1): 25–37.

  112. Land P.W., Shamalla-Hannah L. Transient expression of synaptic zinc during development of uncrossed retinogeniculate projections. J. Comp. Neurol. 2001. 433 (4): 515–525.

  113. Lee D., Lee C., Malpeli J.G. Acuity-sensitivity trade-offs of X and Y cells in the cat lateral geniculate complex: role of the medial interlaminar nucleus in scotopic vision. J. Neurophysiol. 1992. 68 (4): 1235–1247.

  114. Lehmkuhle S., Kratz K.E., Mangel S.C., Sherman S.M. Effects of early monocular lid suture on spatial and temporal sensitivity of neurons in dorsal lateral geniculate nucleus of the cat. J Neurophysiol. 1980. 43 (2): 542–556.

  115. LeVay S., Ferster D. Relay cell classes in the lateral geniculate nucleus of the cat and the effects of visual deprivation. J. Comp. Neurol. 1977. 172 (4): 563–584.

  116. LeVay S., Sherk H. The visual claustrum of the cat. I. Structure and connections. J. Neurosci. 1981. 1 (9): 956–980.

  117. LeVay S., Stryker M.P., Shatz C.J. Ocular dominance columns and their development in layer IV of the cat’s visual cortex: A quantitative study. J. Comp. Neurol. 1978. 179 (1): 223–244.

  118. Leventhal A.G. Evidence that the different classes of relay cells of the cat’s lateral geniculate nucleus terminate in different layers of the striate cortex. Exp. Brain Res. 1979. 37 (2): 349–372.

  119. Linden D.C., Guillery R.W., Cucchiaro J. The dorsal lateral geniculate nucleus of the normal ferret and its postnatal development. J. Comp. Neurol. 1981. 203(2): 189–211.

  120. Lingley A.J., Mitchell D.E., Crowder N.A., Duffy K.R. Modification of peak plasticity induced by brief dark exposure. Neural. Plast. 2019. 2019: 1–10.

  121. Lo F.-S., Ziburkus J., Guido W. Synaptic mechanisms regulating the activation of a Ca2+-mediated plateau potential in developing relay cells of the LGN. J. Neurophysiol. 2002. 87 (3): 1175–1185.

  122. Luskin M.B., Shatz C.J. Neurogenesis of the cat’s primary visual cortex. J. Comp. Neurol. 1985. 242 (4): 611–631.

  123. MacNeil M.A., Lomber S.G., Payne B.R. Thalamic and cortical projections to middle suprasylvian cortex of cats: Constancy and variation. Exp. Brain Res. 1997. 114 (1): 24–32.

  124. Mangel S.C., Wilson J.R., Sherman S.M. Development of neuronal response properties in the cat dorsal lateral geniculate nucleus during monocular deprivation. J. Neurophysiol. 1983. 50 (1): 240–264.

  125. Manger P.R., Restrepo C.E., Innocenti G.M. The superior colliculus of the ferret: Cortical afferents and efferent connections to dorsal thalamus. Brain Res. 2010. 1353: 74–85.

  126. Mason C.A. Development of terminal arbors of retino-geniculate axons in the kitten – I. Light microscopical observations. Neuroscience. 1982. 7 (3): 541–559.

  127. Mastronarde D.N. Organization of the cat’s optic tract as assessed by single-axon recordings. J. Comp. Neurol. 1984. 227 (1): 14–22.

  128. Mastronarde D.N. Two classes of single-input X-cells in cat lateral geniculate nucleus. I. Receptive-field properties and classification of cells. J. Neurophysiol. 1987. 57 (2): 357–380.

  129. McConnell S., Ghosh A., Shatz C. Subplate pioneers and the formation of descending connections from cerebral cortex. J. Neurosci. 1994. 14 (4): 1892–1907.

  130. McConnell S.K., Ghosh A., Shatz C.J. Subplate neurons pioneer the first axon pathway from the cerebral cortex. Science (80-). 1989. 245 (4921): 978–982.

  131. Meister M., Wong R.O., Baylor D.A., Shatz C.J. Synchronous bursts of action potentials in ganglion cells of the developing mammalian retina. Sci. (New York). 1991. 252 (5008): 939–943.

  132. Merkulyeva N., Mikhalkin A., Zykin P. Early postnatal development of the lamination in the lateral geniculate nucleus A-layers in cats. Cell Mol. Neurobiol. Springer US; 2018. 38 (5): 1137–1143.

  133. Mikhalkin A., Nikitina N., Merkulyeva N. Heterochrony of postnatal accumulation of nonphosphorylated heavy-chain neurofilament by neurons of the cat dorsal lateral geniculate nucleus. J. Comp. Neurol. 2021. 529 (7): 1430–1441.

