Космические исследования, 2020, T. 58, № 3, стр. 179-190

Связь наклонных спорадических Е-слоев и мелкомасштабных атмосферных волн в ионосфере Земли

В. Н. Губенко 1*, И. А. Кириллович 1

1 Институт радиотехники и электроники им. В.А. Котельникова РАН
г. Фрязино, Россия

* E-mail: vngubenko@gmail.com

Поступила в редакцию 20.02.2019
После доработки 05.08.2019
Принята к публикации 23.10.2019

Аннотация

Разработан новый метод определения характеристик внутренних атмосферных волн, базирующийся на использовании наклонных спорадических Е-слоев ионосферы Земли в качестве детектора. Метод основан на том, что внутренняя волна, распространяющаяся через изначально горизонтальный спорадический E-слой, вызывает вращение градиента плотности плазмы в направлении волнового вектора, что приводит к установлению плоскости ионизации слоя, параллельно фазовому фронту волны. Разработанный метод позволяет исследовать взаимосвязи между мелкомасштабными внутренними волнами и спорадическими Е-слоями в ионосфере Земли и существенно расширяет возможности традиционного радиозатменного мониторинга атмосферы. Найдено, что исследуемые внутренние атмосферные волны имеют периоды от 35 до 46 мин и вертикальные фазовые скорости от 1.2 до 2.0 м/с, что хорошо согласуется с результатами независимых экспериментов и данными моделирования спорадических Е-структур на высоте ~100 км в полярной шапке Земли.

DOI: 10.31857/S0023420620030024

Список литературы

  1. Wu D.L., Ao C.O., Hajj G.A., de la Torre Juarez M. et al. Sporadic E morphology from GPS-CHAMP radio occultations // J. Geophys. Res. 2005. V. 110. № A01306. https://doi.org/10.1029/2004JA010701

  2. Arras C., Wickert J., Beyerle G. et al. A global climatology of ionospheric irregularities derived from GPS radio occultation // Geophys. Res. Lett. 2008. V. 35. № L14809. https://doi.org/10.1029/2008GL03415

  3. Haldoupis C.A. Tutorial Review on Sporadic E layers. Chapter in book: Aeronomy of the Earth’s Atmosphere and Ionosphere / Eds. Abdu M.A., Pancheva D., Bhattacharyya A. IAGA Special Sopron Book Series 2. Springer. Berlin. 2011. P. 381–394. https://doi.org/10.1007/978-94-007-0326-1-2

  4. Whitehead J.D. Recent work on midlatitude and equatorial sporadic E // J. Atmos. Terr. Phys. 1989. V. 51. P. 401–424. https://doi.org/10.1016/0021-9169(89)90122-0

  5. Kirkwood S., Nilsson H. High-latitude sporadic-E and other thin layers – the role of magnetospheric electric fields // Space Sci. Rev. 2000. V. 91. P. 579–613.

  6. Haldoupis C. Midlatitude Sporadic E layers. A typical paradigm of atmosphere–ionosphere coupling // Space Sci. Rev. 2012. V. 168. P. 441–461.

  7. Roddy P.A., Earle G.D., Swenson C.M. et al. Relative concentrations of molecular and metallic ions in midlatitude intermediate and sporadic-E layers // Geophys. Res. Lett. 2004. V. 31. № L19807. https://doi.org/10.1029/2004GL020604

  8. Maruyama T., Kato H., Nakamura M. Ionospheric effects of the Leonid meteor shower in November 2001 as observed by rapid run ionosondes // J. Geophys. Res. 2003. V. 108. № A8. 1324. https://doi.org/10.1029/2003JA009831

  9. Maruyama T., Kato H., Nakamura M. Meteor-induced transient sporadic E as inferred from rapid-run ionosonde observations at midlatitudes // J. Geophys. Res. 2008. V. 113. № A09308. https://doi.org/10.1029/2008JA013362

  10. Malhotra A., Mathews J.D., Urbina J. Effect of meteor ionization on sporadic-E observed at Jicamarca // Geophys. Res. Lett. 2008. V. 35. № L15106. https://doi.org/10.1029/2008GL034661

