Коллоидный журнал, 2023, T. 85, № 5, стр. 668-681

Ферментоподобная активность коллоидных растворов диоксида церия, стабилизированных L-яблочной кислотой

А. Д. Филиппова 1, А. Е. Баранчиков 1*, В. К. Иванов 1

1 Институт общей и неорганической химии им. Н.С. Курнакова РАН
119991 Москва, Ленинский просп. 31, Россия

* E-mail: a.baranchikov@yandex.ru

Поступила в редакцию 29.06.2023
После доработки 26.07.2023
Принята к публикации 31.07.2023

Аннотация

Впервые получены устойчивые водные коллоидные растворы диоксида церия, стабилизированные L-яблочной кислотой, в мольных соотношениях лиганд : СеО2 = 0.2, 0.5, 1 и 2. С помощью метода динамического рассеяния света показано, что золи СеО2 характеризуются узким мономодальным распределением агрегатов по размерам и сохраняют агрегативную устойчивость в буферном растворе Tris-HCl. Хемилюминесцентный анализ ферментоподобной активности золей диоксида церия по отношению к пероксиду водорода показал, что модификация поверхности частиц диоксида церия яблочной кислотой приводит к увеличению их ферментоподобной активности до 4.5 раз.

Ключевые слова: нанозимы, пероксидазоподобная активность, золи, агрегаты

Список литературы

  1. Shao C., Shen A., Zhang M. et al. Oxygen vacancies enhanced CeO2:Gd nanoparticles for sensing a tumor vascular microenvironment by magnetic resonance imaging // ACS Nano. 2018. V. 12. № 12. P. 12629–12637. https://doi.org/10.1021/acsnano.8b07387

  2. Eriksson P., Tal A.A., Skallberg A. et al. Cerium oxide nanoparticles with antioxidant capabilities and gadolinium integration for MRI contrast enhancement // Scientific Reports. 2018. V. 8. № 1. P. 6999. https://doi.org/10.1038/s41598-018-25390-z

  3. Tapeinos C., Battaglini M., Prato M. et al. CeO2 Nanoparticles-loaded pH-responsive microparticles with antitumoral properties as therapeutic modulators for osteosarcoma // ACS Omega. 2018. V. 3. № 8. P. 8952–8962. https://doi.org/10.1021/acsomega.8b01060

  4. Pi F., Deng X., Xue Q. et al. Alleviating the hypoxic tumor microenvironment with MnO2-coated CeO2 nanoplatform for magnetic resonance imaging guided radiotherapy // Journal of Nanobiotechnology. 2023. V. 21. № 1. P. 90. https://doi.org/10.1186/s12951-023-01850-1

  5. Augustine R., Hasan A., Patan N.K. et al. Cerium oxide nanoparticle incorporated electrospun poly(3-hydroxybutyrate-co-3-hydroxyvalerate) membranes for diabetic wound healing applications // ACS Biomaterials Science & Engineering. 2020. V. 6. № 1. P. 58–70. https://doi.org/10.1021/acsbiomaterials.8b01352

  6. Kim D.W., Le T.M.D., Lee S.M. et al. Microporous organic nanoparticles anchoring CeO2 materials: Reduced toxicity and efficient reactive oxygen species-scavenging for regenerative wound healing // ChemNanoMat. 2020. V. 6. № 7. P. 1104–1110. https://doi.org/10.1002/cnma.202000067

  7. Rather H.A., Thakore R., Singh R. et al. Antioxidative study of Cerium Oxide nanoparticle functionalised PCL-gelatin electrospun fibers for wound healing application // Bioactive Materials. 2018. V. 3. № 2. P. 201–211. https://doi.org/10.1016/j.bioactmat.2017.09.006

  8. Zheng H., Wang S., Cheng F. et al. Bioactive anti-inflammatory, antibacterial, conductive multifunctional scaffold based on MXene@CeO2 nanocomposites for infection-impaired skin multimodal therapy // Chemical Engineering Journal. 2021. V. 424. P. 130148. https://doi.org/10.1016/j.cej.2021.130148

  9. Ermakov A., Popov A., Ermakova O. et al. The first inorganic mitogens: Cerium oxide and cerium fluoride nanoparticles stimulate planarian regeneration via neoblastic activation // Materials Science and Engineering: C. 2019. V. 104. P. 109924. https://doi.org/10.1016/j.msec.2019.109924

