Микроэлектроника, 2023, T. 52, № 3, стр. 174-182

Прецизионная томография кудитов

Ю. И. Богданов 1*, Н. А. Богданова 1, Ю. А. Кузнецов 1, К. Б. Кокшаров 1, В. Ф. Лукичёв 1

1 ФТИАН им. К.А. Валиева РАН
Москва, Россия

* E-mail: bogdanov_yurii@inbox.ru

Поступила в редакцию 09.12.2022
После доработки 20.12.2022
Принята к публикации 22.12.2022

Аннотация

Многоуровневые квантовые состояния (кудиты) представляют собой перспективную платформу для масштабируемых квантовых вычислений. В настоящей работе представлен метод высокоточного контроля таких систем с помощью нечетких квантовых измерений. Разработанный метод применяется для прецизионной реконструкции квантовых состояний в условиях существенного влияния декогерентизации и квантовых шумов. Рассмотрены протоколы квантовых измерений на основе взаимно- несмещeнных базисов различных размерностей. Исследованы характеристики точности наборов случайных состояний, равномерно распределенных по мере Хаара.

Ключевые слова: кубиты, кудиты, нечeткие квантовые измерения, квантовая томография, декогерентизация

Список литературы

  1. Nielsen Michael A., Chuang Isaac L. (2010). Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge: Cambridge University Press.

  2. Bogdanov Yu.I., Valiev K.A., Kokin A.A. Quantum computers: Achievements, implementation difficulties, and prospects // Russian Microelectronics, 2011. V. 40. № 4. PP. 225–236.

  3. Богданов Ю.И., Фастовец Д.В., Бантыш Б.И., Черняский А.Ю., Семенихин И.А., Богданова Н.А., Катамадзе К.Г., Кузнецов Ю.А., Кокин А.А., Лукичев В.Ф. Методы анализа качества элементной базы квантовых информационных технологий // Квантовая электроника. 48 (11), 1016–1022 (2018).

  4. Bogdanov Yu.I., Bantysh B.I., Chernyavskiy A.Yu., Lukichev V.F., and Orlikovsky A.A. Investigating the Effect of Amplitude and Phase Relaxation on the Quality of Quantum Information Technologies // Russian Microelectronics. 2015. V. 44. № 4. P. 225–230.

  5. Богданов Ю.И., Богданова Н.А., Фастовец Д.В., Лукичёв В.Ф. Решение уравнения Шредингера на квантовом компьютере методом Залки- Визнера с учетом квантовых шумов // Письма в ЖЭТФ. 2021. Т. 114. Выпуск 6. С. 391–399.

  6. Bogdanov Yu.I. Quantum measurements and high-precision control of quantum states // Proc. of SPIE. V. 12157. 121571V (2022).

  7. Banaszek K., Cramer M., Gross D. (ed.) 2012–2013 Focus on quantum tomography // New J. Phys. (focus issue) http://iopscience.iop.org/1367-2630/page/Focus%20on%20Quantum%20Tomography

  8. D’Ariano G.M., Paris M.G.A., Sacchi M.F. Quantum State Estimation // Lecture Notes in Physics / ed. Paris M., Řeháček J. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. V. 649. 519 p.

  9. Bogdanov Yu.I. Unified statistical method for reconstructing quantum states by purification, JETP 135, 6, 1068 (2009).

  10. Bogdanov Yu.I., Brida G., Genovese M., Kulik S.P., Moreva E.V., and Shurupov A.P. Statistical Estimation of the Efficiency of Quantum State Tomography Protocols // Phys. Rev. Lett. 2010. V. 105. 010404. 4 p.

  11. Bogdanov Yu.I., Brida G., Bukeev I.D., Genovese M., Kravtsov K.S., Kulik S.P., Moreva E.V., Soloviev A.A., Shurupov A.P. Statistical Estimation of Quantum Tomography Protocols Quality // Phys. Rev. A. 2011. V. 84. 042108. 19 p.

  12. Kiktenko E.O., Fedorov A.K., Strakhov A.A., Man’ko V.I. Single qudit realization of the Deutsch algorithm using superconducting many-level quantum circuits // Phys. Lett. A. 379:22 (2015). 1409–1413

  13. Kiktenko E.O., Nikolaeva A.S., Peng Xu, Shlyapnikov G.V., Fedorov A.K. Scalable quantum computing with qudits on a graph // J. Phys. A. 101:2 (2020), 22304. 7 pp. arXiv: 1909.08973.

  14. Бантыш Б.И., Богданов Ю.И., Фастовец Д.В., Кузнецов Ю.А. Квантовая томография ионных кудитов // Наноиндустрия. 2020. Т. 13. № S5-3 (102). С. 790–793. https://doi.org/10.22184/1993-8578.2020.13.5s.790.793

  15. Bantysh B.I., Bogdanov Yu.I. Quantum tomography of noisy ion-based qudits // Laser Phys. Lett. 2021. 18 015203 (Published 18 December 2020).

  16. Bogdanov Yu.I. Quantum tomography of arbitrary spin states of particles: root approach // Proceedings of SPIE. 2006. V. 6264. 626403. 10 p.

