Микробиология, 2022, T. 91, № 6, стр. 647-665

Редактирование геномов метанотрофных бактерий: возможные мишени и доступный инструментарий

В. Н. Хмеленина a, С. Ю. Бут ab, О. Н. Розова ab, И. Ю. Ошкин b, Н. В. Пименов b, С. Н. Дедыш b*

a Институт биохимии и физиологии микроорганизмов им. Г.К. Скрябина, Пущинский научный центр биологических исследований Российской академии наук
142290 Пущино, Московская обл., Россия

b Институт микробиологии им. С.Н. Виноградского, ФИЦ Биотехнологии РАН
119071 Москва, Россия

* E-mail: dedysh@mail.ru

Поступила в редакцию 17.07.2022
После доработки 26.07.2022
Принята к публикации 26.07.2022

Аннотация

Аэробные метанотрофные бактерии – это прокариотические микроорганизмы, обладающие уникальными ферментами, метанмонооксигеназами, позволяющими им использовать метан (СН4) в качестве ростового субстрата. Эта метаболическая особенность метанотрофов делает их привлекательными объектами биотехнологий, основанных на использовании метана для производства микробного белка и ряда целевых метаболитов. Растущий интерес к этим технологиям обусловлен высокой доступностью СН4, являющегося основным компонентом природного газа и биогаза, образуемого в результате анаэробной переработки органических отходов. Аэробные метанотрофы окисляют метан при температуре и давлении окружающей среды, поэтому перспективны в качестве биокатализаторов преобразования СН4 в продукты с добавленной стоимостью. Развитие биотехнологий конверсии метана с применением метанотрофов предполагает привлечение методов геномного редактирования для улучшения характеристик штаммов этих бактерий, используемых для производства. Специфика метаболизма СН4-использующих бактерий, а также сложности работы с этими объектами долгое время сдерживали развитие метаболической инженерии метанотрофов. В настоящем обзоре рассмотрены успехи последних десятилетий в области метаболической инженерии аэробных метанотрофов, описаны вероятные мишени и доступный инструментарий редактирования геномов этих микроорганизмов. Использование этого инструментария открывает возможности получения штаммов с биотехнологически ценными характеристиками, а также более глубокого изучения метаболических особенностей аэробных метанотрофов.

Ключевые слова: метанотрофные бактерии, разнообразие аэробных метанотрофов, специфика метаболизма метанотрофов, биоконверсия метана, редактирование геномов, метаболическая инженерия

Список литературы

  1. Бут С.Ю., Дедыш С.Н., Попов В.О., Пименов Н.В., Хмеленина В.Н. Конструирование метанотрофа I типа с пониженной способностью аккумулировать гликоген и сахарозу // Прикл. биохимия и микробиология. 2020. Т. 56. С. 465–471.

  2. But S.Yu., Dedysh S.N., Popov V.O., Pimenov N.V., Khmelenina V.N. Construction of a Type-I metanotroph with reduced capacity for glycogen and sucrose accumulation // Appl. Biochem. Microbiol. 2020. V. 56. P. 538–543.

  3. Бут С.Ю., Егорова С.В., Хмеленина В.Н., Троценко Ю.А. Биохимические свойства и филогения гидроксипируватредуктаз метанотрофных бактерий, реализующих различные пути С1 ассимиляции // Биохимия. 2017. Т. 82. С. 1647–1656.

  4. But S.Y., Egorova S.V., Khmelenina V.N., Trotsenko Y.A. Biochemical properties and phylogeny of hydroxypyruvate reductases from methanotrophic bacteria with different C1-assimilation pathways // Biochemistry (Moscow). 2017. V. 82. P. 1295–1303.

  5. Гальченко В.Ф. Метанотрофные бактерии. М.: ГЕОС, 2001. 500 с.

  6. Григорян А.Н., Горская Л. Использование природного газа для микробиологического синтеза. М.: ОНТИ Микробиопром, 1970. 90 с.

  7. Егоров И., Купина Л., Аксюк И., Муртазаева Р. Гаприн – источник белка // Птицеводство. 1990. Т. 8. С. 25‒27.

  8. Ешинимаев Б.Ц., Хмеленина В.Н., Сахаровский В.Г., Сузина Н.Е., Троценко Ю.А. Физиолого-биохимические и цитологические особенности галоалкалотолерантного метанотрофа при росте на метаноле // Микробиология. 2002. Т. 71. С. 690–700.

