Мембраны и мембранные технологии, 2023, T. 13, № 4, стр. 312-330

Прямой осмос сегодня: перспективы и ограничения

А. П. Андрианов a***, О. В. Янцен ab, Р. В. Ефремов c

a ООО “ВТ эксперт”
117198 Москва, ул. Саморы Машела, 2а, пом. 611, Россия

b Федеральное государственное бюджетное образовательное учреждение высшего образования “Российский государственный геологоразведочный университет имени Серго Орджоникидзе”
117997 Москва, ул. Миклухо-Маклая, 23, Россия

c Федеральное государственное бюджетное образовательное учреждение высшего образования “Национальный исследовательский Московский государственный строительный университет” (НИУ МГСУ
129337 Москва, Ярославское ш., 26, Россия

* E-mail: laerimarum@mail.ru
** E-mail: apa@wtexpert.ru

Поступила в редакцию 10.02.2023
После доработки 04.04.2023
Принята к публикации 07.04.2023

Аннотация

Прямой осмос рассматривают как новую, передовую технологию, способную составить конкуренцию существующим на мировом рынке методам опреснения, обессоливания, очистки и концентрирования природных и сточных вод. В настоящем обзоре представлены возможные области применения прямого осмоса, технологические схемы и наиболее яркие примеры внедрения. Рассмотрены вопросы разработки мембран для прямого осмоса, составов осмотических агентов и их регенерации, загрязнения мембран. Особое внимание уделено проблемам, возникающим при работе мембран прямого осмоса, энергетической и экономической оценке рассматриваемой технологии. Сделаны выводы о текущем статусе коммерческого внедрения прямого осмоса и основных барьерах, встающих на пути его освоения.

Ключевые слова: обессоливание, опреснение, обратный осмос, осмотический агент, прямой осмос, технико-экономическая оценка

Список литературы

  1. Curto D., Franzitta V., Guercio A. A Review of the Water Desalination Technologies // Applied Sciences. 2021. V. 11. P. 670.

  2. Jones E., Qadir M., van Vliet M.T.H., Smakhtin V., Kang S. The state of desalination and brine production: A global outlook // Science of The Total Environment. 2019. V. 657. P. 1343‒1356.

  3. Zapata-Sierra A., Cascajares M., Alcayde A., Manzano-Agugliaro F. Worldwide research trends on desalination // Desalination. 2022. V. 519. P. 115305.

  4. Федоренко В.И. Новая технология – прямой осмос // Водоочистка. Водоподготовка. Водоснабжение. 2013. № 12 (72). С. 26‒30. (Fedorenko V.I. Novaya tekhnologiya – pryamoj osmos // Vodoochistka. Vodopodgotovka. Vodosnabzhenie. 2013. № 12 (72). P. 26‒30.)

  5. Труберг А.А., Лапшинов И.Ф., Ляпин И.Ф., Носырев М.А., Силос О.В., Терпугов Г.В., Терпугов Д.Г. Прямой осмос и возможности его применения // Успехи в химии и химической технологии. 2010. Т. 24. № 2 (107). С. 35‒40. (Truberg A.A., Lapshinov I.F., Lyapin I.F., Nosyrev M.A., Silos O.V., Terpugov G.V., Terpugov D.G. Pryamoj osmos i vozmozhnosti ego primeneniya // Uspekhi v himii i himicheskoj tekhnologii. 2010. V. 24. № 2 (107). P. 35‒40.)

  6. Андрианов А.П., Чухин В.А. Обессоливание воды прямым осмосом // Вода Magazine. 2015. № 7 (95). С. 24‒27. (Andrianov A.P., Chuhin V.A. Obessolivanie vody pryamym osmosom // Voda Magazine. 2015. № 7 (95). P. 24‒27.)

