Молекулярная биология, 2020, T. 54, № 5, стр. 750-775

Связь матричных процессов I и II рода: амилоиды и стабильность генома

Ю. В. Андрейчук a*, С. П. Задорский ab, А. С. Жук c, Е. И. Степченкова ab, С. Г. Инге-Вечтомов ab

a Институт общей генетики им. Н.И. Вавилова Российской академии наук, Санкт-Петербургский филиал
199034 Санкт-Петербург, Россия

b Санкт-Петербургский государственный университет
199034 Санкт-Петербург, Россия

c Университет ИТМО
197101 Санкт-Петербург, Россия

* E-mail: yullinnabk@yandex.ru

Поступила в редакцию 11.04.2020
После доработки 06.05.2020
Принята к публикации 08.05.2020

Аннотация

Классические представления о механизмах наследственности рассматривают в качестве матриц линейные молекулы нуклеиновых кислот – ДНК и РНК, генетическая информация в которых закодирована в виде последовательности азотистых оснований. Матричный принцип, воплощенный в центральной догме молекулярной биологии, описывает разрешенные пути переноса генетической информации, а именно, от нуклеиновых кислот к белкам. Открытие прионов выявило дополнительный механизм наследственности – передачу пространственной структуры от одной молекулы белка к другой независимо от последовательности азотистых оснований в структурных генах. Одновременное существование линейных (I-го рода) и конформационных (II-го рода) матриц в одной клетке предполагает неизбежность их взаимодействия. В нашем обзоре проведен анализ современных данных, подтверждающих возможность влияния амилоидизации белков на стабильность генома, а также возможных молекулярных механизмов взаимного влияния матричных процессов I и II рода. Особое внимание уделено обсуждению совместного вклада этих процессов в “эволюцию” раковых опухолей, механизмов дестабилизации генома на фоне амилоидизации белков при болезнях Альцгеймера и Паркинсона, а также при синдроме Дауна.

Ключевые слова: амилоиды, прионы, мутации, анеуплоидия, стабильность генома, амилоидные нейродегенеративные заболевания

DOI: 10.31857/S002689842005002X

Список литературы

  1. Crick F.H. (1958) On protein synthesis. Symp. Soc. Exp. Biol. 12, 138–163.

  2. Crick F. (1970) Central dogma of molecular biology. Nature. 227, 561–563.

  3. Кольцов Н.К. (1936) Наследственные молекулы. В кн.: Организация клетки. М.-Л.: Гос. изд. биол. и мед. лит., pp. 585–622.

  4. Инге-Вечтомов С.Г. (2013) Матричный принцип как парадигма современной генетики. Генетика. 49, 9–15.

  5. Инге-Вечтомов С.Г. (2015) От хромосомной теории к матричному принципу. Генетика. 51, 397–408.

  6. Лобашев М.Е. (1947) Физиологическая (паранекротическая) гипотеза мутационного процесса. Вестн. Лен. гос. унив. 8, 10–29.

  7. Timofeeff-Ressovsky N.W., Zimmer K.G., Delbrück M. (1935) Über die Natur der Genmutation und der Genstruktur. Nachr. Ges. Wiss. Gottingen. Fachr. 13, 189–245.

  8. Инге-Вечтомов С.Г. (2015) Ретроспектива генетики. Санкт-Петербург: Изд-во Н-Л, 336 с.

  9. Sydow J.F., Cramer P. (2009) RNA polymerase fidelity and transcriptional proofreading. Curr. Opin. Struct. Biol. 19, 732–739.

  10. Roy H., Ibba M. (2006) Phenylalanyl-tRNA synthetase contains a dispensable RNA-binding domain that contributes to the editing of noncognate aminoacyl-tRNA. Biochemistry. 45, 9156–9162.

  11. Gorini L. (1974) Streptomycin and misreading of the genetic code. In: Ribosomes. Eds Nomura M., Missieres A., Lengyel P. Cold Spring Harbor, N.Y.: Cold Spring Harbor Lab., pp. 791–803.

  12. Hopfield J.J. (1974) Kinetic proofreading: a new mechanism for reducing errors in biosynthetic processes requiring high specificity. Proc. Natl. Acad. Sci. USA. 71, 4135–4139.

  13. Prusiner S.B. (1998) Prions. Proc. Natl. Acad. Sci. USA. 95, 13363–13383.

  14. Wickner R.B., Shewmaker F., Edskes H., Kryndushkin D., Nemecek J., McGlinchey R., Bateman D., Winchester C.L. (2010) Prion amyloid structure explains templating: how proteins can be genes. FEMS Yeast Res. 10, 980–991.

  15. Dobson C.M. (2004) Principles of protein folding, misfolding and aggregation. Semin. Cell Dev. Biol. 15, 3–16.

  16. Tyedmers J., Mogk A., Bukau B. (2010) Cellular strategies for controlling protein aggregation. Nat. Rev. Mol. Cell. Biol. 11, 777–788.

  17. Houck S.A., Singh S., Cyr D.M. (2012) Cellular responses to misfolded proteins and protein aggregates. Methods Mol. Biol. 832, 455–461.

  18. Schnabel J. (2010) Protein folding: the dark side of proteins. Nature. 464, 828–829.

  19. Kajava A.V., Aebi U., Steven A.C. (2005) The parallel superpleated beta-structure as a model for amyloid fibrils of human amylin. J. Mol. Biol. 348, 247–252.

  20. Kajava A.V., Baxa U., Steven A.C. (2010) Beta arcades: recurring motifs in naturally occurring and disease-related amyloid fibrils. FASEB J. 24, 1311–1319.

  21. Ahmed A.B., Znassi N., Chateau M.T., Kajava A.V. (2015) A structure-based approach to predict predisposition to amyloidosis. Alzheimers Dement. 11, 681–690.

  22. Bondarev S.A., Bondareva O.V., Zhouravleva G.A., Kajava A.V. (2018) BetaSerpentine: a bioinformatics tool for reconstruction of amyloid structures. Bioinformatics. 34, 599–608.