  9. Eshinimaev B.T., Khmelenina V.N., Sakharovskii V.G., Suzina N.E., Trotsenko Y.A. Physiological, biochemical, and cytological characteristics of a haloalkalitolerant methanotroph grown on methanol // Microbiology (Moscow). 2002. V. 71. P. 512‒518.

  10. Лалов В.В. Анализ и синтез энерготехнологических систем производства кормового белка из природного газа. Автореф. дис. … докт. биол. наук. Москва, 1991.

  11. Мустахимов И.И., Бут С.Ю., Решетников А.С., Хмеленина В.Н., Троценко Ю.А. Использование гомо- и гетерологичных репортерных белков для оценки активности промоторов у Methylomicrobium alcaliphilum 20Z // Прикл. биохимия и микробиология. 2016. Т. 52. С. 279‒286.

  12. Mustakhimov I.I., But S.Y., Reshetnikov A.S., Khmelenina V.N., Trotsenko Y.A. Homo- and heterologous reporter proteins for evaluation of promoter activity in Methylomicrobium alcaliphilum 20Z // Appl. Biochem. Microbiol. 2016. V. 52. P. 279‒286.

  13. Akberdin I.R., Thompson M., Hamilton R., Desai N., Alexander D., Henard C.A., Guarnieri M.T., Kalyuzhnaya M.G. Methane utilization in Methylomicrobium alcaliphilum 20ZR: a systems approach // Sci. Rep. 2018. V. 8. Art. 2512.

  14. Ali H., Murrell J.C. Development and validation of promoter-probe vectors for the study of methane monooxygenase gene expression in Methylococcus capsulatus Bath // Microbiology (SGM. Reading, Engl.). 2009. V. 155. P. 761‒771.

  15. Bordel S., Crombie A.T., Muñoz R., Murrell J.C. Genome Scale Metabolic Model of the versatile methanotroph Methylocella silvestris // Microb. Cell Fact. 2020. V. 19. P. 144.

  16. Borodina E., Nichol T., Dumont M.G., Smith T.J., Murrell J.C. Mutagenesis of the “leucine gate” to explore the basis of catalytic versatility in soluble methane monooxygenase // Appl. Environ. Microbiol. 2007. V. 73. P. 6460–6467.

  17. Bosse U., Frenzel P. Activity and distribution of methane-oxidizing bacteria in flooded rice soil microcosms and in rice plants (Oryza sativa) // Appl. Environ. Microbiol. 1997. V. 63. P. 1199–1207.

  18. Bothe H., Moller Jensen K., Mergel A., Larsen J., Jorgensen C., Bothe H., Jorgensen L. Heterotrophic bacteria growing in association with Methylococcus capsulatus (Bath) in a single cell protein production process // Appl. Microbiol. Biotechnol. 2002. V. 59. P. 33‒39.

  19. But S.Y., Egorova S.V., Khmelenina V.N., Mustakhimov I.I. Malyl-CoA lyase provides glycine/glyoxylate synthesis in type I methanotrophs // FEMS Microbiol. Lett. 2020. V. 367. fnaa207.

  20. Chaumeil P.-A., Mussig A.J., Hugenholtz P., Parks D.H. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database // Bioinformatics. 2020. V. 36. P. 1925–1927.

  21. Chistoserdova L., Lidstrom M.E. Aerobic methylotrophic prokaryotes // The Prokaryotes: Prokaryotic Physiology and Biochemistry. 2013. P. 267–285.

  22. Chu F., Beck D.C., Lidstrom M.E. MxaY regulates the lanthanide-mediated methanol dehydrogenase switch in Methylomicrobium buryatense // PeerJ. 2016. V. 4. Art. e2435.

  23. Chu F., Lidstrom M.E. XoxF acts as the predominant methanol dehydrogenase in the type I methanotroph Methylomicrobium buryatense // J. Bacteriol. 2016. V. 198. P. 1317–1325.

  24. Conrad R. The global methane cycle: recent advances in understanding the microbial processes involved // Environ. Microbiol. Rep. 2009. V. 1. P. 285–292.

  25. Crombie A., Murrell J.C. Development of a system for genetic manipulation of the facultative methanotroph Methylocella silvestris BL2 // Methods Enzymol. 2011. V. 495. P. 119‒133.

