Микология и фитопатология, 2021, T. 55, № 1, стр. 3-10

Серосодержащие ароматические соединения, токсины и фармакологически активные метаболиты макромицетов

Н. В. Белова 1*, Н. В. Псурцева 1**

1 Ботанический институт им. В.Л. Комарова РАН
197376 Санкт-Петербург, Россия

* E-mail: cultures@mail.ru
** E-mail: nadyapsu@mail.ru

Поступила в редакцию 15.08.2020
После доработки 15.10.2020
Принята к публикации 19.11.2020

Аннотация

В работе рассмотрены S-содержащие соединения, отвечающие за запах, ядовитые и лекарственные свойства ряда видов макромицетов. Представлены данные о химической структуре и биологической активности органосульфидов, циклических пептидов, эрготионеина и S-содержащих полисахаридов. Приведены виды макромицетов, содержащие сульфиды, токсины, эрготионеин.

Ключевые слова: биологическая активность, запахи, макромицеты, органосульфиды, токсины, циклические пептиды, эрготионеин, S-полисахариды

DOI: 10.31857/S0026364821010049

Список литературы

  1. Adams R.I., Hallen H.E., Pringle A. Primer Note: Using the incomplete genome of the ectomycorrhizal fungus Amanita bisporigera to identify molecular polymorphisms in the related Amanita phalloides // Molecular Ecology Notes. 2006. V. 6. P. 218–220.

  2. Agrawal D.C., Dhanasekaran M. Medicinal mushrooms: recent progress in research and development. In: L-Ergothioneine – a potential bioactive compound from edible mushrooms. Springer, Singapore, 2019. P. 391–408.

  3. Ahmed W.H., Gonmori K., Suzuki M. et al. Simultaneous analysis of α-amanitin, β-amanitin, and phalloidin in toxic mushrooms by liquid chromatography coupled to time-of-flight mass spectrometry. Forensic Toxicology. 2010. V. 28. P. 69–76.

  4. Al-Fatimi M., Jansen R., Wolf-Dieter J. et al. Bioactive components of the traditionally used mushroom Podaxis pistillaris. eCAM. 2006. V. 3. № 1. P. 87–92.

  5. Al-Fatimi M., Jansen R., Wolf-Dieter J. et al. Phytochemical and biological investigations of the Yemeni Mushroom Podaxis pistillaris. 6th Europ. Colloquium on Ethnopharmacology. Leipzig. 2007.

  6. Ammirati J.F., Traquair J.A., Horgen P.A. Poisonous mushrooms of Canada including other inedible fungi. Fitzhenry and Whiteside, Markham, 1985.

  7. Arnolds E. Conocybe Fay. In: M.E. Noordeloos, T.W. Kuyper and E.C. Vellinga (eds.). Flora Agaricina Neerlandica. 2005. V. 6. P. 120–179.

  8. Belova N.V. Sulfur-containing compounds in the fruit bodies of macromycetes. Mikologiya i fitopatologiya. 2011. V. 15. № 3. P. 201–208 (in Russ.).

  9. Belova N.V., Sazanova K.V., Shavarda A.L. Metabolic analysis of mycelium and fruiting bodies of Mycetinis alliaceus (Jacq.) Earle ex A.W. Wilson et Desjardin. Mikologiya i fitopatologiya. 2015. V. 49. № 5. P. 305–312 (in Russ.).

  10. Belova N.V., Zmitrovich I.V. Organopolysulfides of macromycetes: chemistry, ecological role and biological activity. Modern mycology in Russia. 2020. V. 8. Proceedings of the 4th International Mycological Forum. Moscow, 2020. (in Russ.).

  11. Benedict R.G., Brady L.R. Further studies on fermetative production of toxic cyclopeptides by Galerina marginata (Fr.) Kuhn. Lloydia. 1967. V. 30. P. 372–378.