  7. Dubrunfaut A.P. Improved process of purifying saccharine liquids. Патент № US43065A. США. Опубл. 07.06.1964.

  8. Farago A. Verfahren zur Konzentrierung von Lösungen ohne Erhitung. Патент № DE222277C. Германия. Опубл. 02.06.1909.

  9. Reid A.F. Process of concentration of solutes. Патент № US3097076A. США. Заяв. 07.03.1958. Опубл. 09.07.1963.

  10. Bachelder G.W. Process for the Demineralization of Water. Патент № US3171799A. США. Заяв. 28.08.1962. Опубл. 02.03.1965.

  11. Kravath R.E., Davis J.A. Desalination of sea water by direct osmosis // Desalination. 1975. V. 16. Iss. 2. P. 151‒155.

  12. Loeb S., Bloch M.R. Countercurrent flow osmotic processes for the production of solutions having a high osmotic pressure // Desalination. 1973. V. 13. Iss. 2. P. 207‒215.

  13. Loeb S., Van Hessen F., Shahaf D. Production of energy from concentrated brines by pressure-retarded osmosis: II. Experimental results and projected energy costs // Journal of Membrane Science. 1976. V. 1. P. 249–269.

  14. Kessler J.O., Moody C.D. Drinking water from sea water by forward osmosis // Desalination. 1976. V. 18. Iss. 3. P. 297–306.

  15. Nassrullah H., Anis S.F., Hashaikeh R., Hilal N. Energy for desalination: A state-of-the-art review // Desalination. 2020. V. 491. P. 114569.

  16. Subramani A., Jacangelo J.G. Emerging desalination technologies for water treatment: A critical review // Water Research. 2015. V. 75. P. 164‒187.

  17. Bundschuh J., Kaczmarczyk M., Ghaffour N., Tomaszewska B. State-of-the-art of renewable energy sources used in water desalination: Present and future prospects // Desalination. 2021. V. 508. P. 115035.

  18. Aaberg R.J. Osmotic power: A new and powerful renewable energy source? // Refocus. 2003. V. 4. Iss. 6. P. 48–50.

  19. Sarp S., Li Z., Saththasivam J. Pressure Retarded Osmosis (PRO): Past experiences, current developments and future prospects // Desalination. 2016. V. 389. P. 2‒14.

  20. Wang Z., Wang L., Elimelech M. Viability of Harvesting Salinity Gradient (Blue) Energy by Nanopore-Based Osmotic Power Generation // Engineering. 2022. V. 9. P. 51–60.

  21. Al-Karaghouli A., Kazmerski L.L. Energy consumption and water production cost of conventional and renewable-energy-powered desalination processes // Renewable and Sustainable Energy Reviews. 2013. V. 24. P. 343‒356.

  22. Ahmed F.E., Hashaikeh R., Hilal N. Hybrid technologies: The future of energy efficient desalination – A review // Desalination. 2020. V. 495. P. 114659.

  23. Amy G., Ghaffour N., Li Z., Francis L., Valladares Linares R., Missimer T., Lattemann S. Membrane-based seawater desalination: Present and future prospects // Desalination. 2017. V. 401. P. 16‒21.

  24. Park K., Davies P.A. A compact hybrid batch/semi-batch reverse osmosis (HBSRO) system for high-recovery, low-energy desalination // Desalination. 2021. V. 504. P. 114976.

  25. Moon A.S., Lee M. Energy consumption in forward osmosis-desalination compared to other desalination techniques // World Academy of Science, Engineering and Technology. 2012. V. 65. P. 537–539.

  26. Cath T.Y., Childress A.E., Elimelech M. Forward osmosis: Principles, applications, and recent developments // J. Membrane Science. 2006. V. 281. Iss. 1–2. P. 70‒87.

  27. Valladares Linares R., Li Z., Sarp S., Bucs Sz.S., Amy G., Vrouwenvelder J.S. Forward osmosis niches in seawater desalination and wastewater reuse // Water Research. 2014. V. 66. P. 122‒139.

  28. Al-Furaiji M., Benes N., Nijmeijer A., McCutcheon J.R. Use of a forward osmosis–membrane distillation integrated process in the treatment of high-salinity oily wastewater // Industrial & Engineering Chemistry Research 2019. V. 58. Iss. 2. P. 956–962.