  26. Csaki R., Bodrossy L., Klem J., Murrell J.C., Kovacs K.L. Genes involved in the copper-dependent regulation of soluble methane monooxygenase of Methylococcus capsulatus (Bath): cloning, sequencing and mutational analysis // Microbiology (SGM). 2003. V. 149. P. 1785–1795.

  27. Davamani V., Parameswari E., Arulmani S. Mitigation of methane gas emissions in flooded paddy soil through the utilization of methanotrophs // Sci. Total Environ. 2020. V. 726. Art. 138570.

  28. De la Torre A., Metivier A., Chu F., Laurens L.M., Beck D.A., Pienkos P.T., Lidsrom M.E., Kalyuzhnaya M.G. Genome-scale metabolic reconstructions and theoretical investigation of methane conversion in Methylomicrobium buryatense strain 5G(B1) // Microb. Cell Factories. 2015. V. 14. P. 188.

  29. Dedysh S.N., Dunfield P.F. Facultative methane oxidizers // Handbook of Hydrocarbon and Lipid Microbiology / Ed. Timmis K.N. Berlin: Springer-Verlag, 2010. P. 1967‒1976.

  30. Dedysh S.N., Knief C. Diversity and phylogeny of described aerobic methanotrophs // Methane Biocatalysis: Paving the Way to Sustainability. 2018. P. 17–42.

  31. Dunfield P.F., Dedysh S.N. Methylocella: a gourmand among methanotrophs // Trends Microbiol. 2014. V. 22. P. 368‒369.

  32. Eccleston M., Kelly D.P. Assimilation and toxicity of some exogenous C1 compounds, alcohols, sugars and acetate in the methane-oxidizing bacterium Methylococcus capsulatus // J. Gen. Microbiol. 1973. V. 75. P. 211‒221.

  33. Espah Borujeni A., Channarasappa A.S., Salis H.M. Translation rate is controlled by coupled trade-offs between site accessibility, selective RNA unfolding and sliding at upstream standby sites // Nucleic Acids Res. 2014. V. 42. P. 2646‒2659.

  34. Fu Y., He L., Reeve J., Beck D.A.C., Lidstrom M.E. Core metabolism shifts during growth on methanol versus methane in the methanotroph Methylomicrobium buryatense 5GB1 // MBio. 2019. V. 10. P. e00406–19.

  35. Fu Y., Li Y., Lidstrom M. The oxidative TCA cycle operates during methanotrophic growth of the Type I methanotroph Methylomicrobium buryatense 5GB1 // Metab. Eng. 2017. V. 42. P. 43–51.

  36. Garg S., Wu H., Clomburg J.M., Bennett G.N. Bioconversion of methane to C-4 carboxylic acids using carbon flux through acetyl-CoA in engineered Methylomicrobium buryatense 5GB1C // Metab. Eng. 2018. P. 48. P. 175‒183.

  37. Garneau J.E., Dupuis M.-È., Villion M., Romero D.A., Barrangou R., Boyaval P., Fremaux C., Horvath P., Magadán A.H., Moineau S. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA // Nature 2010. V. 468. P. 67‒71.

  38. Gasiunas G., Barrangou R., Horvath P., Siksnys V. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria // Proc. Natl. Acad. Sci. USA. 2012. V. 109. P. E2579–E2586.

  39. Haque M.F.U., Gu W., DiSpirito A.A., Semrau J.D. Marker exchange mutagenesis of mxaF, encoding the large subunit of the Mxa methanol dehydrogenase, in Methylosinus trichosporium OB3b // Appl. Environ. Microbiol. 2016. V. 82. P. 1549–1555.

  40. Hamer G., Harrison D.E.F. Single cell protein: the technology, economics and future potential // Hydrocarbons in Biotechnology / Eds. Harrison D.E.F., Higgins I.J., London W.R. London: Heyden Institute of Petroleum, 1980. P. 59–73.

  41. Hanson R.S., Hanson T.E. Methanotrophic bacteria // Microbiol. Rev. 1996. V. 60. P. 439‒471.

  42. Harwood J.H., Williams E., Bainbridge B.W. Mutation of the methane oxidizing bacterium Methylococcus capsulatus // J. Appl. Bacteriol. 1972. V. 35. P. 99–108.