  11. Hysell D.L., Yamamoto M., Fukao S. Imaging radar observations and theory of type I and type II quasi-periodic echoes // J. Geophys. Res. 2002. V. 107. № A11, 1360. https://doi.org/10.1029/2002JA009292

  12. Hysell D.L., Larsen M.F., Zhou Q.H. Common volume coherent and incoherent scatter radar observations of mid-latitude sporadic E-layers and QP echoes // Ann. Geophys. 2004. V. 22. P. 3277–3290. https://doi.org/10.5194/angeo-22-3277-2004

  13. Larsen M.F., Hysell D.L., Zhou Q.H. et al. Imaging coherent scatter radar, incoherent scatter radar, and optical observations of quasiperiodic structures associated with sporadic E layers // J. Geophys. Res. 2007. V. 112. № A06321. https://doi.org/10.1029/2006JA012051

  14. Cosgrove R.B., Tsunoda R.T. A direction-dependent instability of sporadic-E layers in the nighttime midlatitude ionosphere // Geophys. Res. Lett. 2002. V. 29. № 18. 1864. https://doi.org/10.1029/2002GL014669

  15. Cosgrove R.B., Tsunoda R.T. Instability of the E-F coupled nighttime midlatitude ionosphere // J. Geophys. Res. 2004. V. 109. № A04305. https://doi.org/10.1029/2003JA010243

  16. Yokoyama T., Hysell D.L., Otsuka Y., Yamamoto M. Three-dimensional simulation of the coupled Perkins and Es-layer instabilities in the nighttime midlatitude ionosphere // J. Geophys. Res. 2009. V. 114. № A03308. https://doi.org/10.1029/2008JA013789

  17. Woodman R.F., Yamamoto M., Fukao S. Gravity wave modulation of gradient drift instabilities in mid-latitude sporadic E irregularities // Geophys. Res. Lett. 1991. V. 18. P. 1197–1200. https://doi.org/10.1029/91GL01159

  18. Didebulidze G.G., Lomidze L.N. Double atmospheric gravity wave frequency oscillations of sporadic E formed in a horizontal shear flow // Phys. Lett. 2010. A 374. № 7. P. 952–969.

  19. Chu Y.-H., Brahmanandam P.S., Wang C.-Y. et al. Coordinated sporadic E layer observations made with Chung-Li 30 MHz radar, ionosonde and FORMOSAT-3/COSMIC satellites // J. Atmos. Sol.-Terr. Phys. 2011. V. 73. P. 883–894.

  20. Larsen M.F. A shear instability seeding mechanism for quasiperiodic radar echoes // J. Geophys. Res. 2000. V. 105. № A11. P. 24931–24940. https://doi.org/10.1029/1999JA000290

  21. Bernhardt P.A. The modulation of sporadic-E layers by Kelvin-Helmholtz billows in the neutral atmosphere // J. Atmos. Sol.-Terr. Phys. 2002. V. 64. P. 1487–1504.

  22. Hysell D.L., Nossa E., Larsen M.F. et al. Sporadic E layer observations over Arecibo using coherent and incoherent scatter radar: Assessing dynamic stability in the lower thermosphere // J. Geophys. Res. 2009. V. 114. № A12303. https://doi.org/10.1029/2009JA014403

  23. Tsunoda R.T., Fukao S., Yamamoto M. On the origin of quasiperiodic radar backscatter from midlatitude sporadic E // Radio Sci. 1994. V. 29. P. 349–366.

  24. Yamamoto M., Fukao S., Woodman R.F. et al. Mid-latitude E region field-aligned irregularities observed with the MU radar // J. Geophys. Res.-Space. 1991. V. 96. P. 15943–15949.

  25. Yamamoto M., Fukao S., Ogawa T. et al. A morphological study of mid-latitude E-region field-aligned irregularities observed with the MU radar // J. Atmos. Sol.-Terr. Phys. 1992. V. 54. P. 769–777.