  29. Shah K.M., Billinge I.H., Chen X., Fan H., Huang Y., Winton R.K., Yip N.Y. Drivers, challenges, and emerging technologies for desalination of high-salinity brines: A critical review // Desalination. 2022. V. 538. P. 115827.

  30. Bartholomew T.V., Mey L., Arena J.T., Siefert N.S., Mauter M.S. Osmotically assisted reverse osmosis for high salinity brine treatment // Desalination. 2017. V. 421. P. 3‒11.

  31. Chen X., Yip N.Y. Unlocking high-salinity desalination with cascading osmotically mediated reverse osmosis: energy and operating pressure analysis // Environmental Science & Technology. 2018. V. 52 (4). P. 2242‒2250.

  32. Johnson D.J., Suwaileh W.A., Mohammed A.W., Hilal N. Osmotic’s potential: An overview of draw solutes for forward osmosis // Desalination. 2018. V. 434. P. 100‒120.

  33. Chekli L., Phuntsho S., Shon H.K., Vigneswaran S., Kandasamy J., Chanan A. A review of draw solutes in forward osmosis process and their use in modern applications // Desalination and Water Treatment. 2012. V. 43. Iss. 1–3. P. 167‒184.

  34. McCutcheon J.R., McGinnis R.L., Elimelech M. A novel ammonia-carbon dioxide forward (direct) osmosis desalination process // Desalination. 2005. V. 174. P. 1–11.

  35. Achilli A., Cath T.Y., Childress A.E. Selection of inorganic-based draw solutions for forward osmosis applications // J. Membrane Science. 2010. V. 364. Iss. 1–2. P. 233‒241.

  36. Chekli L., Kim Y., Phuntsho S., Li S., Ghaffour N., Leiknes T., Shon H.K. Evaluation of fertilizer-drawn forward osmosis for sustainable agriculture and water reuse in arid regions // J. Environmental Management. 2017. V. 187. P. 137–145.

  37. Dsilva Winfred Rufuss D., Kapoor V., Arulvel S., Davies P.A. Advances in forward osmosis (FO) technology for enhanced efficiency and output: A critical review // J. Cleaner Production. 2022. V. 356. P. 131769.

  38. Zhang K., Li F., Wu Y., Feng L., Zhang L. Construction of ionic thermo-responsive PNIPAM/γ-PGA/PEG hydrogel as a draw agent for enhanced forward-osmosis desalination // Desalination. 2020. V. 495. P. 114 667.

  39. Ahmed M., Kumar R., Garudachari B., Thomas J.P. Performance evaluation of a thermoresponsive polyelectrolyte draw solution in a pilot scale forward osmosis seawater desalination system // Desalination. 2019. V. 452. P. 132‒140.

  40. Dutta S., Nath K. Prospect of ionic liquids and deep eutectic solvents as new generation draw solution in forward osmosis process // J. Water Process Engineering. 2018. V. 21. P. 163–176.

  41. Takahashi T., Akiya K., Niizeki T., Matsumoto M., Hoshina T. Tunable thermoresponsive UCST-type alkylimidazolium ionic liquids as a draw solution in the forward osmosis process // Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2022. V. 639. P. 128372.

  42. Zhong Y., Feng X., Chen W., Wang X., Huang K.-W., Gnanou Y., Lai Z. Using UCST Ionic liquid as a draw solute in forward osmosis to treat high-salinity water // Environmental Science & Technology. 2016. V. 50 (2). P. 1039‒1045.

  43. Reddy A.S., Wanjari V.P., Singh S.P. Design, synthesis, and application of thermally responsive draw solutes for sustainable forward osmosis desalination: A review // Chemosphere. 2023. V. 317. P. 137790.

  44. Xu Y., Wang Y.-N., Chong J.Y., Wang R. Thermo-responsive nonionic amphiphilic copolymers as draw solutes in forward osmosis process for high-salinity water reclamation // Water Research. 2022. V. 221. P. 118 768.