  43. Henard C.A., Franklin T.G., Youhenna B., But S., Alexander D., Kalyuzhnaya M.G., Guarnieri M.T. Biogas biocatalysis: methanotrophic bacterial cultivation, metabolite profiling, and bioconversion to lactic acid // Front. Microbiol. 2018. V. 9. Art. 2610.

  44. Henard C.A., Smith H., Dowe N., Kalyuzhnaya M.G., Pienkos P.T., Guarnieri M.T. Bioconversion of methane to lactate by an obligate methanotrophic bacterium // Sci. Rep. 2016. V. 6. Art. 21585.

  45. Henard C.A., Wu C., Xiong W., Henard J.M., Davidheiser-Kroll B., Orata F.D., Guarnieri M.T. Ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) is essential for growth of themethanotroph Methylococcus capsulatus strain Bath // Appl. Environ. Microbiol. 2021. V. 87. P. e00881-21.

  46. Henard C.A., Bourret T.J., Song M., Vázquez-Torres A. Control of redox balance by the stringent response regulatory protein promotes antioxidant defenses of Salmonella // J. Biol. Chem. 2010. V. 285. P. 36785–36793.

  47. Henard C.A., Akberdin I.R., Kalyuzhnaya M.G., Guarnieri M.T. Muconic acid production from methane using rationally-engineered methanotrophic biocatalysts // Green Chem. 2019. V. 21. P. 6731–6737.

  48. Hu L., Guo S., Yan X., Zhang T., Xiang J., Fei Q. Exploration of an efficient electroporation system for heterologous gene expression in the genome of methanotroph // Front. Microbiol. 2021. V. 12. Art. 717033.

  49. Ishikawa M., Yokoe S., Kato S., Hori K. Efficient counterselection for Methylococcus capsulatus (Bath) by using a mutated pheS gene // Appl. Environ. Microbiol. 2018. V. 84. P. e01875-18.

  50. Jiang D., Kim C.S., Hanson R.S., Wood T.K. Optimization of trichloroethylene degradation using soluble methane monooxygenase of Methylosinus trichosporium OB3b expressed in recombinant bacteria // Biotechnol. Bioeng. 1996. V. 51. P. 349–359.

  51. Jiang H., Chen Y., Jiang P., Zhang C., Smith T.J., Murrell J.C., Xing X.H. Methanotrophs: multifunctional bacteria with promising applications in environmental bioengineering // Biochem. Eng J. 2010. V. 49. P. 277‒288.

  52. Jinek M., Chylinski K., Fonfara I., Hauer M., Doudna J.A., Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity // Science 2012. V. 337. P. 816–821.

  53. Kalyuzhnaya M.G., Kumaresan D., Heimann K., Caetano N.S., Visvanathan C., Parthiba Karthikeyan O. Editorial: Methane: a bioresource for fuel and biomolecules // Front. Environ. Sci. 2020. V. 8. Art. 9.

  54. Kalyuzhnaya M.G., Puri A.W., Lidstrom M.E. Metabolic engineering in methanotrophic bacteria // Metab. Engin. 2015. V. 29. P. 142‒152.

  55. Kalyuzhnaya M.G., Yang S., Rozova O.N., Smalley N.E., Clubb J., Lamb A., Gowda G.N., Raftery D., Fu Y., Bringel F. Highly efficient methane biocatalysis revealed in a methanotrophic bacterium // Nat. Commun. 2013. V. 4. P. 2785.

  56. Khadem A.F., Pol A., Wieczorek A., Mohammadi S.S., Francoijs K.J., Stunnenberg H.G., Jetten M.S.M., Op den Camp H.J.M. Autotrophic methanotrophy in verrucomicrobia: Methylacidiphilum fumariolicum SolV uses the Calvin‒Benson‒Bassham cycle for carbon dioxide fixation // J. Bacteriol. 2011. V. 193. P. 4438–4446.

  57. Khider M.L.K., Brautaset T., Irla M. Methane monooxygenases: central enzymes in methanotrophy with promising biotechnological applications // World J. Microbiol. Biotechnol. 2021. V. 37. P. 72.

  58. Khmelenina V.N., But S.Y., Rozova O.N., Trotsenko Y.A. Metabolic features of aerobic methanotrophs: news and views // Curr. Issues Mol. Biol. 2019. V. 33. P. 85‒100.