  26. Bernhardt P.A., Selcher C.A., Siefring C. et al. Radio tomographic imaging of sporadic-E layers during SEEK-2 // Ann. Geophys. 2005. V. 23. P. 2357–2368. https://doi.org/10.5194/angeo-23-2357-2005

  27. Yamamoto M., Fukao S., Tsunoda R.T. et al. SEEK-2 (Sporadic-E Experiment over Kyushu 2) – Project Outline, and Significance // Ann. Geophys. 2005. V. 23. P. 2295–2305. https://doi.org/10.5194/angeo-23-2295-2005

  28. Larsen M.F., Fukao S., Yamamoto M. et al. The SEEK chemical release experiment: Observed neutral wind profile in a region of sporadic-E // Geophys. Res. Lett. 1998. V. 25. P. 1789–1792.

  29. Larsen M.F., Yamamoto M., Fukao S., Tsunoda R.T. SEEK 2: Observations of neutral winds, wind shears, and wave structure during a sporadic E/QP event // Ann. Geophys. 2005. V. 23. P. 2369–2375.

  30. Yokoyama T., Yamamoto M., Fukao S. et al. Numerical simulation of mid-latitude ionospheric E-region based on SEEK and SEEK-2 observations // Ann. Geophys. 2005. V. 23. № 7. P. 2377–2384.

  31. Saito S., Yamamoto M., Hashiguchi H., Maegawa A. Observation of three-dimensional structures of quasi-periodic echoes associated with mid-latitude sporadic-E layers by MU radar ultra-multi-channel system // Geophys. Res. Lett. 2006. V. 33. № L14109. https://doi.org/10.1029/2005GL025526

  32. Maruyama T., Fukao S., Yamamoto M. A possible mechanism for echo striation generation of radar backscatter from midlatitude sporadic E // Radio Sci. 2000. V. 35. P. 1155–1164.

  33. Ogawa T., Takahashi O., Otsuka Y. et al. Simultaneous middle and upper atmosphere radar and ionospheric sounder observations of midlatitude E region irregularities and sporadic E layer // J. Geophys. Res. 2002. V. 107. № A10. 1275. https://doi.org/10.1029/2001JA900176

  34. Yokoyama T., Yamamoto M., Fukao S., Cosgrove R.B. Three-dimensional simulation on generation of polarization electric field in the midlatitude E-region ionosphere // J. Geophys. Res. 2004. V. 109. № A01309. https://doi.org/10.1029/2003JA010238

  35. Kelley M.C. The Earth’s Ionosphere: Plasma Physics and Electrodynamics. Second Edition. Academic Press. San Diego. California. 2009.

  36. Nygren T., Jalonen L., Oksman J., Turunen T. The role of electric field and neutral wind direction in the formation of sporadic E-layers // J. Atmos. Terr. Phys. 1984. V. 46. P. 373–381.

  37. Turunen T., Nygren T., Huuskonen A. Nocturnal high-latitude E-region in winter during extremely quiet conditions // J. Atmos. Terr. Phys. 1993. V. 55. P. 783–795.

  38. Bristow W.A., Watkins B.J. Numerical simulation of the formation of thin ionization layers at high latitudes // Geophys. Res. Lett. 1991. V. 18. P. 404–407.

  39. Bristow W.A., Watkins B.J. Incoherent scatter observations of thin ionization layers at Sondrestrom // J. Atmos. Terr. Phys. 1993. V. 55. P. 873–894.

  40. Kirkwood S., von Zahn U. On the role of auroral electric fields in the formation of low altitude sporadic-E and sudden sodium layers // J. Atmos. Terr. Phys. 1991. V. 53. P. 389–407.

  41. Kirkwood S., von Zahn U. Formation mechanisms for lowaltitude Es and their relationship with neutral Fe layers: Results from the METAL campaign // J. Geophys. Res. 1993. V. 98. P. 21549–21561.