  10. Shcherbakov A.B., Reukov V.V., Yakimansky A.V. et al. CeO2 nanoparticle-containing polymers for biomedical applications: A review // Polymers. 2021. V. 13. № 6. P. 924. https://doi.org/10.3390/polym13060924

  11. Ivanov V.K., Polezhaeva O.S., Tret’yakov Y.D. Nanocrystalline ceria: Synthesis, structure-sensitive properties, and promising applications // Russian Journal of General Chemistry. 2010. V. 80. № 3. P. 604–617. https://doi.org/10.1134/S1070363210030412

  12. Saravanakumar K., Sathiyaseelan A., Mariadoss A.V.A. et al. Antioxidant and antidiabetic properties of biocompatible ceria oxide (CeO2) nanoparticles in mouse fibroblast NIH3T3 and insulin resistant HepG2 cells // Ceramics International. 2021. V. 47. № 6. P. 8618–8626. https://doi.org/10.1016/j.ceramint.2020.11.230

  13. Naz S., Kazmi S.T.B., Zia M. CeO2 Nanoparticles synthesized through green chemistry are biocompatible: In vitro and in vivo assessment // Journal of Biochemical and Molecular Toxicology. 2019. V. 33. № 5. P. e22291. https://doi.org/10.1002/jbt.22291

  14. Uzair B., Akhtar N., Sajjad S. et al. Targeting microbial biofilms: By Arctium lappa L. synthesised biocompatible CeO2-NPs encapsulated in nano-chitosan // IET Nanobiotechnology. 2020. V. 14. № 3. P. 217–223. https://doi.org/10.1049/iet-nbt.2019.0294

  15. Ahamed M., Akhtar M.J., Khan M.A.M. et al. Evaluation of the cytotoxicity and oxidative stress response of CeO2-RGO nanocomposites in human lung epithelial A549 cells // Nanomaterials. 2019. V. 9. № 12. P. 1709. https://doi.org/10.3390/nano9121709

  16. Abbas F., Iqbal J., Maqbool Q. et al. ROS mediated malignancy cure performance of morphological, optical, and electrically tuned Sn doped CeO2 nanostructures // AIP Advances. 2017. V. 7. № 9. P. 095205. https://doi.org/10.1063/1.4990790

  17. Ma Y., Tian Z., Zhai W. et al. Insights on catalytic mechanism of CeO2 as multiple nanozymes // Nano Research. 2022. V. 15. № 12. P. 10328–10342. https://doi.org/10.1007/s12274-022-4666-y

  18. Xiao G., Li H., Zhao Y. et al. Nanoceria-based artificial nanozymes: Review of materials and applications // ACS Applied Nano Materials. 2022. V. 5. № 10. P. 14147–14170. https://doi.org/10.1021/acsanm.2c03009

  19. Popov A.L., Shcherbakov A.B., Zholobak N.M. et al. Cerium dioxide nanoparticles as third-generation enzymes (nanozymes) // Nanosystems: Physics, Chemistry, Mathematics. 2017. P. 760–781. https://doi.org/10.17586/2220-8054-2017-8-6-760-781

  20. Feng N., Liu Y., Dai X. et al. Advanced applications of cerium oxide based nanozymes in cancer // RSC Advances. 2022. V. 12. № 3. P. 1486–1493. https://doi.org/10.1039/D1RA05407D

  21. Sozarukova M.M., Proskurnina E. V., Popov A.L. et al. New facets of nanozyme activity of ceria: lipo- and phospholipoperoxidase-like behaviour of CeO2 nanoparticles // RSC Advances. 2021. V. 11. № 56. P. 35351–35360. https://doi.org/10.1039/D1RA06730C

  22. Kim C.K., Kim T., Choi I.-Y. et al. Ceria nanoparticles that can protect against ischemic stroke // Angewandte Chemie International Edition. 2012. V. 51. № 44. P. 11039–11043. https://doi.org/10.1002/anie.201203780

  23. Gulicovski J.J., Milonjić S.K., Szécsényi K.M. Synthesis and characterization of stable aqueous ceria sols // Materials and Manufacturing Processes. 2009. V. 24. № 10–11. P. 1080–1085. https://doi.org/10.1080/10426910903032162