  59. Khmelenina V.N., Kalyuzhnaya M.G., Sakharovsky V.G., Suzina N.E., Trotsenko Y.A., Gottschalk G. Osmoadaptation in halophilic and alkaliphilic methanotrophs // Arch. Microbiol. 1999. V. 172. P. 321‒329.

  60. Knief C. Diversity and habitat preferences of cultivated and uncultivated aerobic methanotrophic bacteria evaluated based on pmoA as molecular marker // Front. Microbiol. 2015. V. 6. P. 1346.

  61. Le H.T.Q., Nguyen A.D., Park Y.R., Lee E.Y. Sustainable biosynthesis of chemicals from methane and glycerol via reconstruction of multi-carbon utilizing pathway in obligate methanotrophic bacteria // Microb. Biotechnol. 2021. V. 14. P. 2552‒2565.

  62. Lee H.M., Ren J., Tran K.M., Jeon B.M., Park W.U., Kim H., Lee K.E., Oh Y., Choi M., Kim D.S., Na D. Identification of efficient prokaryotic cell-penetrating peptides with applications in bacterial biotechnology // Commun. Biol. 2021a. V. 4. P. 205.

  63. Lee H.M., Ren J., Yu M.S., Kim H., Kim W.Y., Shen J., Yoo S.M., Eyun S.I., Na D. Construction of a tunable promoter library to optimize gene expression in Methylomonas sp. DH-1, a methanotroph, and its application to cadaverine production // Biotechnol. Biofuels. 2021b. V. 14. P. 228.

  64. Lee J.K., Kim S., Kim W., Kim S., Cha S., Moon H., Hur D.H., Kim S.Y., Na J.G., Lee J.W., Lee E.Y., Hahn J.S. Efficient production of d-lactate from methane in a lactate-tolerant strain of Methylomonas sp. DH-1 generated by adaptive laboratory evolution // Biotechnol. Biofuels. 2019. V. 12. P. 234.

  65. Lieven C., Petersen L.A.H., Jørgensen S.B., Gernaey K.V., Herrgard M.J., Sonnenschein N. A genome-scale metabolic model for Methylococcus capsulatus (Bath) suggests reduced efficiency electron transfer to the particulate methane monooxygenase // Front. Microbiol. 2018. V. 9. Art. 2947.

  66. Liu Y., He X., Zhu P., Cheng M., Hong Q., Yan X. pheSAG based rapid and efficient markerless mutagenesis in Methylotuvimicrobium // Front. Microbiol. 2020. V. 11. Art. 441.

  67. Liu Y., Zhang H., He X., Liu J. Genetically engineered methanotroph as a platform for bioaugmentation of chemical pesticide contaminated soil // ACS Synth. Biol. 2021. V. 10. P. 487–494.

  68. Lloyd J.S., Finch R., Dalton H., Murrell J.C. Homologous expression of soluble methane monooxygenase genes in Methylosinus trichosporium OB3b // Microbiology (SGM. Reading). 1999. V. 145. P. 461‒470.

  69. Marx C.J., Lidstrom M.E. Broad-host-range cre-lox system for antibiotic marker recycling in gram-negative bacteria // Biotechniques. 2002. V. 33. P. 1062‒1067.

  70. Marx C.J., Lidstrom M.E. Development of improved versatile broad-host-range vectors for use in methylotrophs and other Gram-negative bacteria // Microbiology. 2001. V. 147. P. 2065‒2075.

  71. Marx C.J. Development of a broad-host-range sacB-based vector for unmarked allelic exchange // BMC Res. Notes. 2008. V. 1. Art. 1. https://doi.org/10.1186/1756-0500-1-1

  72. Murrell J.C., Gilbert B., McDonald I.R. Molecular biology and regulation of methane monooxygenase // Arch. Microbiol. 2000. V. 173. P. 325–332.

  73. Murrell J.C., Smith T.J. Biochemistry and Molecular Biology of Methane Monooxygenase. Handbook of Hydrocarbon and Lipid Microbiology. Berlin‒Heidelberg: Springer, 2010. P. 1045–1055.

  74. Mustakhimov I.I., Reshetnikov A.S., Glukhov A.S., Khmelenina V.N., Kalyuzhnaya M.G., Trotsenko Y.A. Identification and characterization of EctR1, a new transcriptional regulator of the ectoine biosynthesis genes in the halotolerant methanotroph Methylomicrobium alcaliphilum 20Z // J. Bacteriol. 2010. V. 192. P. 410–417.