  12. Benedict R.G., Tyler V.E., Bredy L.R. et al. Fermentative production of Amanita toxins by strain of Galerina marginata. J. Bacteriol. 1966. V. 91. № 3. P. 1380–1381.

  13. Besl H. Amatoxins in greenhouses, Galerina sulciceps, a tropical toxic mushroom. Zeitschr. Mykologie. 1981. V. 47. № 2. P. 253–256.

  14. Besl H., Mack P., Schmied-Heckel I. Gitipilze in den Gattungen Galerina und Lepiota. Zeitschr. Mykologie. 1984. V. 50. P. 183–189.

  15. Block S.S., Stephens R.I., Barreto A. et al. Chemical identification of the Amanita toxins in mushrooms // Science. 1955. V. 121. P. 505–506.

  16. Borgkarlson A.K., Englund F.O., Unelius C.R. Dimethyl oligosulphides, major volatiles released from Sauromatum guttatum and Phallus impudicus. Phytochemistry. 1994. V. 35. № 2. P. 321–323.

  17. Brady L.R., Benedict R.G., Tyler D.E. et al. Identification of Conocybe filaris as a toxic basidiomycete. Lloydia. 1975. V. 38. P. 172–173.

  18. Bresinsky A., Besl H. A colour atlas of poisonous fungi. Wolfe Publishing Ltd., 1990.

  19. Chang Y.L., Lin S.Y., Ulziijargal E. et al. Comparative study of contents of several bioactive components in fruiting bodies and mycelia of culinary-medicinal mushrooms. Int. J. Medicinal Mushrooms. 2012. V. 14. № 4. P. 357–363.

  20. Cheah I.K., Feng L., Tang R.M.Y. et al. Ergothioneine levels in an elderly population decrease with age and incidence of cognitive decline; a risk factor for neurodegeneration? Biochem. Biophysical Res. Communications. 2016. V. 478. № 1. P. 162–167. https://doi.org/. bbrc.2016.07.074

  21. Cheah L.K., Halliwell B. Ergothioneine; antioxidant potential, physiological function and role in disease. Biochimica et Biophysica Acta. 2012. № 5. P. 784–793.

  22. Chen Z.H., Hu J.S., Zhang Z.G. et al. Determination and analysis of the main amatoxins and phallotoxins in 28 species of Amanita from China. Mycosystema. 2003. V. 22. P. 565–573.

  23. Cheng J.-J., Chang C.-C., Chao C.-H. Characterization of fungal sulfated polysaccharides and their synergistic anticancer effects with doxorubicin. Carbohydrate Polymers. 2012. V. 90. № 1. P. 134–139. https://doi.org/10.1016/j.carbpol.2012.05.005

  24. Cho I.H., Namgung H.J., Choi H.K. et al. Volatiles and key odorants in the pileus and stipe of pine-mushroom (Tricholoma matsutake Sing.). Food Chemistry. 2008. V. 106. № 1. P. 71–76.

  25. Ciric M.Z., Dabetic N., Todorovic V. Beta-glucan content and antioxidant activities of mushroom-derived food supplements. J. Serbian Chemical Society. 2020. V. 85. № 4. P. 439–451.

  26. Cohen N., Cohen J, Asatiani M.D. et al. Chemical composition and nutritional and medicinal value of fruit bodies and submerged cultured mycelia of culinary-medicinal Higher Basidiomycetes mushrooms. Int. J. Medicinal Mushrooms 2014. V. 16. № 3. P. 273–291.

  27. De Haro L., Jouglard J., Arditti J. et al. Acute renal insufficiency caused by Amanita proxima poisoning: Experience of the Poison Center of Marseille. Nephrologie. 1998. V. 19. № 1. P. 21–24.