  23. Eisenberg D., Jucker M. (2012) The amyloid state of proteins in human diseases. Cell. 148, 1188–1203.

  24. Нижников А.А., Антонец К.С., Инге-Вечтомов С.Г. (2015) Амилоиды: от патогенеза к функции (обзор). Биохимия. 80, 1356–1375.

  25. Coustou V., Deleu C., Saupe S., Begueret J. (1997) The protein product of the het-s heterokaryon incompatibility gene of the fungus Podospora anserina behaves as a prion analog. Proc. Natl. Acad. Sci. USA. 94, 9773–9778.

  26. Bateman D.A., Wickner R.B. (2013) The [PSI+] prion exists as a dynamic cloud of variants. PLoS Genet. 9, e1003257.

  27. Borchsenius A.S., Muller S., Newnam G.P., Inge-Vechtomov S.G., Chernoff Y.O. (2006) Prion variant maintained only at high levels of the Hsp104 disaggregase. Curr. Genet. 49, 21–29.

  28. Barbitoff Y.A., Matveenko A.G., Moskalenko S.E., Zemlyanko O.M., Newnam G.P., Patel A., Chernova T.A., Chernoff Y.O., Zhouravleva G.A. (2017) To CURe or not to CURe? Differential effects of the chaperone sorting factor Cur1 on yeast prions are mediated by the chaperone Sis1. Mol. Microbiol. 105, 242–257.

  29. Matveenko A.G., Barbitoff Y.A., Jay-Garcia L.M., Chernoff Y.O., Zhouravleva G.A. (2018) Differential effects of chaperones on yeast prions: CURrent view. Curr. Genet. 64, 317–325.

  30. Choe Y.J., Park S.H., Hassemer T., Korner R., Vincenz-Donnelly L., Hayer-Hartl M., Hartl F.U. (2016) Failure of RQC machinery causes protein aggregation and proteotoxic stress. Nature. 531, 191–195.

  31. Sitron C.S., Brandman O. (2019) CAT tails drive degradation of stalled polypeptides on and off the ribosome. Nat. Struct. Mol. Biol. 26, 450–459.

  32. Wickner R.B. (1994) [URE3] as an altered URE2 protein: evidence for a prion analog in Saccharomyces cerevisiae. Science. 264, 566–569.

  33. Lacroute F. (1971) Non-Mendelian mutation allowing ureidosuccinic acid uptake in yeast. J. Bacteriol. 106, 519–522.

  34. Cox B.S. (1965) [PSI], a cytoplasmic suppressor of super-suppressor in yeast. Heredity. 20, 505–521.

  35. Derkatch I.L., Bradley M.E., Zhou P., Chernoff Y.O., Liebman S.W. (1997) Genetic and environmental factors affecting the de novo appearance of the [PSI+] prion in Saccharomyces cerevisiae. Genetics. 147, 507–519.

  36. Sondheimer N., Lindquist S. (2000) Rnq1: an epigenetic modifier of protein function in yeast. Mol. Cell. 5, 163–172.

  37. Du Z., Park K.W., Yu H., Fan Q., Li L. (2008) Newly identified prion linked to the chromatin-remodeling factor Swi1 in Saccharomyces cerevisiae. Nat. Genet. 40, 460–465.

  38. Patel B.K., Gavin-Smyth J., Liebman S.W. (2009) The yeast global transcriptional co-repressor protein Cyc8 can propagate as a prion. Nat. Cell Biol. 11, 344–349.

  39. Alberti S., Halfmann R., King O., Kapila A., Lindquist S. (2009) A systematic survey identifies prions and illuminates sequence features of prionogenic proteins. Cell. 137, 146–158.

  40. Suzuki G., Shimazu N., Tanaka M. (2012) A yeast prion, Mod5, promotes acquired drug resistance and cell survival under environmental stress. Science. 336, 355–359.

  41. Sipe J.D., Cohen A.S. (2000) Review: history of the amyloid fibril. J. Struct. Biol. 130, 88–98.

  42. Hamodrakas S.J. (2011) Protein aggregation and amyloid fibril formation prediction software from primary sequence: towards controlling the formation of bacterial inclusion bodies. FEBS J. 278, 2428–2435.

  43. Tsolis A.C., Papandreou N.C., Iconomidou V.A., Hamodrakas S.J. (2013) A consensus method for the prediction of 'aggregation-prone' peptides in globular proteins. PLoS One. 8, e54175.

  44. Kryndushkin D., Pripuzova N., Burnett B.G., Shewmaker F. (2013) Non-targeted identification of prions and amyloid-forming proteins from yeast and mammalian cells. J. Biol. Chem. 288, 27100–27111.

  45. Nizhnikov A.A., Alexandrov A.I., Ryzhova T.A., Mitkevich O.V., Dergalev A.A., Ter-Avanesyan M.D., Galkin A.P. (2014) Proteomic screening for amyloid proteins. PLoS One. 9, e116003.

  46. Nizhnikov A.A., Ryzhova T.A., Volkov K.V., Zadorsky S.P., Sopova J.V., Inge-Vechtomov S.G., Galkin A.P. (2016) Interaction of prions causes heritable traits in Saccharomyces cerevisiae. PLoS Genet. 12, e1006504.

  47. Pan K.M., Baldwin M., Nguyen J., Gasset M., Serban A., Groth D., Mehlhorn I., Huang Z., Fletterick R.J., Cohen F.E., Prusiner S.B. (1993) Conversion of alpha-helices into beta-sheets features in the formation of the scrapie prion proteins. Proc. Natl. Acad. Sci. USA. 90, 10962–10966.

  48. Kryndushkin D.S., Alexandrov I.M., Ter-Avanesyan M.D., Kushnirov V.V. (2003) Yeast [PSI+] prion aggregates are formed by small Sup35 polymers fragmented by Hsp104. J. Biol. Chem. 278, 49636–49643.