  45. Inada A., Yumiya K., Kumagai K., Matsuyama H. Effect of branch structure of thermoresponsive oligomers on draw solution performance in forward osmosis process // Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2021. V. 609. P. 125659.

  46. Shokrollahzadeh S., Bide Y., Gholami S. Enhancing forward osmosis performance via an oligomeric deep eutectic solvent as a draw solute // Desalination. 2020. V. 491. P. 114473.

  47. Kamio E., Kurisu H., Takahashi T., Matsuoka A., Yoshioka T., Nakagawa K., Sun Y., Matsuyama H. Effect of temperature on the osmotic behavior of LCST type ionic liquid solutions as draw solutions in the forward osmosis process // Separation and Purification Technology. 2021. V. 275. P. 119164.

  48. Chabib C.M., Ali J.K., Jaoude M.A., Alhseinat E., Adeyemi I.A., Al Nashef I.M. Application of deep eutectic solvents in water treatment processes: A review // Journal of Water Process Engineering. 2022. V. 47. P. 102 663.

  49. Mahto A., Mondal D., Polisetti V., Bhatt J., Nidhi M.R., Prasad K., Nataraj S.K. Sustainable water reclamation from different feed streams by forward osmosis process using deep eutectic solvents as reusable draw solution // Industrial & Engineering Chemistry Research. 2017. V. 56. Iss. 49. P. 14 623–14 632.

  50. Ejeromedoghene O., Orege J.I., Oderinde O., Okoye C.O., Alowakennu M., Nnyia M.O., Fu G. Deep eutectic solvent-assisted stimuli-responsive smart hydrogels – A review // European Polymer J. 2022. V. 181. P. 111711.

  51. Bendoy A.P., Zeweldi H.G., Park M.J., Shon H.K., Kim H., Chung W.-J., Nisola G.M. Thermo-responsive hydrogel with deep eutectic mixture co-monomer as drawing agent for forward osmosis // Desalination. 2022. V. 542. P. 116067.

  52. Zhao D., Chen S., Guo C.X., Zhao Q., Lu X. Multi-functional forward osmosis draw solutes for seawater desalination // Chinese Journal of Chemical Engineering. 2016. V. 24. Iss. 1. P. 23‒30.

  53. Hafiz M., Hassanein A., Talhami M., Al-Ejji M., Hassan M.K., Hawari A.H. Magnetic nanoparticles draw solution for forward osmosis: Current status and future challenges in wastewater treatment // J. Environmental Chemical Engineering. 2022. V. 10. Iss. 6. P. 108 955.

  54. Anis S.F., Hashaikeh R., Hilal N. Functional materials in desalination: A review // Desalination. 2019. V. 468. P. 114 077.

  55. Bide Y., Shokrollahzadeh S. Toward tailoring of a new draw solute for forward osmosis process: Branched poly (deep eutectic solvent)-decorated magnetic nanoparticles // J. Molecular Liquids. 2020. V. 320. Part A. P. 114409.

  56. Ling M.M., Chung T.-S. Desalination process using super hydrophilic nanoparticles via forward osmosis integrated with ultrafiltration regeneration // Desalination. 2011. V. 278 (1). P. 194‒202.

  57. Zhao Q., Zhao D.L. Thermoresponsive magnetic ionic liquids as forward osmosis draw solutes for seawater desalination // Chemical Engineering Journal Advances. 2023. V. 14. P. 100446.

  58. Chen S., Guo C.X., Zhao Q., Lu X. One-Pot Synthesis of CO2-Responsive Magnetic Nanoparticles with Switchable Hydrophilicity // Chemistry. A European J. 2014. V. 20. P. 14057‒14062.

  59. Aende A., Gardy J., Aslam Z., Rogers M., Edokali M., Cespedes O., Harbottle D., Hassanpour A. A novel highly osmotic K/Fe3O4/CNF magnetic draw solution for salty water desalination // Desalination. 2022. V. 538. P. 115 903.