  28. Deng W.Q., Li T.H., Xi P.G. et al. Peptide toxin components of Amanita exitialis basidiocarps. Mycologia. 2011. V. 103. № 5. P. 946–949. https://doi.org/10.3852/10-319

  29. Dubost N.J., Ou B., Beelman R.B. Quantification of poly-phenols and ergothioneine in cultivated mushrooms and correlation to total antioxidant capacity. Food Chemistry. 2007. V. 105. P. 727–735.

  30. El Enshasy H., Elsayed E.A., Aziz R. et al. Mushrooms and trufes: historical biofactories for complementary medicine in Africa and in the Middle East. Evid Based Complement Alternat Med. 2013. https://doi.org/10.1155/2013/620451

  31. Enjalbert F., Cassanas G., Rapior S. et al. Amatoxins in wood-rotting Galerina marginata. Mycologia. 2004. V. 96. № 4. P. 720–729.

  32. Enjalbert F., Rapior S., Nouguier-Soule J. et al. Treatment of amatoxin poisoning: 20-year retrospective analysis. Clinical Toxicology. 2002. V. 40. № 6. P. 715–757.

  33. Esteve-Ravantos F., Altes A. Tres interesantes Lepiotas toxicas en la Provincia de Madrid. Bol. Soc. Micologica de Madrid. 1990. V. 14. P. 161–168.

  34. Ey J., Schömig E., Taubert D.J. Dietary sources and antioxidant effects of ergothioneine. Agrical Food Chemistry. 2007. V. 55. № 16. P. 6466–6474. https://doi.org/10.1021/jf071328f

  35. Faulstich H., Buku A., Bodenmuller H. et al. New toxic cyclopeptides from Amanita virosa mushroom. Struct. Act. Nat. Pept. Proc. Fall Meet. Ges. Boil. Chem. 1979. P. 189–199.

  36. Faulstich H., Buku A., Bodenmuller H. et al. Virotoxins: actin binding cyclic peptides of Amanita virosa mushrooms. Biochemistry. 1980. V. 19. P. 3334–3343.

  37. Fraiture A., Amalfi M., Raspé O. et al. Two new species of Amanita sect. Phalloideae from Africa, one of which is devoid of amatoxins and phallotoxins. MycoKeys. 2019. V. 53. P. 93–125. https://doi.org/10.3897/mycokeys.53.34560

  38. Frankel F., Priven M., Richard E. et al. Health functionality of organosulfides: a review. Int. J. Food Properties. 2016. V. 19. № 3. P. 537–548.

  39. Gerault A., Girre L. Miss au Point sur les intoxications par les champignons superieurs. Bull. Soc. Mycol. France. 1977. V. 93. № 3. P. 373–404.

  40. Gerault A., Girre L. Recherches toxicologique sur le genre Lepiota Fries. Comptes Rendus de l’Académie Sci. Paris. 1975. V. 280. № 25. P. 2841–2843.

  41. Gioacchini A.M., Menotta M., Guescini M. et al. Geographical traceability of Italian white truffle (Tuber magnatum Pico) by the analysis of volatile organic compounds. Rapid Communications in Mass Spectrometry. 2008. V. 22. P. 3147–3153.

  42. Gurevich L.S., Zhurkovich I.K. Toxins of some species of the genus Amanita Pers. Mikologiya i fitopatologiya. 1995. V. 29. № 1. P. 41–50 (in Russ.).

  43. Hallen H.E., Adams G.C., Eicker A. Amatoxins and phallotoxins in indigenous and introduced South African Amanita species. Southern African J. Botany. 2002. V. 68. P. 322–326.

  44. Hallen H.E., Luo H., Scott-Craig J.S. et al. Gene family encoding the toxins of lethal Amanita mushrooms. PNAS USA. 2007. V. 104. № 48. P. 19097–19101.

  45. Hallen H.E., Watling R., Adams G.C. Taxonomy and toxicity of Conocybe lactea and related species. Mycol. Res. 2003. V. 107. P. 969–979.

  46. Hallen-Adams H.E., Scott-Craig J.S., Walton J.D. et al. Use of Galerina marginata genes and proteins for peptide production. US patent № 20120276588, 2012.