  49. Sipe J.D., Benson M.D., Buxbaum J.N., Ikeda S., Merlini G., Saraiva M.J., Westermark P. (2014) Nomenclature 2014: Amyloid fibril proteins and clinical classification of the amyloidosis. Amyloid. 21, 221–224.

  50. Галкин А.П., Велижанина М.Е., Сопова Ю.В., Шенфельд А.А., Задорский С.П. (2018) Прионы и неинфекционные амилоиды млекопитающих — сходства и отличия. Биохимия. 83, 1476–1489.

  51. Steensma D.P. (2001) “Congo” red: out of Africa? Arch. Pathol. Lab. Med. 125, 250–252.

  52. LeVine H., 3rd. (1999) Quantification of beta-sheet amyloid fibril structures with thioflavin T. Methods Enzymol. 309, 274–284.

  53. Kushnirov V.V., Ter-Avanesyan M.D. (1998) Structure and replication of yeast prions. Cell. 94, 13–16.

  54. Chernoff Y.O., Lindquist S.L., Ono B., Inge-Vechtomov S.G., Liebman S.W. (1995) Role of the chaperone protein Hsp104 in propagation of the yeast prion-like factor [PSI+]. Science. 268, 880–884.

  55. Liebman S.W., Chernoff Y.O. (2012) Prions in yeast. Genetics. 191, 1041–1072.

  56. Dergalev A.A., Alexandrov A.I., Ivannikov R.I., Ter-Avanesyan M.D., Kushnirov V.V. (2019) Yeast Sup35 prion structure: two types, four parts, many variants. Int. J. Mol. Sci. 20.

  57. Prusiner S.B. (1989) Scrapie prions. Annu. Rev. Microbiol. 43, 345–374.

  58. Yang X., Cheng Z., Zhang L., Wu G., Shi R., Gao Z., Li C. (2017) Prion protein family contributes to tumorigenesis via multiple pathways. Adv. Exp. Med. Biol. 1018, 207–224.

  59. Gajdusek D.C. (1991) The transmissible amyloidoses: genetical control of spontaneous generation of infectious amyloid proteins by nucleation of configurational change in host precursors: kuru-CJD-GSS-scrapie-BSE. Eur. J. Epidemiol. 7, 567–577.

  60. Prusiner S.B., Scott M.R. (1997) Genetics of prions. Annu. Rev. Genet. 31, 139–175.

  61. Prusiner S.B. (2001) Shattuck lecture–neurodegenerative diseases and prions. N. Engl. J. Med. 344, 1516–1526.

  62. Wickner R.B., Edskes H.K., Son M., Bezsonov E.E., DeWilde M., Ducatez M. (2018) Yeast prions compared to functional prions and amyloids. J. Mol. Biol. 430, 3707–3719.

  63. Roberts B.T., Wickner R.B. (2003) Heritable activity: a prion that propagates by covalent autoactivation. Genes Dev. 17, 2083–2087.

  64. Brown J.C., Lindquist S. (2009) A heritable switch in carbon source utilization driven by an unusual yeast prion. Genes Dev. 23, 2320–2332.

  65. Chakravarty A.K., Smejkal T., Itakura A.K., Garcia D.M., Jarosz D.F. (2020) A non-amyloid prion particle that activates a heritable gene expression program. Mol. Cell. 77, 251–265 e259.

  66. Derkatch I.L., Chernoff Y.O., Kushnirov V.V., Inge-Vechtomov S.G., Liebman S.W. (1996) Genesis and variability of [PSI] prion factors in Saccharomyces cerevisiae. Genetics. 144, 1375–1386.

  67. Schlumpberger M., Prusiner S.B., Herskowitz I. (2001) Induction of distinct [URE3] yeast prion strains. Mol. Cell. Biol. 21, 7035–7046.

  68. King C.Y. (2001) Supporting the structural basis of prion strains: induction and identification of [PSI] variants. J. Mol. Biol. 307, 1247–1260.

  69. Prusiner S.B. (2013) Biology and genetics of prions causing neurodegeneration. Annu. Rev. Genet. 47, 601–623.

  70. Liebman S.W., Sherman F. (1979) Extrachromosomal psi+ determinant suppresses nonsense mutations in yeast. J. Bacteriol. 139, 1068–1071.

  71. Wickner R.B., Masison D.C., Edskes H.K. (1995) [PSI] and [URE3] as yeast prions. Yeast. 11, 1671–1685.

  72. Derkatch I.L., Bradley M.E., Hong J.Y., Liebman S.W. (2001) Prions affect the appearance of other prions: the story of [PIN(+)]. Cell. 106, 171–182.

  73. Антонец К.С., Кливер С.Ф., Полев Д.Е., Шувалова А.Р., Андреева Е.А., Инге-Вечтомов С.Г., Нижников А.А. (2017) Различные механизмы фенотипических эффектов инактивации и прионизации белка Swi1 дрожжей Saccharomyces cerevisiae. Биохимия. 82, 1497–1509.

  74. Malovichko Y.V., Antonets K.S., Maslova A.R., Andreeva E.A., Inge-Vechtomov S.G., Nizhnikov A.A. (2019) RNA sequencing reveals specific transcriptomicsignatures distinguishing effects of the [SWI(+)] prion and SWI1 deletion in yeast Saccharomyces cerevisiae. Genes (Basel). 10(3), 212. https://doi.org/10.3390/genes10030212

  75. Chapman M.R., Robinson L.S., Pinkner J.S., Roth R., Heuser J., Hammar M., Normark S., Hultgren S.J. (2002) Role of Escherichia coli curli operons in directing amyloid fiber formation. Science. 295, 851–855.

  76. Alteri C.J., Xicohtencatl-Cortes J., Hess S., Caballero-Olin G., Giron J.A., Friedman R.L. (2007) Mycobacterium tuberculosis produces pili during human infection. Proc. Natl. Acad. Sci. USA. 104, 5145–5150.