  60. Doshi K., Mungray A.A. Bio-route synthesis of carbon quantum dots from tulsi leaves and its application as a draw solution in forward osmosis // J. Environmental Chemical Engineering. 2020. V. 8. Iss. 5. P. 104174.

  61. Deng Y.H., Chen J.H., Yang Q., Zhuo Y.Z. Carbon quantum dots (CQDs) and polyethyleneimine (PEI) layer-by-layer (LBL) self-assembly PEK-C-based membranes with high forward osmosis performance // Chemical Engineering Research and Design. 2021. V. 170. P. 423‒433.

  62. Xu Z., Li P., Li N., Wang W., Guo C., Shan M., Qian X. Constructing dense and hydrophilic forward osmosis membrane by cross-linking reaction of graphene quantum dots with monomers for enhanced selectivity and stability // J. Colloid and Interface Science. 2021. V. 589. P. 486‒499.

  63. Zou W.-S., Wu P., Xiao B., Chen X., Kong W., Li Y., Liu Z., Wang Y. Integration of nitrogen-doped carbon dots onto active layer of forward osmosis membrane for highly efficient antibacteria and enhanced membrane performances // J. Environmental Chemical Engineering. 2023. V. 11. Iss. 2. P. 109468.

  64. Thompson N.A., Nicoll P.G. Forward osmosis desalination: a commercial reality. // Conference proc.: IDA World Congress, Perth, Australia. 2011.

  65. Shaffer D.L., Werber J.R., Jaramillo H., Lin S., Elimelech M. Forward osmosis: Where are we now? // Desalination. 2015. V. 356. P. 271‒284.

  66. Gray G.T., McCutcheon J.R., Elimelech M. Internal concentration polarization in forward osmosis: role of membrane orientation // Desalination. 2006. V. 197. Iss. 1–3. P. 1‒8.

  67. Gulied M., Al Nouss A., Khraisheh M., Al Momani F. Modeling and simulation of fertilizer drawn forward osmosis process using Aspen Plus-MATLAB model // Science of The Total Environment. 2020. V. 700. P. 134 461.

  68. Darwish M.A., Abdulrahim H.K., Hassan A.S., Mabrouk A.A., Sharif A.O. The forward osmosis and desalination // Desalination and Water Treatment. 2016. V. 57. P. 4269–4295.

  69. Rastogi N.K. 1 – Forward osmosis: Principles, applications, and recent developments, Editor(s): Basile A., Cassano A., Rastogi N.K. Current Trends and Future Developments on (Bio-) Membranes. Elsevier, 2020. P. 3‒35.

  70. Suwaileh W., Zargar M., Abdala A., Siddiqui F.A., Khiadani M., Abdel-Wahab A. Concentration polarization control in stand-alone and hybrid forward osmosis systems: Recent technological advancements and future directions // Chemical Engineering Research and Design. 2022. V. 178. P. 199–223.

  71. Ibrar I., Yadav S., Altaee A., Hawari A., Nguyen V., Zhou J. A novel empirical method for predicting concentration polarization in forward osmosis for single and multicomponent draw solutions // Desalination. 2020. V. 494. P. 114668.

  72. Arjmandi M., Peyravi M., Altaee A., Arjmandi A., Chenar M.P., Jahanshahi M., Binaeian E. A state-of-the-art protocol to minimize the internal concentration polarization in forward osmosis membranes // Desalination. 2020. V. 480. P. 114355.

  73. Ibrar I., Yadav S., Braytee A., Altaee A., Hossein Zadeh A., Samal A.K., Zhou J.L., Khan J.A., Bartocci P., Fantozzi F. Evaluation of machine learning algorithms to predict internal concentration polarization in forward osmosis // J. Membrane Science. 2022. V. 646. P. 120 257.

  74. Choi Y., Hwang T.-M., Jeong S., Lee S. The use of ultrasound to reduce internal concentration polarization in forward osmosis // Ultrasonics Sonochemistry. 2018. V. 41. P. 475‒483.