  42. Lehmacher G.A., Larsen M.F., Croskey C.L. Observation of electron biteout regions below sporadic E layers at polar latitudes // Ann. Geophys. 2015. V. 33. P. 371–380. https://doi.org/10.5194/angeo-33-371-2015

  43. Cox R.M., Plane J.M.C. An ion-molecule mechanism for the formation of neutral sporadic Na layers // J. Geophys. Res. 1998. V. 103. № D6. P. 6349–6359.

  44. Hunten D.M., Turco R.P., Toon O.B. Smoke and dust particles of meteoric origin in the mesosphere and stratosphere // J. Atmos. Sci. 1980. V. 37. P. 1342–1357.

  45. Heinselman C.J., Thayer J.P., Watkins B.J. A high-latitude observation of sporadic sodium and sporadic E-layer formation // Geophys. Res. Lett. 1998. V. 25. P. 3059–3062.

  46. Igarashi K., Pavelyev A.G., Hocke K. et al. Observation of wave structures in the upper atmosphere by means of radio holographic analysis of the RO data // Adv. Space Res. 2001. V. 27. P. 1321–1327.

  47. Pavelyev A.G., Liou Y.A., Wickert J. et al. New Applications and Advances of the GPS Radio Occultation Technology as Recovered by Analysis of the FORMOSAT-3/COSMIC and CHAMP Data-Base. New Horizons in Occultation Research: Studies in Atmosphere and Climate. Steiner / Eds. Steiner A., Pirscher B., Foelsche U., Kirchengast G. Springer-Verlag. Berlin. Heidelberg. 2009. P. 165–178. https://doi.org/10.1007/978-3-642-00321_9

  48. Pavelyev A.G., Liou Y.A., Zhang K. et al. Identification and localization of layers in the ionosphere using the eikonal and amplitude of radio occultation signals // Atmos. Meas. Tech. 2012. V. 5. № 1. P. 1–16. https://doi.org/10.5194/amt-5-1-2012

  49. Pavelyev A.G., Liou Y.A., Matyugov S.S. et al. Application of the locality principle to radio occultation studies of the Earth’s atmosphere and ionosphere // Atmos. Meas. Tech. 2015. V. 8. № 7. P. 2885–2899. https://doi.org/10.5194/amt-8-2885-2015

  50. Gubenko V.N., Pavelyev A.G., Kirillovich I.A., Liou Y.-A. Case study of inclined sporadic E layers in the Earth’s ionosphere observed by CHAMP/GPS radio occultations: Coupling between the tilted plasma layers and internal waves // Advances in Space Research. 2018. V. 61. № 7. P. 1702–1716. https://doi.org/10.1016/j.asr.2017.10.001

  51. Yue X., Schreiner W.S., Zeng Z. et al. Case study on complex sporadic E layers observed by GPS radio occultations // Atmos. Meas. Tech. 2015.V. 8. P. 225–236. https://doi.org/10.5194/amt-8-225-2015

  52. Zeng Z., Sokolovskiy S. Effect of sporadic E cloud on GPS radio occultation signal // Geophys. Res. Lett. 2010. V. 37. № L18817. https://doi.org/10.1029/2010GL044561

  53. Mathews J.D. Sporadic E: Current views and recent progress // J. Atmos. Sol.-Terr. Phys. 1998. V. 60. № 4. P. 413–435. https://doi.org/10.1016/S1364-6826(97)00043-6

  54. Hines C.O. Internal atmospheric gravity waves at ionospheric heights // Can. J. Phys. 1960. V. 38. P. 1441–1481.

  55. Gossard E.E., Hooke W.H. Waves in the Atmosphere. Elsevier Scientific Publishing Co., Amsterdam–Oxford–New York. 1975.

  56. Otsuka Y., Shiokawa K., Ogawa T. et al. Spatial relationship of nighttime medium-scale traveling ionospheric disturbances and F region field-aligned irregularities observed with two spaced all-sky airglow imagers and the middle and upper atmosphere radar // J. Geophys. Res. 2009. V. 114. № A05302. https://doi.org/10.1029/2008JA013902

  57. Tsunoda R.T., Cosgrove R.B. Coupled electrodynamics in the nighttime midlatitude ionosphere // Geophys. Res. Lett. 2001. V. 8. P. 4171–4174.