  77. Dueholm M.S., Petersen S.V., Sonderkaer M., Larsen P., Christiansen G., Hein K.L., Enghild J.J., Nielsen J.L., Nielsen K.L., Nielsen P.H., Otzen D.E. (2010) Functional amyloid in Pseudomonas. Mol. Microbiol. 77, 1009–1020.

  78. Kalebina T.S., Plotnikova T.A., Gorkovskii A.A., Selyakh I.O., Galzitskaya O.V., Bezsonov E.E., Gellissen G., Kulaev I.S. (2008) Amyloid-like properties of Saccharomyces cerevisiae cell wall glucantransferase Bgl2p: prediction and experimental evidences. Prion. 2, 91–96.

  79. Ramsook C.B., Tan C., Garcia M.C., Fung R., Soybelman G., Henry R., Litewka A., O’Meally S., Otoo H.N., Khalaf R.A., Dranginis A.M., Gaur N.K., Klotz S.A., Rauceo J.M., Jue C.K., Lipke P.N. (2010) Yeast cell adhesion molecules have functional amyloid-forming sequences. Eukaryot. Cell. 9, 393–404.

  80. Ryzhova T.A., Sopova J.V., Zadorsky S.P., Siniukova V.A., Sergeeva A.V., Galkina S.A., Nizhnikov A.A., Shenfeld A.A., Volkov K.V., Galkin A.P. (2018) Screening for amyloid proteins in the yeast proteome. Curr. Genet. 64, 469–478.

  81. Sergeeva A.V., Sopova J.V., Belashova T.A., Siniukova V.A., Chirinskaite A.V., Galkin A.P., Zadorsky S.P. (2019) Amyloid properties of the yeast cell wall protein Toh1 and its interaction with prion proteins Rnq1 and Sup35. Prion. 13, 21–32.

  82. Калебина Т.С., Рекстина В.В. (2019) Молекулярная организация клеточной поверхности дрожжей. Молекул. биология. 53, 968–981.

  83. Hewetson A., Do H.Q., Myers C., Muthusubramanian A., Sutton R.B., Wylie B.J., Cornwall G.A. (2017) Functional amyloids in reproduction. Biomolecules. 7.

  84. Si K., Choi Y.B., White-Grindley E., Majumdar A., Kandel E.R. (2010) Aplysia CPEB can form prion-like multimers in sensory neurons that contribute to long-term facilitation. Cell. 140, 421–435.

  85. Majumdar A., Cesario W.C., White-Grindley E., Jiang H., Ren F., Khan M.R., Li L., Choi E.M., Kannan K., Guo F., Unruh J., Slaughter B., Si K. (2012) Critical role of amyloid-like oligomers of Drosophila Orb2 in the persistence of memory. Cell. 148, 515–529.

  86. Stephan J.S., Fioriti L., Lamba N., Colnaghi L., Karl K., Derkatch I.L., Kandel E.R. (2015) The CPEB3 protein is a functional prion that interacts with the actin cytoskeleton. Cell. Rep. 11, 1772–1785.

  87. Fowler D.M., Koulov A.V., Alory-Jost C., Marks M.S., Balch W.E., Kelly J.W. (2006) Functional amyloid formation within mammalian tissue. PLoS Biol. 4, e6.

  88. Berchowitz L.E., Kabachinski G., Walker M.R., Carlile T.M., Gilbert W.V., Schwartz T.U., Amon A. (2015) Regulated formation of an amyloid-like translational repressor governs gametogenesis. Cell. 163, 406–418.

  89. Sopova J.V., Koshel E.I., Belashova T.A., Zadorsky S.P., Sergeeva A.V., Siniukova V.A., Shenfeld A.A., Velizhanina M.E., Volkov K.V., Nizhnikov A.A., Kac-hkin D.V., Gaginskaya E.R., Galkin A.P. (2019) RNA-binding protein FXR1 is presented in rat brain in amyloid form. Sci. Rep. 9, 18983.

  90. Giraldo R. (2007) Defined DNA sequences promote the assembly of a bacterial protein into distinct amyloid nanostructures. Proc. Natl. Acad. Sci. USA. 104, 17388–17393.

  91. Molina-Garcia L., Gasset-Rosa F., Moreno-Del Alamo M., Fernandez-Tresguerres M.E., Moreno-Diaz de la Espina S., Lurz R., Giraldo R. (2016) Functional amyloids as inhibitors of plasmid DNA replication. Sci. Rep. 6, 25425.

  92. Chakrabortee S., Kayatekin C., Newby G.A., Mendillo M.L., Lancaster A., Lindquist S. (2016) Luminidependens (LD) is an Arabidopsis protein with prion behavior. Proc. Natl. Acad. Sci. USA. 113, 6065–6070.

  93. Vasudevan S., Steitz J.A. (2007) AU-rich-element-mediated upregulation of translation by FXR1 and Argonaute 2. Cell. 128, 1105–1118.

  94. Majumder M., House R., Palanisamy N., Qie S., Day T.A., Neskey D., Diehl J.A., Palanisamy V. (2016) RNA-binding protein FXR1 regulates p21 and TERC RNA to bypass p53-mediated cellular senescence in OSCC. PLoS Genet. 12, e1006306.

  95. Antonets K.S., Nizhnikov A.A. (2017) Predicting amyloidogenic proteins in the proteomes of plants. Int. J. Mol. Sci. 18(10), 2155. https://doi.org/10.3390/ijms18102155

  96. Harrison A.F., Shorter J. (2017) RNA-binding proteins with prion-like domains in health and disease. Biochem. J. 474, 1417–1438.

  97. Li L., McGinnis J.P., Si K. (2018) Translational control by prion-like proteins. Trends Cell. Biol. 28, 494–505.

  98. Coppede F., Migliore L. (2015) DNA damage in neurodegenerative diseases. Mutat. Res. 776, 84–97.

  99. Iourov I.Y., Vorsanova S.G., Liehr T., Yurov Y.B. (2009) Aneuploidy in the normal, Alzheimer’s disease and ataxia-telangiectasia brain: differential expression and pathological meaning. Neurobio.l Dis. 34, 212–220.