  75. Naizabekov S., Lee E.Y. Genome-scale metabolic model reconstruction and in silico investigations of methane metabolism in Methylosinus trichosporium OB3b // Microorganisms. 2020. V. 8. P. 437.

  76. Nguyen A.D., Chau T.H.T., Lee E.Y. Methanotrophic microbial cell factory platform for simultaneous conversion of methane and xylose to value-added chemicals // Chem. Eng. J. 2021. V. 420. P. 127632.

  77. Nguyen A.D., Hwang I.Y., Lee O.K., Kim D., Kalyuzhnaya M.G., Mariyana R., Hadiyati S., Kim M.S., Lee E.Y. Systematic metabolic engineering of Methylomicrobium alcaliphilum 20Z for 2,3-butanediol production from methane // Metab. Engin. 2018. V. 47. P. 323‒333.

  78. Nguyen D., Lee O.K., Lim C., Lee J., Na J.-G., Lee E.Y. Metabolic engineering of type II methanotroph, Methylosinus trichosporium OB3b, for production of 3-hydroxypropionic acid from methane via a malonyl-CoA reductase-dependent pathway // Metab. Engin. 2020a. V. 59. P.  142‒150.

  79. Nguyen D.T.N., Lee O.K., Hadiyati S., Affifah A.N., Kim M.S., Lee E.Y. Metabolic engineering of the type I methanotroph Methylomonas sp. DH-1 for production of succinate from methane // Metab. Engin. 2019. V. 54. P. 170‒179.

  80. Nguyen L.T., Lee E.Y. Biological conversion of methane to putrescine using genome-scale model-guided metabolic engineering of a methanotrophic bacterium Methylomicrobium alcaliphilum 20Z // Biotechnol. Biofuels. 2019. V. 12. P. 147.

  81. Nguyen A.D., Kim D., Lee E.Y. Unlocking the biosynthesis of sesquiterpenoids from methane via the methylerythritol phosphate pathway in methanotrophic bacteria, using α‑humulene as a model compound // Metab. Engin. 2020b. V. 61. P. 69–78.

  82. Op den Camp H.J.M., Islam T., Stott M.B., Harhangi H.R., Hynes, A., Schouten S., Jetten M.S.M., Birkeland N.K., Pol A., Dunfield P.F. Environmental, genomic and taxonomic perspectives on methanotrophic Verrucomicrobia // Environ. Microbiol. Rep. 2009. V. 1. P. 293–306.

  83. Øverland M., Tauson A.H., Shearer K., Skrede A. Evaluation of methane-utilising bacteria products as feed ingredients for monogastric animals // Arch. Anim. Nutr. 2010. V. 64. P. 171‒189.

  84. Parks D.H., Chuvochina M., Rinke C., Mussig A.J., Chaumeil P.-A., Hugenholtz P. GTDB: an ongoing census of bacterial and archaeal diversity through a phylogenetically consistent, rank normalized and complete genome-based taxonomy // Nucleic Acids Res. 2022. V. 50. P. D785–D794.

  85. Pham D.N., Nguyen A.D., Lee E.Y. Outlook on engineering methylotrophs for one-carbon-based industrial biotechnology // Chem. Engin. J. 2022a. V. 449. P. 137769.

  86. Pham D.N., Nguyen A.D., Oh S.H., Lee E.Y. Bypassing the bottlenecks in the shikimate and methylerythritol phosphate pathways for enhancing the production of natural products from methane in Methylotuvimicrobium alcaliphilum 20Z // Green Chem. 2022b. V. 24. P. 2893‒2903.

  87. Pham D.N., Mai D.H.A., Nguyen A.D., Chau T.H.T., Lee E.Y. Development of an engineered methanotroph-based microbial platform for biocatalytic conversion of methane to phytohormone for sustainable agriculture // Chem. Engin. J. 2022c. V. 429. Art. 132522.

  88. Pieja A.J., Morse M.C., Cal A.J. Methane to bioproducts: the future of the bioeconomy? // Curr. Opin. Chem. Biol. 2017. V. 41. P. 123–131.

  89. Puri A.W., Owen S., Chu F., Chavkin T., Beck D.A.C., Kalyuzhnaya M.G. Genetic tools for the industrially promising methanotroph Methylomicrobium buryatense // Appl. Environ. Microbiol. 2015. V. 81. P. 1775–1781.

