Микология и фитопатология, 2023, T. 57, № 5, стр. 352-361

Антагонистические штаммы Pantoea brenneri как средства защиты растений

Д. С. Бульмакова 1*, Г. И. Шагиева 1**, Д. Л. Иткина 1***, О. А. Ленина 2****, М. Р. Шарипова 1*****, А. Д. Сулейманова 1******

1 Казанский (Приволжский) федеральный университет
420008 Казань, Россия

2 Институт органической и физической химии им. А.Е. Арбузова Казанского научного центра Российской академии наук
420029 Казань, Россия

* E-mail: daria_bulmakova@mail.ru
** E-mail: gulsatsagieva2@gmail.com
*** E-mail: laia9301@mail.ru
**** E-mail: leninaox@mail.ru
***** E-mail: marsharipova@gmail.com
****** E-mail: aliya.kzn@gmail.com

Поступила в редакцию 25.04.2023
После доработки 15.05.2023
Принята к публикации 31.05.2023

Аннотация

Исследована антагонистическая активность штаммов Pantoea brenneri в отношении широкого спектра фитопатогенных микроорганизмов. Установлено, что штаммы характеризуются фунгицидной активностью в отношении микромицетов Fusarium sambucinum, F. oxysporum, F. solani, Rhizoctonia solani, Alternaria sp., Ascochyta kamchatica, Colletotrichum coccodes, и антибактериальной активностью в отношении фитопатогена Erwinia amylovora, вызывающего бактериальный ожог плодовых деревьев. Показано, что суспензия клеток и супернатант культуральной жидкости штаммов Pantoea brenneri способны подавлять фузариозы на клубнях картофеля при его хранении. Установлено, что штаммы P. brenneri являются безопасными для модельных животных. Сделано заключение о перспективах использования штаммов P. brenneri в качестве объектов для создания экологически безопасных средств защиты растений от фитопатогенов.

Ключевые слова: биоконтроль, биобезопасность, ризосферные бактерии, фитопатогенные микроорганизмы, Erwinia amylovora

Список литературы

  1. Barbetti M.J., Khan T.N., Pritchard I. et al. Challenges with managing disease complexes during application of different measures against foliar diseases of field pea. Plant Dis. 2021. V. 105. P. 616–627. https://doi.org/10.1094/PDIS-07-20-1470-RE

  2. Chernyavskaya M.I., Sidorenko A.V., Golenchenko S.G. et al. Ecological microbiology: textbook.-method. allowance. Izdatelstvo BGU, Minsk, 2016. (in Russ.)

  3. Dubrovsky J.G., Guttenberger M., Saralegui A. et al. Neutral red as a probe for confocal laser scanning microscopy studies of plant roots. Ann. Bot. 2006. V. 97. P. 1127–1138. https://doi.org/10.1093/aob/mcl045

  4. Egorov N.S. Fundamentals of the doctrine of antibiotics. Nauka, Moscow, 2004 (in Russ.).

  5. Etesami H., Jeong B.R., Glick B.R. Contribution of arbuscular mycorrhizal fungi, phosphate-solubilizing bacteria, and silicon to p uptake by plant. Front. Plant Sci. 2021. V. 12. Art. 699618. https://doi.org/10.3389/fpls.2021.699618

  6. Evans H.M., Schulemann W. The action of vital stains belonging to the benzidine group. Science. 1914. V. 39. P. 443–454. https://doi.org/10.1126/science.39.1004.443

  7. Förster H., McGhee G.C., Sundin G.W. et al. Characterization of streptomycin resistance in isolates of Erwinia amylovora in California. Phytopathology. 2015. V. 105. P. 1302–1310. https://doi.org/10.1094/PHYTO-03-15-0078-R

  8. Itkina D.L., Suleimanova A.D., Sharipova M.R. Pantoea brenneri AS3 and Bacillus ginsengihumi M2.11 as potential biocontrol and plant growth-promoting agents. Mikrobiologiya. 2021. V. 90. P. 204–214 (in Russ.). https://doi.org/10.31857/S0026365621020063

  9. Jiang L., Jeong J.C., Lee J.S. et al. Potential of Pantoea dispersa as an effective biocontrol agent for black rot in sweet potato. Sci. Rep. 2019. V. 9. Art. 16354. https://doi.org/10.1038/s41598-019-52804-3

  10. Johnson K.B. Effect of antagonistic bacteria on establishment of honey bee-dispersed Erwinia amylovora in pear blossoms and on fire blight control. Phytopathology. 1993. V. 83. P. 995–1002.