  100. Migliore L., Botto N., Scarpato R., Petrozzi L., Cipriani G., Bonuccelli U. (1999) Preferential occurrence of chromosome 21 malsegregation in peripheral blood lymphocytes of Alzheimer disease patients. Cytogenet. Cell. Genet. 87, 41–46.

  101. Trippi F., Botto N., Scarpato R., Petrozzi L., Bonuccelli U., Latorraca S., Sorbi S., Migliore L. (2001) Spontaneous and induced chromosome damage in somatic cells of sporadic and familial Alzheimer’s disease patients. Mutagenesis. 16, 323–327.

  102. Yurov Y.B., Vorsanova S.G., Liehr T., Kolotii A.D., Iourov I.Y. (2014) X chromosome aneuploidy in the Alzheimer’s disease brain. Mol. Cytogenet. 7, 20. https://doi.org/10.1186/1755-8166-7-20

  103. Migliore L., Scarpato R., Coppede F., Petrozzi L., Bonuccelli U., Rodilla V. (2001) Chromosome and oxidative damage biomarkers in lymphocytes of Parkinson’s disease patients. Int. J. Hyg. Environ. Hlth. 204, 61–66.

  104. Hegde M.L., Gupta V.B., Anitha M., Harikrishna T., Shankar S.K., Muthane U., Subba Rao K., Jagannatha Rao K.S. (2006) Studies on genomic DNA topology and stability in brain regions of Parkinson’s disease. Arch. Biochem. Biophys. 449, 143–156.

  105. Hanson P.K. (2018) Saccharomyces cerevisiae: A unicellular model genetic organism of enduring importance. Curr. Prot. Essential Lab. Techn.

  106. Giaever G., Chu A.M., Ni L., Connelly C., Riles L., Veronneau S., Dow S., Lucau-Danila A., Anderson K., Andre B., Arkin A.P., Astromoff A., El-Bakkoury M., Bangham R., Benito R., Brachat S., Campanaro S., Curtiss M., Davis K., Deutschbauer A., Entian K.D., Flaherty P., Foury F., Garfinkel D.J., Gerstein M., Gotte D., Guldener U., Hegemann J.H., Hempel S., Herman Z., Jaramillo D.F., Kelly D.E., Kelly S.L., Kotter P., LaBonte D., Lamb D.C., Lan N., Liang H., Liao H., Liu L., Luo C., Lussier M., Mao R., Menard P., Ooi S.L., Revuelta J.L., Roberts C.J., Rose M., Ross-Macdonald P., Scherens B., Schimmack G., Shafer B., Shoemaker D.D., Sookhai-Mahadeo S., Storms R.K., Strathern J.N., Valle G., Voet M., Volckaert G., Wang C.Y., Ward T.R., Wilhelmy J., Winzeler E.A., Yang Y., Yen G., Youngman E., Yu K., Bussey H., Boeke J.D., Snyder M., Philippsen P., Davis R.W., Johnston M. (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature. 418, 387–391.

  107. Winzeler E.A., Shoemaker D.D., Astromoff A., Liang H., Anderson K., Andre B., Bangham R., Benito R., Boeke J.D., Bussey H., Chu A.M., Connelly C., Davis K., Dietrich F., Dow S.W., El Bakkoury M., Foury F., Friend S.H., Gentalen E., Giaever G., Hegemann J.H., Jones T., Laub M., Liao H., Liebundguth N., Lockhart D.J., Lucau-Danila A., Lussier M., M’Rabet N., Menard P., Mittmann M., Pai C., Rebischung C., Revuelta J.L., Riles L., Roberts C.J., Ross-MacDonald P., Scherens B., Snyder M., Sookhai-Mahadeo S., Storms R.K., Veronneau S., Voet M., Volckaert G., Ward T.R., Wysocki R., Yen G.S., Yu K., Zimmermann K., Philippsen P., Johnston M., Davis R.W. (1999) Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science. 285, 901–906.

  108. Jones G.M., Stalker J., Humphray S., West A., Cox T., Rogers J., Dunham I., Prelich G. (2008) A systematic library for comprehensive overexpression screens in Saccharomyces cerevisiae. Nat. Methods. 5, 239–241.

  109. Ng P.C., Wong E.D., MacPherson K.A., Aleksander S., Argasinska J., Dunn B., Nash R.S., Skrzypek M.S., Gondwe F., Jha S., Karra K., Weng S., Miyasato S., Simison M., Engel S.R., Cherry J.M. (2020) Transcriptome visualization and data availability at the Saccharomyces Genome Database. Nucl. Acids Res. 48, D743–D748.

  110. Schmidt A. (2018) Merged map of the yeast proteome. Cell Syst. 6, 150–152.

  111. Chernova T.A., Chernoff Y.O., Wilkinson K.D. (2019) Yeast models for amyloids and prions: environmental modulation and drug discovery. Molecules. 24, 3388. https://doi.org/10.3390/molecules24183388

  112. Инге-Вечтомов С.Г. (2011) Прионы дрожжей как модель нейродегенеративных инфекционных амилоидозов человека. Онтогенез. 42, 337–345.

  113. Rencus-Lazar S., DeRowe Y., Adsi H., Gazit E., Laor D. (2019) Yeast models for the study of amyloid-associated disorders and development of future therapy. Front. Mol. Biosci. 6, 15.

  114. Klein H.L., Bacinskaja G., Che J., Cheblal A., Elango R., Epshtein A., Fitzgerald D.M., Gomez-Gonzalez B., Khan S.R., Kumar S., Leland B.A., Marie L., Mei Q., Mine-Hattab J., Piotrowska A., Polleys E.J., Putnam C.D., Radchenko E.A., Saada A.A., Sakofsky C.J., Shim E.Y., Stracy M., Xia J., Yan Z., Yin Y., Aguilera A., Argueso J.L., Freudenreich C.H., Gasser S.M., Gordenin D.A., Haber J.E., Ira G., Jinks-Robertson S., King M.C., Kolodner R.D., Kuzminov A., Lambert S.A., Lee S.E., Miller K.M., Mirkin S.M., Petes T.D., Rosenberg S.M., Rothstein R., Symington L.S., Zawadzki P., Kim N., Lisby M., Malkova A. (2019) Guidelines for DNA recombination and repair studies: cellular assays of DNA repair pathways. Microb. Cell. 6, 1–64.