  134. Mikhalkin A.A., Merkulyeva N.S. Peculiarities of age-related dynamics of neurons in the cat lateral geniculate nucleus as revealed in frontal versus sagittal slices. J. Evol. Biochem. Physiol. 2021. 57 (5): 1001–1007.

  135. Mitzdorf U., Singer W. Laminar segregation of afferents to lateral geniculate nucleus of the cat: an analysis of current source density. J. Neurophysiol. 1977. 40 (6): 1227–1244.

  136. Molnár Z., Blakemore C. How do thalamic axons find their way to the cortex? Trends Neurosci. 1995. 18 (9): 389–397.

  137. Montero V.M. A quantitative study of synaptic contacts on interneurons and relay cells of the cat lateral geniculate nucleus. Exp. Brain Res. 1991. 86 (2): 257–270.

  138. Mower G.D., Burchfiel J.L., Duffy F.H. The effects of dark-rearing on the development and plasticity of the lateral geniculate nucleus. Dev. Brain Res. 1981. 1 (3): 418–424.

  139. Mullen R.J., Buck C.R., Smith A.M. NeuN, a neuronal specific nuclear protein in vertebrates. Development. 1992. 116 (1): 201–211.

  140. Murakami D.M., Wilson P.D. The effect of monocular deprivation on cells in the C-laminae of the cat lateral geniculate nucleus. Dev. Brain Res. 1983. 9 (3): 353–358.

  141. Murakami D.M., Wilson P.D. The development of soma size changes in the C-laminae of the cat lateral geniculate nucleus following monocular deprivation. Dev. Brain Res. 1987. 35 (2): 215–224.

  142. Murphy P., Sillito A. Functional morphology of the feedback pathway from area 17 of the cat visual cortex to the lateral geniculate nucleus. J. Neurosci. 1996. 16 (3): 1180–1192.

  143. Murphy P.C., Duckett S.G., Sillito A.M. Comparison of the laminar distribution of input from areas 17 and 18 of the visual cortex to the lateral geniculate nucleus of the cat. J. Neurosci. 2000. 20 (2): 845–853.

  144. Najdzion J., Wasilewska B., Bogus-Nowakowska K., Równiak M., Szteyn S., Robak A. A morphometric comparative study of the lateral geniculate body in selected placental mammals: the common shrew, the bank vole, the rabbit, and the fox. Folia Morphol. (Warsz). 2009. 68 (2): 70–78.

  145. Niimi K., Matsuoka H., Yamazaki Y., Matsumoto H. Thalamic afferents to the visual cortex in the cat studied by retrograde axonal transport of horseradish peroxidase. Brain Behav. Evol. 1981. 18 (3): 127–139.

  146. Norman J.L., Pettigrew J.D., Daniels J.D. Early development of X-cells in kitten lateral geniculate nucleus. Science (80-). 1977. 198 (4313): 202–204.

  147. Olson C.R., Freeman R.D. Profile of the sensitive period for monocular deprivation in kittens. Exp. Brain Res. 1980. 39 (1): 17–21.

  148. Payne B.R., Peters A. The concept of cat primary visual cortex. In: Ads. Payne B.R., Peters A. Cat Prim Vis cortex. San Diego, London, Boston, New York, Sydney, Tokyo, Toronto: Elsevier, 2002. 1–129 pp.

  149. Peters A., Palay S.L. The morphology of laminae A and A1 of the dorsal nucleus of the lateral geniculate body of the cat. J. Anat. 1966. 100 (3): 451–486.

  150. Pfeiffenberger C., Yamada J., Feldheim D.A. Ephrin-As and patterned retinal activity act together in the development of topographic maps in the primary visual system. J. Neurosci. 2006. 26 (50): 12873–12884.

  151. Portera-Cailliau C., Pan D.T., Yuste R. Activity-regulated dynamic behavior of early dendritic protrusions: evidence for different types of dendritic filopodia. J. Neurosci. 2003. 23 (18): 7129–7142.

  152. Raczkowski D., Uhlrich D.J., Sherman S.M. Morphology of retinogeniculate X and Y axon arbors in cats raised with binocular lid suture. J. Neurophysiol. 1988. 60 (6): 2152–2167.

  153. Ramoa A., McCormick D. Enhanced activation of NMDA receptor responses at the immature retinogeniculate synapse. J. Neurosci. 1994. 14 (4): 2098–2105.

  154. Rapaport D.H., Stone J. The area centralis of the retina in the cat and other mammals: Focal point for function and development of the visual system. Neuroscience. 1984. 11 (2): 289–301.