  47. Hobbs C.R. Medicinal value of Lentinus edodes (Berk.) Sing. (Agaricomycetideae). A literature review. Int. J. Medicinal Mushrooms. 2000. V. 2. № 2. P. 287–302.

  48. Horgen P.A., Ammirati J.F., Their H.D. Occurrence of amatoxins in Amanita ocreata. Lloydia. 1976. V. 39. P. 368–371.

  49. Hu J., Zhang P., Zeng J. Determination of amatoxins in different tissues and development stages of Amanita exitialis. J. Science Food Agric. 2012. V. 92. P. 2664–2667.

  50. Jacobs J., Von Behren J., Kreutzer R. Serious mushroom poisings in California Requiring Hospital Admission, 1990–1994. West Indian Medical J. 1996. V. 165. P. 283–288.

  51. Johnson B.C., Preston J.F. Unique amanitin resistance of RNA synthesis in isolated nuclei from Amanita species accumulating amanitins. Archives of Microbiology. 1979. V. 122. P. 163–167.

  52. Kakumyan P., Matsui K. Characterization of volatile compounds in Astraeus spp. Biosci. Biotechnol. Bioshem. 2009. V. 73. № 12. P. 2742–2745.

  53. Kalac P. Edible mushrooms. Chemical composition and nutritional value. Elsevier, 2016

  54. Kalaras M.D., Richie J.P., Calcagnotto A. et al. Mushrooms: A rich source of the antioxidants ergothioneine and glutathione. Food Chemistry. 2017. V. 15. № 233. P. 429–433. https://doi.org/10.1016/j.foodchem.2017.04.109

  55. Kaya E., Karahan S., Bayram R. et al. Amatoxin and phallotoxin concentration in Amanita phalloides spores and tissues. Toxicology and Industrial Health. 2013. P. 1–6.

  56. Kimura H. Antioxid redox signal. Production and physiological effects of hydrogen sulfide. 2014. V. 20. № 5. P. 783–793. https://doi.org/10.1089/ars.2013.5309

  57. Kimura H., Shibuya N., Kimura Y. Hydrogen sulfide is a signaling molecule and a cytoprotectant. Antioxidants and redox signaling. 2012. V. 17. № 1. P. 45–57. https://doi.org/10.1089/ars.2011.4345

  58. Kiss M., Csóka M., Győrfi J. et al. Comparison of the fragrance constituents of Tuber aestivum and Tuber brumale gathered in Hungary. J. Applied Botany and Food Quality. 2011. V. 84. P. 102–110.

  59. Kiyashko A.A. The word concerning toadstools. Planeta Gribov. St. Petersburg Mycological Society. 2015. V. 1. № 7. C. 27–42 (in Russ.).

  60. Klan J. Prehleb hub obsahujicich amanitiny a faloidiny (the survey of fungi containing amanitins and phalloidins). Cas Lek Cesk. 1993. V. 132. № 15. P. 449–451.

  61. Konno K. Biologically active components of poisonous mushrooms. Food Reviews Int. 1995. V. 11. № 1. P. 83–107.

  62. Kosanic M.M., Šeklic D.S., Jovanovic M.M. Hygrophorus eburneus, edible mushroom, a promising natural bioactive agent. EXCLI Journal. 2020. V. 31. № 19. P. 442–457. https://doi.org/10.17179/excli2019-2056

  63. Kozarski M., Klaus A., Jakovljevic D. Antioxidants of edible mushrooms. Molecules. 2015. V. 20. № 10. P. 19489–19525. https://doi.org/10.3390/molecules201019489

  64. Kuo M. Mycetinis scorodonius. Retrieved from the MushroomExpert.Com Web site. 2013, January. http://www.mushroomexpert.com/mycetinis_scorodonius.html

  65. Kwon P.S., Oh H., Kwon S-J. et al. Sulfated polysaccharides effectively inhibit SARS-CoV-2 invitro. Cell Discovery. 2020. V. 6. N. 50. https://doi.org/10.1038/s41421-020-00192-8

  66. Little M.C., Preston J.F., Jackson C. Alloviroidin, the naturally occurring toxic isomer of the cyclopeptide viroidin. Biochemistry. 1986. V. 25. P. 2867–2872.