  24. Habib I.Y., Kumara N.T.R.N., Lim C.M. et al. Dynamic light scattering and zeta potential studies of ceria nanoparticles // Solid State Phenomena. 2018. V. 278. P. 112–120. https://doi.org/10.4028/www.scientific.net/SSP.278.112

  25. Huang L., Zhang W., Chen K. et al. Facet-selective response of trigger molecule to CeO2 {1 1 0} for up-regulating oxidase-like activity // Chemical Engineering Journal. 2017. V. 330. P. 746–752. https://doi.org/10.1016/j.cej.2017.08.026

  26. Yadav N., Patel V., McCourt L. et al. Tuning the enzyme-like activities of cerium oxide nanoparticles using a triethyl phosphite ligand // Biomaterials Science. 2022. V. 10. № 12. P. 3245–3258. https://doi.org/10.1039/D2BM00396A

  27. Wu J., Wang X., Wang Q. et al. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes (II) // Chemical Society Reviews. 2019. V. 48. № 4. P. 1004–1076. https://doi.org/10.1039/C8CS00457A

  28. Gupta A., Das S., Neal C.J. et al. Controlling the surface chemistry of cerium oxide nanoparticles for biological applications // Journal of Materials Chemistry B. 2016. V. 4. № 19. P. 3195–3202. https://doi.org/10.1039/C6TB00396F

  29. Lee S.S., Song W., Cho M. et al. Antioxidant properties of cerium oxide nanocrystals as a function of nanocrystal diameter and surface coating // ACS Nano. 2013. V. 7. № 11. P. 9693–9703. https://doi.org/10.1021/nn4026806

  30. Lazić V., Živković L.S., Sredojević D. et al. Tuning properties of cerium dioxide nanoparticles by surface modification with catecholate-type of ligands // Langmuir. 2020. V. 36. № 33. P. 9738–9746. https://doi.org/10.1021/acs.langmuir.0c01163

  31. Wu Q., Yang L., Zou L. et al. Small ceria nanoclusters with high ROS Scavenging activity and favorable Pharmacokinetic parameters for the amelioration of chronic kidney disease // Advanced Healthcare Materials. 2023. P. 2300632.https://doi.org/10.1002/adhm.202300632

  32. Casals E., Zeng M., Parra-Robert M. et al. Cerium oxide nanoparticles: Advances in biodistribution, toxicity, and preclinical exploration // Small. 2020. V. 16. № 20. P. 1907322. https://doi.org/10.1002/smll.201907322

  33. Szentmihályi K., Szilágyi M., Balla J. et al. In vitro antioxidant activities of magnesium compounds used in food industry // Acta Alimentaria. 2014. V. 43. № 3. P. 419–425. https://doi.org/10.1556/AAlim.43.2014.3.8

  34. Jin X., Yang R., Yan X. et al. Malic acid and oxalic acid spraying enhances phytic acid degradation and total antioxidant capacity of mung bean sprouts // International Journal of Food Science & Technology. 2016. V. 51. № 2. P. 370–380. https://doi.org/10.1111/ijfs.12941

  35. Qiu K., He W., Zhang H. et al. Bio-fermented malic acid facilitates the production of high-quality chicken via enhancing muscle antioxidant capacity of broilers // Antioxidants. 2022. V. 11. № 12. P. 2309. https://doi.org/10.3390/antiox11122309

  36. Huang Z.W., Laurent V., Chetouani G. et al. New functional degradable and bio-compatible nanoparticles based on poly(malic acid) derivatives for site-specific anti-cancer drug delivery // International Journal of Pharmaceutics. 2012. V. 423. № 1. P. 84–92. https://doi.org/10.1016/j.ijpharm.2011.04.035

  37. Huang X., Xu L., Qian H. et al. Polymalic acid for translational nanomedicine // Journal of Nanobiotechnology. 2022. V. 20. № 1. P. 295. https://doi.org/10.1186/s12951-022-01497-4

  38. Zhang J., Chen D., Liang G. et al. Biosynthetic polymalic acid as a delivery nanoplatform for translational cancer medicine // Trends in Biochemical Sciences. 2021. V. 46. № 3. P. 213–224. https://doi.org/10.1016/j.tibs.2020.09.008