  155. Reese B.E. ‘Hidden lamination’ in the dorsal lateral geniculate nucleus: the functional organization of this thalamic region in the rat. Brain Res. Rev. 1988. 13 (2): 119–137.

  156. Reese B.E., Guillery R.W., Marzi C.A., Tassinari G. Position of axons in the cat’s optic tract in relation to their retinal origin and chiasmatic pathway. J. Comp. Neurol. 1991. 306 (4): 539–553.

  157. Rodieck R.W. Visual Pathways. Annu Rev Neurosci. 1979. 2 (1): 193–225.

  158. Rosenquist A.C., Edwards S.B., Palmer L.A. An autoradiographic study of the projections of the dorsal lateral geniculate nucleus and the posterior nucleus in the cat. Brain Res. 1974. 80 (1): 71–93.

  159. Rusoff A.C., Dubin M.W. Development of receptive-field properties of retinal ganglion cells in kittens. J. Neurophysiol. 1977. 40 (5): 1188–1198.

  160. Sanderson K.J. The projection of the visual field to the lateral geniculate and medial interlaminar nuclei in the cat. J. Comp. Neurol. 1971a. 143 (1): 101–117.

  161. Sanderson K.J. Visual field projection columns and magnification factors in the lateral geniculate nucleus of the cat. Exp. Brain Res. 1971b. 13 (2): 159–177.

  162. Sanderson K.J., Haight J.R., Pettigrew J.D. The dorsal lateral geniculate nucleus of macropodid marsupials: Cytoarchitecture and retinal projections. J. Comp. Neurol. 1984. 224 (1): 85–106.

  163. Sarnat H.B., Nochlin D., Born D.E. Neuronal nuclear antigen (NeuN): a marker of neuronal maturation in early human fetal nervous system. Brain Dev. 1998. 20 (2): 88–94.

  164. Saul A.B. Lagged cells. NeuroSignals. 2008. 16 (2–3): 209–225.

  165. Shaffery J.P., Roffwarg H.P., Speciale S.G., Marks G.A. Ponto-geniculo-occipital-wave suppression amplifies lateral geniculate nucleus cell-size changes in monocularly deprived kittens. Dev. Brain Res. 1999. 114 (1): 109–119.

  166. Shapley R., Hochstein S. Visual spatial summation in two classes of geniculate cells. Nature. 1975. 256 (5516): 411–413.

  167. Shatz C. The prenatal development of the cat’s retinogeniculate pathway. J. Neurosci. 1983. 3 (3): 482–499.

  168. Shatz C., Kirkwood P. Prenatal development of functional connections in the cat’s retinogeniculate pathway. J. Neurosci. 1984. 4 (5): 1378–1397.

  169. Shatz C., Luskin M. The relationship between the geniculocortical afferents and their cortical target cells during development of the cat’s primary visual cortex. J. Neurosci. 1986. 6 (12): 3655–3668.

  170. Sherman S.M. Development of retinal projections to the cat’s lateral geniculate nucleus. Trends Neurosci. 1985. 8: 350–355.

  171. Sherman S.M., Friedlander M.J. Identification of X versus Y properties for interneurons in the A-laminae of the cat’s lateral geniculate nucleus. Exp. Brain Res. 1988. 73 (2): 384–392.

  172. Sherman S.M., Hoffmann K.P., Stone J. Loss of a specific cell type from dorsal lateral geniculate nucleus in visually deprived cats. J. Neurophysiol. 1972. 35 (4): 532–541.

  173. Sherman S.M., Sherman S.M. Development of interocular alignment in cats. Brain Res. 1972. 37 (2): 187–203.

  174. Sherman S.M., Spear P.D. Organization of visual pathways in normal and visually deprived cats. Physiol. Rev. 1982. 62 (2): 738–855.

  175. Singer W., Bedworth N. Inhibitory interaction between X and Y units in the cat lateral geniculate nucleus. Brain Res. 1973. 49 (2): 291–307.

  176. Sireteanu R., Hoffmann K.-P. Relative frequency and visual resolution of X- and Y-cells in the LGN of normal and monocularly deprived cats: Interlaminar differences. Exp. Brain Res. 1979. 34 (3): 591–603.

  177. Spear P.D., McCall A., Tumosa N. W- and Y-cells in the C layers of the cat’s lateral geniculate nucleus: Normal properties and effects of monocular deprivation. J. Neurophysiol. 1989. 61 (1): 58–73.

  178. Sretavan D.W., Shatz C.J. Prenatal development of retinal ganglion cell axons: segregation into eye-specific layers within the cat’s lateral geniculate nucleus. J. Neurosci. 1986. 6 (1): 234–251.