  58. Kato S., Reddy C.A., Matsushita S. Possible hydromagnetic coupling between the perturbations of the neutral and ionized atmosphere // J. Geophys. Res. 1970. V. 75. P. 2540–2550.

  59. Chimonas G., Axford W.I. Vertical movement of temperate-zone sporadic E layers // J. Geophys. Res. 1968. V. 73. P. 111–117.

  60. Chimonas G. Enhancement of sporadic E by horizontal transport within the layer // J. Geophys. Res. 1971. V. 76. P. 4578–4586.

  61. Whitehead J.D. Ionization disturbances caused by gravity waves in the presence of an electrostatic field and background wind // J. Geophys. Res. 1971. V. 76. P. 238–241.

  62. Gubenko V.N., Pavelyev A.G., Andreev V.E. Determination of the intrinsic frequency and other wave parameters from a single vertical temperature or density profile measurement // J. Geophys. Res. 2008. V. 113. № D08109. https://doi.org/10.1029/2007JD008920

  63. Gubenko V.N., Pavelyev A.G., Salimzyanov R.R., Pavelyev A.A. Reconstruction of internal gravity wave parameters from radio occultation retrievals of vertical temperature profiles in the Earth’s atmosphere // A-tmos. Meas. Tech. 2011. V. 4. № 10. P. 2153–2162. https://doi.org/10.5194/amt-4-2153-2011

  64. Губенко В.Н., Павельев А.Г., Салимзянов Р.Р., Андреев В.Е. Методика определения параметров внутренней гравитационной волны по измерению вертикального профиля температуры или плотности в атмосфере Земли // Космич. исслед. 2012. Т. 50. № 1. С. 23–34. (Cosmic Research. P. 21–31).

  65. Губенко В.Н., Кириллович И.А., Павельев А.Г. Характеристики внутренних волн в атмосфере Марса, полученные на основе анализа вертикальных профилей температуры миссии Mars Global Surveyor // Космич. исслед. 2015. Т. 53. № 2. С. 141–151. doi: (Cosmic Research. P. 133–142).https://doi.org/10.7868/S0023420615020028

  66. Gubenko V.N., Kirillovich I.A. Diagnostics of internal atmospheric wave saturation and determination of their characteristics in Earth’s stratosphere from radiosonde measurements // Solar-Terrestrial Physics. 2018. V. 4. № 2. P. 41–48. https://doi.org/10.12737/stp-42201807

  67. Губенко В.Н., Кириллович И.А., Павельев А.Г., Андреев В.Е. Обнаружение насыщенных внутренних гравитационных волн и реконструкция их характеристик в атмосфере Марса // Известия ВУЗов. Физика. 2016. Т. 59. № 12-2. С. 46–49. ISSN 0021-3411

  68. Губенко В.Н., Кириллович И.А., Лиу Й.-А., Павельев А.Г. Мониторинг активности внутренних гравитационных волн в атмосфере Арктики и Антарктики // Известия ВУЗов. Физика. 2016. Т. 59. № 12-3. С. 80–85. ISSN 0021-3411

  69. MacDougall J.W., Jayachandran P.T., Plane J.M.C. Polar cap Sporadic-E: part 1, observations // J. Atmos. Sol.-Terr. Phys. 2000. V. 62. P. 1155–1167.

  70. MacDougall J.W., Plane J.M.C., Jayachandran P.T. Polar cap Sporadic-E: part 2, modeling // J. Atmos. Sol.-Terr. Phys. 2000. V. 62. P. 1169–1176.

  71. Kirkwood S., Collis P.N. Gravity wave generation of simultaneous auroral sporadic-E layers and sudden neutral sodium layers // J. Atmos. Terr. Phys. 1989. V. 51. № 4. P. 259–269.

Дополнительные материалы отсутствуют.