  39. Ljubimova J.Y., Fujita M., Khazenzon N.M. et al. Nanoconjugate based on polymalic acid for tumor targeting // Chemico-Biological Interactions. 2008. V. 171. № 2. P. 195–203. https://doi.org/10.1016/j.cbi.2007.01.015

  40. Hirschey M.D., Han Y.-J., Stucky G.D. et al. Imaging Escherichia coli using functionalized Core/Shell CdSe/CdS quantum dots // JBIC Journal of Biological Inorganic Chemistry. 2006. V. 11. № 5. P. 663–669. https://doi.org/10.1007/s00775-006-0116-7

  41. Huang Y.-C., Wu S.-H., Hsiao C.-H. et al. Mild synthesis of size-tunable CeO2 octahedra for band gap variation // Chemistry of Materials. 2020. V. 32. № 6. P. 2631–2638. https://doi.org/10.1021/acs.chemmater.0c00318

  42. Nakamoto K. Infrared and Raman Spectra of Inorganic and Coordination Compounds. John Wiley & Sons, 2009.

  43. Prieur D., Bonani W., Popa K. et al. Size dependence of lattice parameter and electronic structure in CeO2 nanoparticles // Inorganic Chemistry. 2020. V. 59. № 8. P. 5760–5767. https://doi.org/10.1021/acs.inorgchem.0c00506

  44. Badertscher M., Bühlmann P., Pretsch E. Structure determination of organic compounds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. 174 p. https://doi.org/10.1007/978-3-540-93810-1

  45. Bellami L.J. The Infrared Spectra of Complex Molecules. New York, NY: John Wiley & Sons, 1954. 321 p.

  46. Daré R.G., Kolanthai E., Neal C.J. et al. Cerium oxide nanoparticles conjugated with tannic acid prevent uvb-induced oxidative stress in fibroblasts: Evidence of a promising anti-photodamage agent // Antioxidants. 2023. V. 12. № 1. P. 190. https://doi.org/10.3390/antiox12010190

  47. Nastasiienko N., Palianytsia B., Kartel M. et al. Thermal transformation of caffeic acid on the nanoceria surface studied by temperature programmed desorption mass-spectrometry, thermogravimetric analysis and FT–IR spectroscopy // Colloids and Interfaces. 2019. V. 3. № 1. P. 34. https://doi.org/10.3390/colloids3010034

  48. Petrova N., Todorovsky D., Angelova S. et al. Synthesis and characterization of cerium citric and tartaric complexes // Journal of Alloys and Compounds. 2008. V. 454. № 1–2. P. 491–500. https://doi.org/10.1016/j.jallcom.2007.01.005

  49. Hancock M.L., Yokel R.A., Beck M.J. et al. The characterization of purified citrate-coated cerium oxide nanoparticles prepared via hydrothermal synthesis // Applied Surface Science. 2021. V. 535. P. 147681. https://doi.org/10.1016/j.apsusc.2020.147681

  50. Ivanov V.K., Polezhaeva O.S., Shaporev A.S. et al. Synthesis and thermal stability of nanocrystalline ceria sols stabilized by citric and polyacrylic acids // Russian Journal of Inorganic Chemistry. 2010. V. 55. № 3. P. 328–332. https://doi.org/10.1134/S0036023610030046

  51. Vlasova N.M., Markitan O.V. Complexation on the oxide surfaces: Adsorption of biomolecules from aqueous solutions: A review // Theoretical and Experimental Chemistry. 2022. V. 58. № 1. P. 1–14. https://doi.org/10.1007/s11237-022-09716-7

  52. Janusz W., Skwarek E. Adsorption of malic acid at the hydroxyapatite/aqueous NaCl solution interface // Applied Nanoscience. 2022. V. 12. № 4. P. 1355–1363. https://doi.org/10.1007/s13204-021-01938-w

  53. Shcherbakov A.B., Teplonogova M.A., Ivanova O.S. et al. Facile method for fabrication of surfactant-free concentrated CeO2 sols // Materials Research Express. 2017. V. 4. № 5. P. 055008. https://doi.org/10.1088/2053-1591/aa6e9a

  54. Plakhova T.V., Romanchuk A.Y., Yakunin S.N. et al. Solubility of nanocrystalline cerium dioxide: Experimental data and thermodynamic modeling // The Journal of Physical Chemistry C. 2016. V. 120. № 39. P. 22615–22626. https://doi.org/10.1021/acs.jpcc.6b05650