  75. Heikkinen J., Kyllönen H., Järvelä E., Grönroos A., Tang C.Y. Ultrasound-assisted forward osmosis for mitigating internal concentration polarization // J. Membrane Science. 2017. V. 528. P. 147‒154.

  76. Xu W., Chen Q., Ge Q. Recent advances in forward osmosis (FO) membrane: Chemical modifications on membranes for FO processes // Desalination. 2017. V. 419. P. 101‒116.

  77. Chi X.-Y., Zhang P.-Y., Guo X.-J., Xu Z.-L. A 41* TFC forward osmosis (FO) membrane supported by polyimide (PI) microporous nanofiber membrane // Applied Surface Science. 2018. V. 427. Part A. P. 1‒9.

  78. Suwaileh W., Pathak N., Shon H., Hilal N. Forward osmosis membranes and processes: A comprehensive review of research trends and future outlook // Desalination. 2020. V. 485. P. 114455.

  79. Kadhom M. A review on the polyamide thin film composite (TFC) membrane used for desalination: Improvement methods, current alternatives, and challenges // Chemical Engineering Research and Design. 2023. V. 191. P. 472–492.

  80. Xu S., Li F., Su B., Hu M.Z., Gao X., Gao C. Novel graphene quantum dots (GQDs)-incorporated thin film composite (TFC) membranes for forward osmosis (FO) desalination // Desalination. 2019. V. 451. P. 219‒230.

  81. Hartanto Y., Corvilain M., Mariën H., Janssen J., Vankelecom I.F.J. Interfacial polymerization of thin-film composite forward osmosis membranes using ionic liquids as organic reagent phase // J. Membrane Science. 2020. V. 601. P. 117869.

  82. Zheng D., Hua D., Yao A., Hong Y., Cha X., Yang X., Japip S., Zhan G. Fabrication of thin-film composite membranes for organic solvent nanofiltration by mixed monomeric polymerization on ionic liquid/water interfaces // J. Membrane Science. 2021. V. 636. P. 119 551.

  83. Song X., Wang Y., Jiao C., Huang M., Wang G.-H., Jiang H. Microstructure regulation of polyamide nanocomposite membrane by functional mesoporous polymer for high-efficiency desalination // J. Membrane Science. 2020. V. 597. P. 117783.

  84. Shakeri A., Razavi R., Salehi H., Fallahi M., Eghbalazar T. Thin film nanocomposite forward osmosis membrane embedded with amine-functionalized ordered mesoporous silica // Applied Surface Science. 2019. V. 481. P. 811‒818.

  85. Song X., Zhang Y., Abdel-Ghafar H.M., Abdel-Aal E.A., Huang M., Gul S., Jiang H. Polyamide membrane with an ultrathin GO interlayer on macroporous substrate for minimizing internal concentration polarization in forward osmosis // Chemical Engineering J. 2021. V. 412. P. 128607.

  86. Zhao W., Liu H., Liu Y., Jian M., Gao L., Wang H., Zhang X. Thin-film nanocomposite forward-osmosis membranes on hydrophilic microfiltration support with an intermediate layer of graphene oxide and multiwall carbon nanotube // ACS Applied Materials and Interfaces. 2018. V. 10 (40). P. 34464‒34474.

  87. Yang Y., Xu Y., Liu Z., Huang H., Fan X., Wang Y., Song Y., Song C. Preparation and characterization of high-performance electrospun forward osmosis membrane by introducing a carbon nanotube interlayer // J. Membrane Science. 2020. V. 616. P. 118563.

  88. Zhou Z., Hu Y., Boo C., Liu Z., Li J., Deng L., An X. High-performance thin-film composite membrane with an ultrathin spray-coated carbon nanotube interlayer // Environmental Science & Technology Letters. 2018. V. 5. Iss. 5. P. 243–248.

  89. Cheng B., Wang Y., Wu X., Fang M., Min X., Huang Z., Liu Y., Mi R. Preparation and characterization of novel thin film composite forward osmosis membrane with halloysite nanotube interlayer // Polymer. 2022. V. 254. P. 125096.