  90. Recorbet G., Robert C., Givaudan A., Kudla B., Normand P., Faurie G. Conditional suicide system of Escherichia coli released into soil that uses the Bacillus subtilis sacB gene // Appl. Environ. Microbiol. 1993. V. 59. P. 1356‒1365.

  91. Ren J., Lee H.‑M., Thai T.D., Na D. Identification of a cytosine methyltransferase that improves transformation efficiency in Methylomonas sp. DH‑1 // Biotechnol. Biofuels. 2020. V. 13. P. 200.

  92. Ro S.Y., Rosenzweig A.C. Recent advances in the genetic manipulation of Methylosinus trichosporium OB3b // Methods Enzymol. 2018. V. 605. P. 335‒349.

  93. Salis H.M., Mirsky E.A., Voigt C.A. Automated design of synthetic ribosome binding sites to control protein expression // Nat. Biotechnol. 2009. V. 27. P. 946‒950.

  94. Schmitz R.A., Peeters S.H., Versantvoort W., Picone N., Pol A., Jetten M.S.M., Op Den Camp H.J.M. Verrucomicrobial methanotrophs: ecophysiology of metabolically versatile acidophiles // FEMS Microbiol. Rev. 2021. V. 45. fuab007.

  95. Shaner N.C., Campbell R.E., Steinbach P.A., Giepmans B.N.G., Palmer A.E., Tsien R.Y. Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein // Nat. Biotechnol. 2004. V. 22. P. 1567‒1572.

  96. Stafford G.P., Scanlan J., McDonald I.R., Murrell J.C. rpoN, mmoR and mmoG, genes involved in regulating the expression of soluble methane monooxygenase in Methylosinus trichosporium OB3b // Microbiology (SGM). 2003. V. 149. P. 1771–1784.

  97. Sternberg N., Hamilton D. Bacteriophage P1 site-specific recombination: I. Recombination between loxP sites // J. Mol. Biol. 1981. V. 150. P. 467‒486.

  98. Strong P.J., Xie S., Clarke W.P. Methane as a resource: can the methanotrophs add value? // Environ Sci. Technol. 2015. V. 49. P. 4001–4018.

  99. Tapscott T., Guarnieri M.T., Henard C.A. Development of a CRISPR/Cas9 system for Methylococcus capsulatus in vivo gene editing // Appl. Environ. Microbiol. 2019. V. 85. e00340-19.

  100. Trotsenko Y.A., Murrell J.C. Metabolic aspects of aerobic obligatemethanotrophy // Adv. Appl. Microbiol. 2008. V. 63. P. 183–229.

  101. Welander P.V., Summons R.E. Discovery, taxonomic distribution, and phenotypic characterization of a gene required for 3-methylhopanoid production // Proc. Natl. Acad. Sci. USA. 2012. V. 109. P. 12905–12910.

  102. Williams E., Shimmin M.S., Bainbridge B.W. Mutation in the obligate methylotrophs Methylococcus capsulatus and Methylomonas albus // FEMS Microbiol. Lett. 1977. V. 2. P. 293–296.

  103. Wilson E.H., Groom J.D., Sarfatis M.C., Ford S.M., Lidstrom M.E., Beck D.A., A computational framework for identifying promoter sequences in nonmodel organisms using RNA-seq data sets // ACS Synth. Biol. 2021. V. 10. P. 1394–1405.

  104. Yan X., Chu F., Puri A.W., Fu Y., Lidstrom M.E. Electroporation-based genetic manipulation in type I methanotrophs // Appl. Environ. Microbiol. 2016. V. 82. P. 2062–2069.

  105. Ye R.W., Yao H., Stead K., Wang T., Tao L., Cheng Q., Sharpe P.L., Suh W., Nagel E., Arcilla D., Dragotta D., Miller E.S. Construction of the astaxanthin biosynthetic pathway in a methanotrophic bacterium Methylomonas sp. strain 16a // Ind. Microbiol. Biotechnol. 2007. V. 34. P. 289‒299.

  106. Zheng Y., Huang J., Zhao F., Chistoserdova L. Physiological effect of XoxG(4) on lanthanide-dependent methanotrophy // mBio. 2018. V. 9. e02430-17.

Дополнительные материалы отсутствуют.