  179. Sretavan D.W., Shatz C.J. Axon trajectories and pattern of terminal arborization during the prenatal development of the cat’s retinogeniculate pathway. J. Comp. Neurol. 1987. 255 (3): 386–400.

  180. Stanford L.R., Friedlander M.J., Sherman S.M. Morphology of physiologically identified W-cells in the C laminae of the cat’s lateral geniculate nucleus. J. Neurosci. 1981. 1 (6): 578–584.

  181. Stone J. Parallel processing in the visual system. The classification of retinal ganglion cells and its impact on the neurobiology of vision. Ed. Blakemore C. Q. Rev. Biol. New York and London: Plenum press, 1983.

  182. Sur M. Development and plasticity of retinal X and Y axon terminations in the cat’s lateral geniculate nucleus. Brain Behav. Evol. 1988. 31 (4): 243–251.

  183. Sur M., Esguerra M., Garraghty P.E., Kritzer M.F., Sherman S.M. Morphology of physiologically identified retinogeniculate X- and Y-axons in the cat. J. Neurophysiol. 1987. 58 (1): 1–32.

  184. Sur M., Humphrey A.L., Sherman S.M. Monocular deprivation affects X- and Y-cell retinogeniculate terminations in cats. Nature. 1982. 300 (5888): 183–185.

  185. Sur M., Sherman S.M. Retinogeniculate terminations in cats: morphological differences between X and Y cell axons. Science. 1982. 218 (4570): 389–391.

  186. Sur M., Weller R.E., Sherman S.M. Development of X- and Y-cell retinogeniculate terminations in kittens. Nature. 1984. 310 (5974): 246–249.

  187. Sutton J.K., Brunso-Bechtold J.K., Brunso-Bechtold J.K., Brunso-Bechtold J.K. A golgi study of dendritic development in the dorsal lateral geniculate nucleus of normal ferrets. J. Comp. Neurol. 1991. 309 (1): 71–85.

  188. Szentágothai J. Neuronal and synaptic architecture of the lateral geniculate nucleus. In: Ed. Jung R. Vis centers brain Handb Sens Physiol. Berlin, Heidelberg: Springer, 1973. P. 141–176.

  189. Szentágothai J. The modular architectonic principle of neural centers. Rev. Physiol. Biochem. Pharmacol. 1983. P. 11–61.

  190. Tamamaki N., Uhlrich D.J., Sherman S.M. Morphology of physiologically identified retinal X and Y axons in the cat’s thalamus and midbrain as revealed by intraaxonal injection of biocytin. J. Comp. Neurol. 1995. 354 (4): 583–607.

  191. Tello F. Disposición macroscópica y estructura del cuerpo geniculado externo. Trab Lab. Invest. Biol. Univ. Madrid. 1904. 3: 39–62.

  192. Teo L., Homman-Ludiye J., Rodger J., Bourne J.A. Discrete ephrin-B1 expression by specific layers of the primate retinogeniculostriate system continues throughout postnatal and adult life. J. Comp. Neurol. 2012. 520 (13): 2941–2956.

  193. Thorn F., Gollender M., Erickson P., Frank T., Morton G., Paul E. The development of the kitten’s visual optics. Vision Res. 1976. 16 (10): 1145–1149.

  194. Tieman S.B., Nickla D.L., Gross K., Hickey T.L., Tumosa N. Effects of unequal alternating monocular exposure on the sizes of cells in the cat’s lateral geniculate nucleus. J. Comp. Neurol. 1984. 225 (1): 119–128.

  195. Torrealba F., Guillery R.W., Eysel U., Polley E.H., Mason C.A. Studies of retinal representations within the cat’s optic tract. J. Comp. Neurol. 1982. 211 (4): 377–396.

  196. Tsumoto T., Suda K. Postnatal development of the corticofugal projection from striate cortex to lateral geniculate nucleus in kittens. Dev. Brain Res. 1982. 4 (3): 323–332.

  197. Turner E.C., Sawyer E.K., Kaas J.H. Optic nerve, superior colliculus, visual thalamus, and primary visual cortex of the northern elephant seal (Mirounga angustirostris) and California sea lion (Zalophus californianus). J. Comp. Neurol. 2017. 525 (9): 2109–2132.

  198. Updyke B.V. The pattern of projection of cortical areas 17, 18, and 19 onto the laminae of the dorsal lateral geniculate nucleus in the cat. J. Comp. Neurol. 1975. 163 (4): 377–395.