  115. Inge-Vechtomov S.G., Repnevskaya M.V. (1989) Phenotypic expression of primary lesions of genetic material in Saccharomyces yeasts. Genome. 31, 497–502.

  116. Инге-Вечтомов С.Г., Репневская М.В., Карпова Т.С. (1986) Изучение скрещивание клеток одинакового типа спаривания у дрожжей сахаромицетов. Генетика. 22, 2625–2636.

  117. Степченкова Е.И., Коченова О.В., Жук А.С., Андрейчук Ю.В., Инге-Вечтомов С.Г. (2011) Фенотипическое проявление и взаимопревращение первичных повреждений генетического материала, учитываемых в альфа-тесте, у дрожжей Saccharomyces cerevisiae. Гигиена и санитария. 6, 64–69.

  118. Жук А.С., Ширяева А.А., Коченова О.В., Андрейчук Ю.В., Степченкова Е.И., Инге-Вечтомов С.Г. (2013) Альфа-тест – система для оценки генетически активных факторов. Актуальные проблемы гуманитарных и естественных наук. 11, 54–60.

  119. Степченкова Е.И., Коченова О.В., Инге-Вечтомов С.Г. (2009) “Незаконная” гибридизация и “незаконная” цитодукция у гетероталличных дрожжей Saccharomyces cerevisiae как система для анализа генетической активности экзогенных и эндогенных факторов в “альфа-тесте”. Вестник Санкт-Петербургского государственного университета. 3, 129–140.

  120. Репневская М.В., Кашкин П.К., Инге-Вечтомов С.Г. (1989) Модификационные изменения генетического материала у дрожжей сахаромицетов. Генетика. 25, 425–436.

  121. Андрейчук Ю.В., Ширяева А.А., Жук А.А., Степченкова Е.И., Инге-Вечтомов С.Г. (2015) Влияние прионизации белка Sup35 [PSI+] на частоту генетических нарушений, учитываемых в альфа-тесте у дрожжей Saccharomyces cerevisiae. Экологическая генетика. 13, 22–24.)

  122. Абилев С.К., Глазер В.М. (2015) Мутагенез с основами генетоксикологии: учебное пособие. СПб.: Нестер-История.

  123. Friedberg E.C., Walker G.C., Siede W., Wood R.D., Schultz R.A., Ellenberger T. (2006) DNA repair and mutagenesis. Sec. Ed. Washington, D.C.: ASM Press.

  124. Инге-Вечтомов С.Г. (2015) Генетика с основами селекции. СПб.: Изд-во Н-Л.

  125. Waisertreiger I.S., Liston V.G., Menezes M.R., Kim H.M., Lobachev K.S., Stepchenkova E.I., Tahirov T.H., Rogozin I.B., Pavlov Y.I. (2012) Modulation of mutagenesis in eukaryotes by DNA replication fork dynamics and quality of nucleotide pools. Environ. Mol. Mutagen. 53, 699–724.

  126. Kunkel T.A. (2004) DNA replication fidelity. J. Biol. Chem. 279, 16895–16898.

  127. Ferguson D.O., Alt F.W. (2001) DNA double strand break repair and chromosomal translocation: lessons from animal models. Oncogene. 20, 5572–5579.

  128. Dey P. (2004) Aneuploidy and malignancy: an unsolved equation. J. Clin. Pathol. 57, 1245–1249.

  129. Matsuura S., Ito E., Tauchi H., Komatsu K., Ikeuchi T., Kajii T. (2000) Chromosomal instability syndrome of total premature chromatid separation with mosaic variegated aneuploidy is defective in mitotic-spindle checkpoint. Am. J. Hum. Genet. 67, 483–486.

  130. Chatterjee N., Walker G.C. (2017) Mechanisms of DNA damage, repair, and mutagenesis. Environ. Mol. Mutagen. 58, 235–263.

  131. Martin L.J. (2008) DNA damage and repair: relevance to mechanisms of neurodegeneration. J. Neuropathol. Exp. Neurol. 67, 377–387.

  132. Bernstein C., Prasad A.R., Nfonsam V., Bernstein H. (2013) DNA damage, DNA repair and cancer. In: New Res. Directions DNA Repair. Chen, C.: InTech, 413–465.

  133. Bernstein C., Bernstein H. (2015) Epigenetic reduction of DNA repair in progression to gastrointestinal cancer. W. J. Gastrointest. Oncol. 7, 30–46.

  134. Drake J.W. (1999) The distribution of rates of spontaneous mutation over viruses, prokaryotes, and eukaryotes. Ann. N.Y. Acad. Sci. 870, 100–107.

  135. Tiwari V., Wilson D.M., 3rd. (2019) DNA damage and associated DNA repair defects in disease and premature aging. Am. J. Hum. Genet. 105, 237–257.

  136. Lyras L., Cairns N.J., Jenner A., Jenner P., Halliwell B. (1997) An assessment of oxidative damage to proteins, lipids, and DNA in brain from patients with Alzheimer’s disease. J. Neurochem. 68, 2061–2069.

  137. Nunomura A., Honda K., Takeda A., Hirai K., Zhu X., Smith M.A., Perry G. (2006) Oxidative damage to RNA in neurodegenerative diseases. J. Biomed. Biotechnol. 2006, 82323.

  138. Mecocci P., MacGarvey U., Beal M.F. (1994) Oxidative damage to mitochondrial DNA is increased in Alzheimer’s disease. Ann. Neurol. 36, 747–751.

  139. Lovell M.A., Gabbita S.P., Markesbery W.R. (1999) Increased DNA oxidation and decreased levels of repair products in Alzheimer’s disease ventricular CSF. J. Neurochem. 72, 771–776.