  17. Bogdanov Yu.I., Belinsky L.V. Finite frames constructed by solving Fekete problem and accuracy of quantum tomography protocols based on them // Proceedings of SPIE V.9440, International Conference on Micro- and Nano-Electronics 2014. 94401L

  18. Богданов Ю.И., Белинский Л.В. Оптимизация протоколов томографии квантовых состояний на основе решения задачи Томсона // Труды ФТИАН. М. Наука. 2015. Т. 25. С. 90–98.

  19. Holevo A.S. [Quantum Systems, Channels, Information], De Gruyter Studies in Mathematical Physics 16 (2012).

  20. Bogdanov Y.I. et al. Qutrit State Engineering with Biphotons // Phys. Rev. Lett. 2004. V. 93. № 23. P. 230503.

  21. Bogdanov Y.I. et al. Statistical reconstruction of qutrits // Phys. Rev. A. 2004. V. 70. № 4. P. 042303.

  22. Bogdanov Y.I., Krivitsky L.A., Kulik S.P. Statistical reconstruction of the quantum states of three-level optical systems // JETP Lett. 2003. V. 78. P. 352.

  23. Bogdanov Y.I., Bukeev I.D., Gavrichenko A.K. Studying Adequacy, Completeness, and Accuracy of Quantum Measurement // Opt. Spectrooscopy. 2011. V. 111. № 4. P. 647–655.

  24. Planat M., Rosu H.C., Perrine S. A Survey of Finite Algebraic Geometrical Structures Underlying Mutually Unbiased Quantum Measurements // Foundations of Physics. 2006. V. 36. P. 1662—1680. eprint: quant-ph/0409081.

  25. Wootters W.K., Fields B.D. Optimal state-determination by mutually unbiased measurements // Annals of Physics. 1989. V. 191. № 2. P. 363–381.

  26. Bengtsson I. Three Ways to Look at Mutually Unbiased Bases // AIP Conference Proceedings. AIP, 2007. V. 889. P. 40–51.

  27. Durt T., Englert B.G., Bengtsson I., and Yczkowski K. On mutually unbiased bases // Int. J. Quantum Inf., V. 8. № 4 PP. 535–640. 2010.

  28. Klappenecker A., Rötteler M. Constructions of mutually unbiased bases // International Conference on Finite Fields and Applications. Springer, 2003. P. 137–144.

  29. Богданов Ю.И., Лукичев В.Ф., Нуянзин С.А., Орликовский А.А., Холево А.С., Чернявский А.Ю. Математическое моделирование влияния квантовых шумов на качество элементной базы квантовых компьютеров // Труды ФТИАН. М. Наука. 2012. Т. 22. С. 39–77.

  30. Bogdanov Yu.I., Kalinkin A.A., Kulik S.P., Moreva E.V., Shershulin V.A. Quantum polarization transformations in anisotropic dispersive medium // New Journal of Physics. 2013. V. 15. 035012. 24 p.

  31. Chuang I.L., Nielsen M.A. Prescription for experimental determination of the dynamics of a quantum black box // J. Mod. Opt. 44. 2455 (1997); arXiv: quant-ph/9610001.

  32. Mohseni M., Rezakhani A.T., Lidar D.A. Quantum-process tomography: Resource analysis of different strategies // Phys. Rev. A 77. 032322 (2008).

  33. Bogdanov Yu.I., Nuyanzin S.A. Accuracy features for quantum process tomography using superconductor phase qubits // Bulletin of the Russian Academy of Sciences. Physics, 2012. V. 76. № 2. PP. 139–142; arXiv: quant-ph/1106.2906.

  34. Bogdanov Yu.I., Chernyavskiy A.Yu., Holevo A.S., Lukichev V.F., Orlikovsky A.A. Mathematical models of quantum noise // Proc. SPIE 8700, 870019 (2013).

  35. Bogdanov Yu.I., Bantysh B.I., Kalinkin A.A., Kulik S.P., Moreva E.V., Shershulin V.A. Optical polarization echo: Manifestation and study by methods of quantum tomography of states and processes // JETP 118. 6. 845–855 (2014).

  36. Bogdanov Yu.I., Bantysh B.I., Bogdanova N.A., Kvasnyy A.B., Lukichev V.F. Quantum states tomography with noisy measurement channels // Proceedings of SPIE 10224, International Conference on Micro- and Nano-Electronics 2016, 102242O (December 30, 2016).

  37. Бантыш Б.И., Богданов Ю.И., Богданова Н.А., Кузнецов Ю.А. Прецизионная томография квантовых состояний в условиях нечетких квантовых измерений // Труды ФТИАН. М. Наука. 2020. Т. 29. С. 18–42.

  38. Zyczkowski K., Sommers H.-J. Induced measures in the space of mixed quantum states // J. Phys. A. Math. Gen. 2001. V. 34. № 35. P. 7111–7125.

  39. Hayden P., Leung D., Shor P.W., Winter A. Randomizing quantum states: Constructions and applications, Communications in Mathematical Physics, 250(2), 371–391. (2004).

Дополнительные материалы отсутствуют.