  90. Razavi S.R., Shakeri A., Mirahmadi Babaheydari S.M., Salehi H., Lammertink R.G.H. High-performance thin film composite forward osmosis membrane on tannic acid/Fe3+ coated microfiltration substrate // Chemical Engineering Research and Design. 2020. V. 161. P. 232‒239.

  91. Rafiee H., Shakeri A., Mahdavi H. Layer-by-layer assembly of alginate/Ca2+ as interlayer on microfiltration substrate: Fabrication of high selective thin-film composite forward osmosis membrane for efficient heavy metal ions removal // Chemical Engineering Research and Design. 2022. V. 188. P. 564–574.

  92. Suwaileh W., Johnson D., Khodabakhshi S., Hilal N. Superior cross-linking assisted layer by layer modification of forward osmosis membranes for brackish water desalination // Desalination. 2019. V. 463. P. 1‒12.

  93. Fang W., Wang R., Chou S., Setiawan L., Fane A.G. Composite forward osmosis hollow fiber membranes: Integration of RO- and NF-like selective layers to enhance membrane properties of anti-scaling and anti-internal concentration polarization // J. Membrane Science. 2012. V. 394–395. P. 140‒150.

  94. Suwaileh W.A., Johnson D.J., Sarp S., Hilal N. Advances in forward osmosis membranes: Altering the sub-layer structure via recent fabrication and chemical modification approaches // Desalination. 2018. V. 436. P. 176‒201.

  95. Mehta G.D. Further results on the performance of present-day osmotic membranes in various osmotic regions // J. Membrane Science. 1982. V. 10. Iss. 1. P. 3‒19.

  96. Attarde D., Jain M., Gupta S.K. Modeling of a forward osmosis and a pressure-retarded osmosis spiral wound module using the Spiegler-Kedem model and experimental validation // Separation and Purification Technology. 2016. V. 164. P. 182‒197.

  97. Abdelkader B.A., Navas D.R., Sharqawy M.H. A novel spiral wound module design for harvesting salinity gradient energy using pressure retarded osmosis // Renewable Energy. 2023. V. 203. P. 542‒553.

  98. Lee S., Boo C., Elimelech M., Hong S. Comparison of fouling behavior in forward osmosis (FO) and reverse osmosis (RO) // J. Membrane Science. 2010. V. 365. Iss. 1–2. P. 34‒39.

  99. Boo C., Elimelech M., Hong S. Fouling control in a forward osmosis process integrating seawater desalination and wastewater reclamation // J. Membrane Science. 2013. V. 444. P. 148‒156.

  100. Blandin G., Vervoort H., Le-Clech P., Verliefde A.R.D. Fouling and cleaning of high permeability forward osmosis membranes // J. Water Process Engineering. 2016. V. 9. P. 161‒169.

  101. Lutchmiah K., Verliefde A.R.D., Roest K., Rietveld L.C., Cornelissen E.R. Forward osmosis for application in wastewater treatment: A review // Water Research. 2014. V. 58. P. 179‒197.

  102. Song J., Yan M., Ye J., Zheng S., Ee L.Y., Wang Z., Li J., Huang M. Research progress in external field intensification of forward osmosis process for water treatment: A critical review // Water Research. 2022. V. 222. P. 118943.

  103. Awad A.M., Jalab R., Minier-Matar J., Adham S., Nasser M.S., Judd S.J. The status of forward osmosis technology implementation // Desalination. 2019. V. 461. P. 10‒21.

  104. Choi B.G., Kim D.I., Hong S. Fouling evaluation and mechanisms in a FO-RO hybrid process for direct potable reuse // J. Membrane Science. 2016. V. 520. P. 89‒98.

  105. Lee S., Kim Y., Hong S. Treatment of industrial wastewater produced by desulfurization process in a coal-fired power plant via FO-MD hybrid process // Chemosphere. 2018. V. 210. P. 44‒51.