  67. Little V.C., Preston J.F. The fluorimetric detection of amatoxins, phallotoxins and other peptides in Amanita suballiacea. J. Natural Products. 1984. V. 47. P. 93–99.

  68. Liu J.K. N-Containing compounds of macromycetes. Chemical Reviews. 2005. V. 105. № 7. P. 2723–2744.

  69. Lu M.K., Lin T.Y., Chao C.H. et al. Molecular mechanism of Antrodia cinnamomea sulfated polysaccharide on the suppression of lung cancer cell growth and migration via induction of transforming growth factor β receptor degradation. J. Biological Macromolecules. 2017. V. 95. P. 1144–1152. https://doi.org/10.1016/j.ijbiomac.2016.11.004

  70. Luo H., Hallen-Adams H.E., Scott-Craig J.S. et al. Colocalization of amanitin and a candidate toxin-processing prolyl oligopeptidase in Amanita basidiocarps. Eukaryotic Cell. 2010. P. 1891–1900.

  71. Luo H., Hallen-Adams H.E., Walton J.D. Processing of the phalloidin proprotein by prolyl oligopeptidase from the mushroom Conocybe albipes. J. Biological Chemistry. 2009. V. 284. № 27. P. 18070–18077.

  72. McKnight T.A., McKnight K.B., Skeels M.C. Amatoxin and phallotoxin concentration in Amanita bisporigera spores. Mycologia. 2010. V. 102. № 4. P. 763–765.

  73. Moliszewska E. Mushroom flavor. Folia Biologica et Oecologica. 2014. № 10. P. 80–88.

  74. Morath S.U., Hung R., Bennet J.W. Fungal volatile organic compounds: A review with emphasis on their biotechnological potential. Fungal Biology Reviews. 2012. V. 26. № 73. P. 355–383.

  75. Muraoka S., Fukamachi N., Mizumoto K. et al. Detection and identification of amanitins in the wood-rotting fungi Galerina fasciculata and Galerina helvoliceps. Appl. Environmental Microbiology. 1999. V. 65. № 9. P. 4207–4210.

  76. Muraoka S., Shinozawa T. Effective production of amanitins by two-step cultivation of the basidiomycete, Galerina fasciculata GF-060. J. Bioscience and Bioengineering. 2000. V. 89. № 1. P. 73–76.

  77. Musselius S.G., Ryk A.A. Mushroom poisoning. Moscow, 2002 (in Russ.).

  78. Nguyen H., Nagasaka R., Ohshima T. Lipid oxidation challenges in food systems. The natural antioxidant ergothioneine: resources, chemical characterization, and applications. 2013. P. 381–415.

  79. Palazzolo E., Saiano F., Laudicina V.A. et al. Volatile organic compounds in wild fungi from Mediterranean forest ecosystems. J. Essential Oil Research. 2017. V. 29. P. 385–390.

  80. Paul B.D., Snyder S.H. The unusual amino acid L-ergothioneine is a physiologic cytoprotectant. Cell death and differentiation. 2010. V. 17. № 7 P. 1134–1140. https://doi.org/10.1038/cdd.2009.163

  81. Piqueras J. Hepatotoxic mushroom poisoning: diagnosis and management. Mycopathologia. 1989. V. 105. P. 99–110.

  82. Piqueras J. Terapeutica de la intoxication par Amanita phalloides. Atencion Farmaceutica: European Journal. 1992. V. 9. № 3. P. 221–228.