  140. Mecocci P., Polidori M.C., Ingegni T., Cherubini A., Chionne F., Cecchetti R., Senin U. (1998) Oxidative damage to DNA in lymphocytes from AD patients. Neurology. 51, 1014–1017.

  141. Wang J., Markesbery W.R., Lovell M.A. (2006) Increased oxidative damage in nuclear and mitochondrial DNA in mild cognitive impairment. J. Neurochem. 96, 825–832.

  142. Mullaart E., Boerrigter M.E., Ravid R., Swaab D.F., Vijg J. (1990) Increased levels of DNA breaks in cerebral cortex of Alzheimer’s disease patients. Neurobiol. Aging. 11, 169–173.

  143. Alam Z.I., Jenner A., Daniel S.E., Lees A.J., Cairns N., Marsden C.D., Jenner P., Halliwell B. (1997) Oxidative DNA damage in the parkinsonian brain: an apparent selective increase in 8-hydroxyguanine levels in substantia nigra. J. Neurochem. 69, 1196–1203.

  144. Seet R.C., Lee C.Y., Lim E.C., Tan J.J., Quek A.M., Chong W.L., Looi W.F., Huang S.H., Wang H., Chan Y.H., Halliwell B. (2010) Oxidative damage in Parkinson disease: Measurement using accurate biomarkers. Free Radic. Biol. Med. 48, 560–566.

  145. Ferrante R.J., Browne S.E., Shinobu L.A., Bowling A.C., Baik M.J., MacGarvey U., Kowall N.W., Brown R.H., Jr., Beal M.F. (1997) Evidence of increased oxidative damage in both sporadic and familial amyotrophic lateral sclerosis. J. Neurochem. 69, 2064–2074.

  146. Bogdanov M., Brown R.H., Matson W., Smart R., Hayden D., O’Donnell H., Flint Beal M., Cudkowicz M. (2000) Increased oxidative damage to DNA in ALS patients. Free Radic. Biol. Med. 29, 652–658.

  147. Aguirre N., Beal M.F., Matson W.R., Bogdanov M.B. (2005) Increased oxidative damage to DNA in an animal model of amyotrophic lateral sclerosis. Free Radic. Res. 39, 383–388.

  148. Warita H., Hayashi T., Murakami T., Manabe Y., Abe K. (2001) Oxidative damage to mitochondrial DNA in spinal motoneurons of transgenic ALS mice. Brain Res. Mol. Brain Res. 89, 147–152.

  149. Ferri A., Cozzolino M., Crosio C., Nencini M., Casciati A., Gralla E.B., Rotilio G., Valentine J.S., Carri M.T. (2006) Familial ALS-superoxide dismutases associate with mitochondria and shift their redox potentials. Proc. Natl. Acad. Sci. USA. 103, 13860–13865.

  150. Cheignon C., Tomas M., Bonnefont-Rousselot D., Faller P., Hureau C., Collin F. (2018) Oxidative stress and the amyloid beta peptide in Alzheimer’s disease. Redox Biol. 14, 450–464.

  151. Butterfield D.A., Swomley A.M., Sultana R. (2013) Amyloid beta-peptide (1-42)-induced oxidative stress in Alzheimer disease: importance in disease pathogenesis and progression. Antioxid. Redox Signal. 19, 823–835.

  152. Yatin S.M., Varadarajan S., Link C.D., Butterfield D.A. (1999) In vitro and in vivo oxidative stress associated with Alzheimer’s amyloid beta-peptide (1-42). Neurobiol. Aging. 20, 325–330; discussion 339–342.

  153. Butterfield D.A., Yatin S.M., Link C.D. (1999) In vitro and in vivo protein oxidation induced by Alzheimer’s disease amyloid beta-peptide (1-42). Ann. N.Y. Acad. Sci. 893, 265–268.

  154. Turnbull S., Tabner B.J., Brown D.R., Allsop D. (2003) Generation of hydrogen peroxide from mutant forms of the prion protein fragment PrP121-231. Biochemistry. 42, 7675–7681.

  155. Scudamore O., Ciossek T. (2018) Increased oxidative stress exacerbates alpha-synuclein aggregation in vivo. J. Neuropathol. Exp. Neurol. 77, 443–453.

  156. Cherny D., Hoyer W., Subramaniam V., Jovin T.M. (2004) Double-stranded DNA stimulates the fibrillation of alpha-synuclein in vitro and is associated with the mature fibrils: an electron microscopy study. J. Mol. Biol. 344, 929–938.

  157. Ohyagi Y., Asahara H., Chui D.H., Tsuruta Y., Sakae N., Miyoshi K., Yamada T., Kikuchi H., Taniwaki T., Murai H., Ikezoe K., Furuya H., Kawarabayashi T., Shoji M., Checler F., Iwaki T., Makifuchi T., Takeda K., Kira J., Tabira T. (2005) Intracellular Abeta42 activates p53 promoter: a pathway to neurodegeneration in Alzheimer’s disease. FASEB J. 19, 255–257.

  158. Nizhnikov A.A., Antonets K.S., Bondarev S.A., Inge-Vechtomov S.G., Derkatch I.L. (2016) Prions, amyloids, and RNA: pieces of a puzzle. Prion. 10, 182–206.

  159. Chaudhry M.A. (2007) Base excision repair of ionizing radiation-induced DNA damage in G1 and G2 cell cycle phases. Cancer Cell Int. 7, 15.

  160. Branzei D., Foiani M. (2008) Regulation of DNA repair throughout the cell cycle. Nat. Rev. Mol. Cell. Biol. 9, 297–308.

  161. Schroering A.G., Edelbrock M.A., Richards T.J., Williams K.J. (2007) The cell cycle and DNA mismatch repair. Exp. Cell Res. 313, 292–304.

  162. Zhao X., Wei C., Li J., Xing P., Li J., Zheng S., Chen X. (2017) Cell cycle-dependent control of homologous recombination. Acta Biochim. Biophys. Sin. (Shanghai). 49, 655–668.