  106. Kim Y., Li S., Ghaffour N. Evaluation of different cleaning strategies for different types of forward osmosis membrane fouling and scaling // J. Membrane Science. 2020. V. 596. P. 117731.

  107. Mi B., Elimelech M. Organic fouling of forward osmosis membranes: Fouling reversibility and cleaning without chemical reagents // J. Membrane Science. 2010. V. 348. Iss. 1–2. P. 337–345.

  108. Vinardell S., Blandin G., Ferrari F., Lesage G., Mata-Alvarez J., Dosta J., Astals S. Techno-economic analysis of forward osmosis pre-concentration before an anaerobic membrane bioreactor: Impact of draw solute and membrane material // J. Cleaner Production. 2022. V. 356. P. 131776.

  109. Pendergast M.M., Nowosielski-Slepowron M.S., Tracy J. Going big with forward osmosis // Desalination and Water Treatment. 2016. V. 57. Iss. 55. P. 26 529‒26 538.

  110. Freyberg T. Oasys looks to sell forward osmosis IP as cash flow dries up // Water World. Endeavor Business Media, 2023. URL: https://www.waterworld.com/ home/article/16203120/oasys-looks-to-sell-forward-osmosis-ip-as-cash-flow-dries-up (дата обращения: 10.01.2023).

  111. Freyberg T. Forward osmosis membrane revenues dry up for Modern Water // Water World. Endeavor Business Media, 2023. URL: https://www.waterworld.com/home/article/16199576/forward-osmosis-membrane-revenues-dry-up-for-modern-water (дата обращения: 10.01.2023).

  112. Lin S., Zhao H., Zhu L., He T., Chen S., Gao C., Zhang L. Seawater desalination technology and engineering in China: A review // Desalination. 2021. V. 498. P. 114 728.

  113. Park J., Lee S. Desalination Technology in South Korea: A Comprehensive Review of Technology Trends and Future Outlook // Membranes. 2022. V. 12 (2). P. 204.

  114. Saeed R., Konsowa A.H., Shalaby M.S., Mansour M.S., Eloffy M.G. Optimization of Integrated Forward – Reverse Osmosis Desalination Processes for Brackish Water // Alexandria Engineering J. 2023. V. 63. P. 89‒102.

  115. Hafiz M., Alfahel R., Altaee A., Hawari A.H. Techno-economic assessment of forward osmosis as a pretreatment process for mitigation of scaling in multi-stage flash seawater desalination process // Separation and Purification Technology. 2023. V. 309. P. 123007.

  116. McGovern R.K., Lienhard J.H. On the potential of forward osmosis to energetically outperform reverse osmosis desalination // J. Membrane Science. 2014. V. 469. P. 245–250.

  117. Mazlan N.M., Peshev D., Livingston A.G. Energy consumption for desalination – a comparison of forward osmosis with reverse osmosis, and the potential for perfect membranes // Desalination. 2016. V. 377. P. 138–151.

  118. Yangali-Quintanilla V., Li Z., Valladares R., Li Q., Amy G. Indirect desalination of Red Sea water with forward osmosis and low pressure reverse osmosis for water reuse // Desalination. 2011. V. 280. Iss. 1–3. P. 160‒166.

  119. Shaffer D.L., Yip N.Y., Gilron J., Elimelech M. Seawater desalination for agriculture by integrated forward and reverse osmosis: Improved product water quality for potentially less energy // J. Membrane Science. 2012. V. 415–416. P. 1‒8.

  120. Li M., Yang Y., Zhu L., Wang G., Zeng Z., Xue L. Anti-fouling and highly permeable thin-film composite forward osmosis membranes based on the reactive polyvinylidene fluoride porous substrates // Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2022. V. 654. P. 130144.

  121. Yang Y., Song C., Wang P., Fan X., Xu Y., Dong G., Liu Z., Pan Z., Song Y., Song C. Insights into the impact of polydopamine modification on permeability and anti-fouling performance of forward osmosis membrane // Chemosphere. 2022. V. 291. Part 1. P. 132744.

Дополнительные материалы отсутствуют.