  83. Pond S.M., Olson K.R., Woo O.F. et al. Amatoxin poisoning in Northern California. 1982–1983. West Indian Medical J. 1986. V. 145. № 2. P. 204–209.

  84. Preston J.F., Stark H.J., Kimbrough J.W. Quantitation of amatoxins in Amanita verna with calf thymus RNA polymerase B. Lloydia. 1975. V. 38. P. 153–161.

  85. Psurtseva N.V., Shakhova N.V. Growth and morphological features of Galerina marginata (Batsch) Kühner strains producing cyclic peptides under surface and submerged cultivation. Modern mycology in Russia. 2015. V. 5. № 6, pp. 345–347 (in Russ.).

  86. Pudil F., Uvira R., Janda V. Volatile compounds in stinkhorn (Phallus impudicus L. ex Pers.) at different stages of growth. European Scientific Journal. 2014. V. 10. P. 1857–1881.

  87. Rapior S., Breheret S., Talou T. et al. Volatile flavour constituents of fresh Marasmius alliaceus (Garlic Marasmius). J. Agricultural and Food Chemistry. 1997. V. 45. P. 820–825.

  88. Seeger R., Stijve T. Amanitin content and toxicity of Amanita verna Bull. Zeitschr. Naturforschung. C. 1979. V. 34. № 5–6. P. 330–333.

  89. Shimokawa T., Kinoshita A., Kusumoto N. Component feature, odor-active volatiles, and acute oral toxicity of novel white-colored truffle Tuber japonicum native to Japan. Food Science Nutrition. 2019. P. 1–9.

  90. Sneeden E.Y., Harris H.H., Pickering I.J. et al. The sulfur chemistry of Shiitake mushroom. J. American Chemical Society. 2004. V. 126. P. 458–459.

  91. Splivallo R., Ottonello S., Mello A. et al. Traffle volatiles: from chemical ecology to aroma biosynthesis. New Phytologist. 2011. V. 189. № 3. P. 688–699. https://doi.org/10.1111/j.1469-8137.2010.03523.x

  92. Staron T., Courtillot M. Quelques donnees nouvelles sur les toxins d’Amanita virosa et d’A. phalloides. Bull. Soc. Mycol. France. 1975. V. 91. P. 556–559.

  93. Tanahashi M., Kaneko R., Hirata Y. et al. Simple analysis of α-amanitin and β-amanitin in human plasma by liquid chromatography-mass spectrometry. Forensic Toxicology. 2010. V. 28. № 2. P. 1–5.

  94. Tocmo R., Liang D., Lin Y. et al. Chemical and biochemical mechanisms underliying the cardioprotective roles of dietary organopolysulfides. Frontiers in Nutrition. 2015. V. 2. P. 1–18.

  95. Torregiani E., Lorier S., Sagratini G. et al. Comparative analysis of the volatile profile of 20 commercial samples of truffles, truffle sauces, and truffle-flavored oils by using HS-SPME-GC-MS. Food Analitical Methods. 2017. V. 10. P. 1857–1869. https//doi.org/.https://doi.org/10.1007/s12161-016-0749-2

  96. Walton J.D., Hallen-Adams H.E., Luo H. Ribosomal biosynthesis of the cyclic peptide toxins of Amanita mushrooms. Peptide Science. 2010. V. 94. № 5. P. 659–664.

  97. Wang Y., Bao H., Xu L. et al. Determination of main peptide toxins from Amanita pallidorosea with HPLC and their antifungal action on Blastomyces albicans. Acta Microbiologica Sinica. 2011. V. 51. № 9. P. 1205–1211.

  98. Wieland T. Peptides of poisonous Amanita mushrooms. Springer, Berlin, 1986.

  99. Wieland T. The chemistry of Amanita toxins. Amanitatoxins: Structure and RNA polymerase B inhibition, in: Faulstich, Kommerell, Wieland. 1980. P. 22–32.