  199. Vardalaki D., Chung K., Harnett M.T. Filopodia are a structural substrate for silent synapses in adult neocortex. Nature. Springer US; 2022. 612 (7939): 323–327.

  200. Le Vay S., McConnell S.K. ON and OFF layers in the lateral geniculate nucleus of the mink. Nature. 1982. 300 (5890): 350–351.

  201. Walsh C., Guillery R.W. Fibre order in the pathways from the eye to the brain. Trends Neurosci. 1984. 7 (6): 208–211.

  202. Walsh C., Guillery R.W. Age-related fiber order in the optic tract of the ferret. J. Neurosci. 1985. 5 (11): 3061–3069.

  203. Walsh C., Polley E. The topography of ganglion cell production in the cat’s retina. J. Neurosci. 1985. 5 (3): 741–750.

  204. Walsh C., Polley E.H., Hickey T.L., Guillery R.W. Generation of cat retinal ganglion cells in relation to central pathways. Nature. 1983. 302 (5909): 611–614.

  205. Weber A.J., Kalil R.E. Development of corticogeniculate synapses in the cat. J. Comp. Neurol. 1987. 264 (2): 171–192.

  206. Weber A.J., Kalil R.E., Hickey T.L. Genesis of interneurons in the dorsal lateral geniculate nucleus of the cat. J. Comp. Neurol. 1986. 252 (3): 385–391.

  207. Weyer A., Schilling K. Developmental and cell type-specific expression of the neuronal marker NeuN in the murine cerebellum. J. Neurosci Res. 2003. 73 (3): 400–409.

  208. White C.A., Chalupa L.M., Maffei L., Kirby M.A., Lia B. Response properties in the dorsal lateral geniculate nucleus of the adult cat after interruption of prenatal binocular interactions. J. Neurophysiol. 1989. 62 (5): 1039–1051.

  209. Wiesel T.N., Hubel D.H. Effects of visual deprivation on morphology and physiology of cells in the cat’s lateral geniculate body. J. Neurophysiol. 1963. 26 (6): 978–993.

  210. Williams R.W., Bastiani M.J., Lia B., Chalupa L.M. Growth cones, dying axons, and developmental fluctuations in the fiber population of the cat’s optic nerve. J. Comp. Neurol. 1986. 246 (1): 32–69.

  211. Williams R.W., Rakic P. Elimination of neurons from the rhesus monkey’s lateral geniculate nucleus during development. J. Comp. Neurol. 1988. 272 (3): 424–436.

  212. Wilson J.R., Friedlander M.J., Sherman S.M., Williams P.H., Wilson J.R., Friedlander M.J., Sherman S.M. Fine structural morphology of identified X- and Y-cells in the cat’s lateral geniculate nucleus. Proc. R. Soc. London Ser. B. Biol. Sci. 1984. 221 (1225): 411–436.

  213. Wilson P.D., Rowe M.H., Stone J. Properties of relay cells in cat’s lateral geniculate nucleus: a comparison of W-cells with X- and Y-cells. J. Neurophysiol. 1976. 39 (6): 1193–1209.

  214. Wong R.O.L., Hughes A. Developing neuronal populations of the cat retinal ganglion cell layer. J. Comp. Neurol. 1987. 262 (4): 473–495.

  215. Xu X., Ichida J.M., Allison J.D., Boyd J.D., Bonds A.B., Casagrande V.A. A comparison of koniocellular, magnocellular and parvocellular receptive field properties in the lateral geniculate nucleus of the owl monkey (Aotus trivirgatus). J. Physiol. 2001. 531 (1): 203–218.

  216. Yeh C.-I., Stoelzel C.R., Alonso J.-M. Two different types of Y cells in the cat lateral geniculate nucleus. J. Neurophysiol. 2003. 90 (3): 1852–1864.

  217. Yeh C.I., Stoelzel C.R., Weng C., Alonso J.M. Functional consequences of neuronal divergence within the retinogeniculate pathway. J. Neurophysiol. 2009. 101 (4): 2166–2185.

  218. Zahs K.R., Stryker M.P. The projection of the visual field onto the lateral geniculate nucleus of the ferret. J. Comp. Neurol. 1985. 241 (2): 210–224.

  219. Zhang J., Ackman J.B., Xu H.P., Crair M.C. Visual map development depends on the temporal pattern of binocular activity in mice. Nat. Neurosci. Nature Publishing Group; 2011. 15 (2): 298–307.

  220. Zhou Y., Leventhal A., Thompson K. Visual deprivation does not affect the orientation and direction sensitivity of relay cells in the lateral geniculate nucleus of the cat. J. Neurosci. 1995. 15 (1): 689–698.

Дополнительные материалы отсутствуют.