  11. Khan A., Singh P., Srivastava A. Synthesis, nature and utility of universal iron chelator – siderophore: a review. Microbiol. Res. 2018. V. 212. P. 103–111. https://doi.org/10.1016/j.micres.2017.10.012

  12. Lahlali T., Berke J. M., Vergauwen K. et al. Novel potent capsid assembly modulators regulate multiple steps of the hepatitis B virus life cycle. Agents Chemother. 2018. V. 62. P. 672–615. https://doi.org/10.1128/AAC.00835-18

  13. Lastochkina O., Pusenkova L., Garshina D. et al. The effect of endophytic bacteria Bacillus subtilis and salicylic acid on some resistance and quality traits of stored Solanum tuberosum L. tubers infected with Fusarium dry rot. Plants. 2020. V. 9. Art. 738. https://doi.org/10.3390/plants9060738

  14. Li D., Li S., Wei S. et al. Strategies to manage rice sheath blight: lessons from interactions between rice and Rhizoctonia solani. Rice (NY). 2021. V. 14. Art. 21. https://doi.org/10.1186/s12284-021-00466-z

  15. Mejdoub-Trabelsi B., Aydi Ben Abdallah R., Ammar N. et al. Antifungal potential of extracellular metabolites from Penicillium spp. and Aspergillus spp. naturally associated to potato against Fusarium species causing tuber dry rot. J. Microb. Biochem. Technol. 2017. V. 9. P. 181–190. https://doi.org/10.4172/1948-5948.1000364

  16. Mikiciński A., Puławska J., Molzhigitova A. et al. Bacterial species recognized for the first time for its biocontrol activity against fire blight (Erwinia amylovora). Eur. J. Plant Pathol. 2020. V. 156. P. 257–272. https://doi.org/10.1007/s10658-019-01885-x

  17. Netrusov F.I. Workshop on microbiology. Moscow, 2005 (in Russ.).

  18. Ordax M., Piquer-Salcedo J.E., Santander R.D. et al. Medfly Ceratitis capitata as potential vector for fire blight pathogen Erwinia amylovora : survival and transmission. PLOS One. 2015. V. 10. Art. e0127560. https://doi.org/10.1371/journal.pone.0127560

  19. Rochlani A., Dalwani A., Shaikh N.B. et al. Plant growth promoting rhizobacteria as biofertilizers: application in agricultural sustainability. Acta Scientific Microbiology. 2022. V. 5. P. 12–21. https://doi.org/10.1016/B978-0-12-815879-1.00003-3

  20. Santoyo G., Guzman-Guzman P., Parra-Cota F.I. et al. Plant growth stimulation by microbial consortia. Agronomy. 2021. V. 11. Art. 219. https://doi.org/10.3390/agronomy11020219

  21. Sellem I., Triki M.A., Elleuch L. et al. The use of newly isolated Streptomyces strain TN258 as potential biocontrol agent of potato tubers leak caused by Pythium ultimum. J. Basic Microbiol. 2017. V. 57 (5). P. 393–401. https://doi.org/10.1002/jobm.201600604

  22. Smith D.D.N., Nickzad A., Stavrinides J. A novel glycolipid biosurfactant confers grazing resistance upon Pantoea ananatis BRT175 against the social amoeba Dictyostelium discoideum. ASM J. 2016. V. 1. Art. e00075–15. https://doi.org/10.1128/mSphere.00075-15

  23. Suleimanova A.D., Beinhauer A., Valeeva L. R. et al. Novel glucose-1-phosphatase with high phytase activity and unusual metal ion activation from soil bacterium Pantoea sp. strain 3.5.1. Appl. Environ. Microbiol. 2015. V. 81. P. 6790–6799. https://doi.org/10.1128/AEM.01384-15

  24. Suleimanova A.D., Itkina D.L., Pudova D.S. et al. Identification of Pantoea phytate-hydrolyzing rhizobacteria based on their phenotypic features and multilocus sequence analysis (MLSA). Mikrobiologiya. 2021. V. 90. P. 100–109 (in Russ.). https://doi.org/10.31857/S0026365621010122

  25. Tan Y.N., Li Q. Microbial production of rhamnolipids using sugars as carbon sources. Microb. Cell Fact. 2018. V. 17. P. 89–92. https://doi.org/10.1186/s12934-018-0938-3

  26. Titova Yu.A., Krasnobaeva I.L. Multiconversion biopreparations for plant protection and the possibility of their use in organic farming. Tekhnologii i tekhnicheskie sredstva mekhanizirovannogo proizvodstva produkcii rastenievodstva i zhivotnovodstva. 2019. V. 2. P. 164–183 (in Russ.).

  27. Town J., Audy P., Boyetchko S.M. et al. High-quality draf genome sequence of biocontrol strain Pantoea sp. Oxwo6b1. Genome Announc. 2016. V. 4. Art. e00582-16. https://doi.org/10.1128/genomeA.00582-16

  28. Walterson A.M., Smith D.D.N., Stavrinides J. Identification of a Pantoea biosynthetic cluster that directs the synthesis of an antimicrobial natural product. PLoS One. 2014. V. 9. Art. e96208. https://doi.org/10.1371/journal.pone.0096208

  29. Zhang Y., Sun W., Ning P. et al. First report of anthracnose of papaya (Carica papaya L.) caused by Colletotrichum siamense in China. Plant Dis. 2021. V. 105. Art. 2252. https://doi.org/10.1094/PDIS-10-20-2154-PDN

Дополнительные материалы отсутствуют.