  100. Wieland T. The toxic peptides from Amanita mushrooms. Int. J. Peptide and Protein Research. 1983. V. 22. P. 257–276.

  101. Wieland T., Faulstich H. Amatoxins, phallotoxins, phallolysin and antamanide: the biologically active components of poisonous Amanita mushrooms. CRC Crit. Rev. Biochem. 1978. V. 5. № 3. P. 185–260.

  102. Wu C.M., Wang Z. Volatile compounds in fresh and processed shiitake mushrooms (Lentinus edodes Sing.). Food Science and Technology Research. 2000. V. 6. № 3. P. 166–170.

  103. Xiang H., Zhou Y., Zhou C. et al. Investigation and analysis of Galerina sulciceps poisoning in a canteen. Journal Clinical Toxicology. 2018. V. 56. № 5. https://doi.org/10.1080/15563650.2017.1388386

  104. Xue J.H., Wu P., Chi Yu.L. et al. Cyclopeptides from Amanita exitialis. Notes Products Bioprospect. 2011. № 1. P. 53–56.

  105. Yang Y.-B., Hu J.-S., Chen Z.-H. et al. Amatoxins from Amanita fuliginea. Natural Product Research and Development. 2003. V. 5.

  106. Zhang P., Chen Z.-H., Hu J.-S. et al. Production and characterization of amanitin toxins from a pure culture of Amanita exitialis. FEMS Microbiology Letters. 2005. V. 252. P. 223–228.

  107. Zhang P., Chen Z.-H., Xioa B. et al. Lethal amanitas of East Asia characterized by morphological and molecular data. Fungal Diversity. 2010. V. 42. P. 119–133.

  108. Zhong J.-J., Xiao J.-H. Secondary metabolites from higher fungi: discovery, bioactivity, and bioproduction, Advances in Biochemical Engineering Biotechnology. 2009. V. 113. P. 79–150. https://doi.org/10.1007/10_2008_26

  109. Zhou Z.Z., Li S., Li C. et al. Studies on Amanita fuliginea and its toxicity. Acta Scientiarum Naturalium Universtis Normalis Hunanensis. J. Nat. Sci. Hunan Normal University. 1997.

  110. Белова Н.В. (Belova) Серосодержащие соединения в плодовых телах макромицетов // Микология и фитопатология. 2011. Т. 15. № 3. С. 201–208.

  111. Белова Н.В., Змитрович И.В. (Belova, Zmitrovich) Органополисульфиды макромицетов: химия, экологическая роль и биологическая активность // Cовременная микология в России. 2020. Т. 8. Материалы 4-го Международного микологического форума. М.: Национальная академия микологии, 2020. 460 с.

  112. Белова Н.В., Сазанова К.В., Шаварда А.Л. (Belova et al.) Метаболомный анализ мицелия и плодовых тел Mycetinis alliaceus (Jacq.) Earle ex A.W. Wilson et Desjardin // Микология и фитопатология. 2015. Т. 49. № 5. С. 305–312.

  113. Гуревич Л.С., Журкович И.К. (Gurevich, Zhurkovich) Токсины некоторых видов рода Amanita Pers. // Микология и фитопатология. 1995. Т. 29. № 1. С. 41–50.

  114. Кияшко А.А. (Kiyashko) Слово о поганках // Планета грибов. Научно-популярный журнал Санкт-Петербургского микологического общества. 2015. Т. 1. № 7. С. 27–42.

  115. Мусселиус С.Г., Рык А.А. (Musselius, Ryk) Отравления грибами. М., 2002. 324 с.

  116. Псурцева Н.В., Шахова Н.В. (Psurtseva, Shakhova) Ростовые и морфологические особенности штаммов Galerina marginata (Batsch) Kühner, продуцирующих циклические пептиды, в условиях поверхностного и глубинного культивирования // Современная микология в России. 2015. Т 5. С. 345–347.

Дополнительные материалы отсутствуют.