  55. Grulke E.A., Beck M.J., Yokel R.A. et al. Surface-controlled dissolution rates: A case study of nanoceria in carboxylic acid solutions // Environmental Science: Nano. 2019. V. 6. № 5. P. 1478–1492. https://doi.org/10.1039/C9EN00222G

  56. Barany S., Bohacs K., Chepurna I. et al. Electrokinetic properties and stability of cerium dioxide suspensions // RSC Advances. 2016. V. 6. № 73. P. 69343–69351. https://doi.org/10.1039/C6RA12725H

  57. Robert J. P., Lennart B. Surface and Colloid Chemistry in Advanced Ceramics Processing / Ed. Pugh R.J., Bergstrom L. CRC Press, 2017. https://doi.org/10.1201/9780203737842

  58. Vlasova N.N., Golovkova L.P., Stukalina N.G. Adsorption of organic acids on a cerium dioxide surface // Colloid Journal. 2015. V. 77. № 4. P. 418–424. https://doi.org/10.1134/S1061933X15040201

  59. Izmailov D.Y., Proskurnina E. V., Shishkanov S.A. et al. The effect of antioxidants on the formation of free radicals and primary products of the peroxidase reaction // Biophysics. 2017. V. 62. № 4. P. 557–564. https://doi.org/10.1134/S0006350917040091

  60. Averchenko E.A., Kavok N.S., Klochkov V.K. et al. Chemiluminescent diagnostics of free-radical processes in an abiotic system and in liver cells in the presence of nanoparticles based on rare-earth elements NRe-VO4:Eu3+ (Re = Gd, Y, La) and CeO2 // Journal of Applied Spectroscopy. 2014. V. 81. № 5. P. 827–833. https://doi.org/10.1007/s10812-014-0012-9

  61. Iranifam M., Haggi A., Akhteh H. et al. Synthesis of rod-like CeO2 nanoparticles and their application to catalyze the luminal–O2 chemiluminescence reaction used in the determination of oxcarbazepine and ascorbic acid // Analytical Sciences. 2022. V. 38. № 5. P. 787–793. https://doi.org/10.1007/s44211-022-00096-5

  62. Zhao Y., Xu X., Ma Y. et al. A Novel peroxidase/oxidase mimetic Fe-porphyrin covalent organic framework enhanced the luminol chemiluminescence reaction and its application in glucose sensing // Luminescence. 2020. V. 35. № 8. P. 1366–1372. https://doi.org/10.1002/bio.3899

  63. Li D., Zhang S., Feng X. et al. A novel peroxidase mimetic Co-MOF enhanced luminol chemiluminescence and its application in glucose sensing // Sensors and Actuators B: Chemical. 2019. V. 296. P. 126631. https://doi.org/10.1016/j.snb.2019.126631

  64. Filippova A.D., Sozarukova M.M., Baranchikov A.E. et al. Peroxidase-like activity of CeO2 nanozymes: Particle size and chemical environment matter // Molecules. 2023. V. 28. № 9. P. 3811. https://doi.org/10.3390/molecules28093811

  65. Sozarukova M.M., Proskurnina E.V., Ivanov V.K. Pro-oxidant potential of CeO2 nanoparticles towards hydrogen peroxide // Nanosystems: Physics, Chemistry, Mathematics. 2021. V. 12. № 3. P. 283–290. https://doi.org/10.17586/2220-8054-2021-12-3-283-290

  66. Moreno-Castilla C., Naranjo Á., Victoria López-Ramón M. et al. Influence of the hydrodynamic size and ζ-potential of manganese ferrite nanozymes as peroxidase-mimicking catalysts at pH 4 in different buffers // Journal of Catalysis. 2022. V. 414. P. 179–185. https://doi.org/10.1016/j.jcat.2022.09.010

  67. Wu H., Sun Q., Chen J. et al. Citric acid-assisted ultrasmall CeO2 nanoparticles for efficient photocatalytic degradation of glyphosate // Chemical Engineering Journal. 2021. V. 425. P. 130640. https://doi.org/10.1016/j.cej.2021.130640

Дополнительные материалы отсутствуют.