  163. Strathern J.N., Shafer B.K., McGill C.B. (1995) DNA synthesis errors associated with double-strand-break repair. Genetics. 140, 965–972.

  164. Varga T., Aplan P.D. (2005) Chromosomal aberrations induced by double strand DNA breaks. DNA Repair (Amst). 4, 1038–1046.

  165. McPhie D.L., Coopersmith R., Hines-Peralta A., Chen Y., Ivins K.J., Manly S.P., Kozlowski M.R., Neve K.A., Neve R.L. (2003) DNA synthesis and neuronal apoptosis caused by familial Alzheimer disease mutants of the amyloid precursor protein are mediated by the p21 activated kinase PAK3. J. Neurosci. 23, 6914–6927.

  166. Li J.C., Kaminskas E. (1985) Deficient repair of DNA lesions in Alzheimer’s disease fibroblasts. Biochem. Biophys. Res. Commun. 129, 733–738.

  167. Robison S.H., Munzer J.S., Tandan R., Bradley W.G. (1987) Alzheimer’s disease cells exhibit defective repair of alkylating agent-induced DNA damage. Ann. Neurol. 21, 250–258.

  168. Jones S.K., Nee L.E., Sweet L., Polinsky R.J., Bartlett J.D., Bradley W.G., Robison S.H. (1989) Decreased DNA repair in familial Alzheimer’s disease. Mutat. Res. 219, 247–255.

  169. Coppede F., Migliore L. (2009) DNA damage and repair in Alzheimer’s disease. Curr. Alzheimer Res. 6, 36–47.

  170. Weissman L., Jo D.G., Sorensen M.M., de Souza-Pinto N.C., Markesbery W.R., Mattson M.P., Bohr V.A. (2007) Defective DNA base excision repair in brain from individuals with Alzheimer’s disease and amnestic mild cognitive impairment. Nucl. Acids Res. 35, 5545–5555.

  171. Canugovi C., Misiak M., Ferrarelli L.K., Croteau D.L., Bohr V.A. (2013) The role of DNA repair in brain related disease pathology. DNA Repair (Amst). 12, 578–587.

  172. Coppede F. (2011) Variants and polymorphisms of DNA base excision repair genes and Alzheimer’s disease. J. Neurol. Sci. 300, 200–201; author reply 201.

  173. Gallardo-Orihuela A., Hervas-Corpion I., Hierro-Bujalance C., Sanchez-Sotano D., Jimenez-Gomez G., Mora-Lopez F., Campos-Caro A., Garcia-Alloza M., Valor L.M. (2019) Transcriptional correlates of the pathological phenotype in a Huntington’s disease mouse model. Sci. Rep. 9, 18696.

  174. Rogoza T., Goginashvili A., Rodionova S., Ivanov M., Viktorovskaya O., Rubel A., Volkov K., Mironova L. (2010) Non-Mendelian determinant [ISP+] in yeast is a nuclear-residing prion form of the global transcriptional regulator Sfp1. Proc. Natl. Acad. Sci. USA. 107, 10573–10577.

  175. Drozdova P., Mironova L., Zhouravleva G. (2016) Haploid yeast cells undergo a reversible phenotypic switch associated with chromosome II copy number. BMC Genet. 17, 152.

  176. Zadorsky S.P., Sopova Y.V., Andreichuk D.Y., Startsev V.A., Medvedeva V.P., Inge-Vechtomov S.G. (2015) Chromosome VIII disomy influences the nonsense suppression efficiency and transition metal tolerance of the yeast Saccharomyces cerevisiae. Yeast. 32, 479–497.

  177. Borchsenius A.S., Tchourikova A.A., Inge-Vechtomov S.G. (2000) Recessive mutations in SUP35 and SUP45 genes coding for translation release factors affect chromosome stability in Saccharomyces cerevisiae. Curr. Genet. 37, 285–291.

  178. Tikhomirova V.L., Inge-Vechtomov S.G. (1996) Sensitivity of sup35 and sup45 suppressor mutants in Saccharomyces cerevisiae to the anti-microtubule drug benomyl. Curr. Genet. 30, 44–49.

  179. Li X., Rayman J.B., Kandel E.R., Derkatch I.L. (2014) Functional role of Tia1/Pub1 and Sup35 prion domains: directing protein synthesis machinery to the tubulin cytoskeleton. Mol. Cell. 55, 305–318.

  180. Valouev I.A., Kushnirov V.V., Ter-Avanesyan M.D. (2002) Yeast polypeptide chain release factors eRF1 and eRF3 are involved in cytoskeleton organization and cell cycle regulation. Cell. Motil. Cytoskeleton. 52, 161–173.

  181. Basu J., Williams B.C., Li Z., Williams E.V., Goldberg M.L. (1998) Depletion of a Drosophila homolog of yeast Sup35p disrupts spindle assembly, chromosome segregation, and cytokinesis during male meiosis. Cell. Motil. Cytoskeleton. 39, 286–302.

  182. Wu H.Y., Kuo P.C., Wang Y.T., Lin H.T., Roe A.D., Wang B.Y., Han C.L., Hyman B.T., Chen Y.J., Tai H.C. (2018) Beta-amyloid induces pathology-related patterns of tau hyperphosphorylation at synaptic terminals. J. Neuropathol. Exp. Neurol. 77, 814–826.

  183. Mao P., Reddy P.H. (2011) Aging and amyloid beta-induced oxidative DNA damage and mitochondrial dysfunction in Alzheimer’s disease: implications for early intervention and therapeutics. Biochim. Biophys. Acta. 1812, 1359–1370.

  184. Julien C., Tomberlin C., Roberts C.M., Akram A., Stein G.H., Silverman M.A., Link C.D. (2018) In vivo induction of membrane damage by beta-amyloid peptide oligomers. Acta Neuropathol. Commun. 6, 131.

  185. Alonso A.D., Cohen L.S., Corbo C., Morozova V., ElIdrissi A., Phillips G., Kleiman F.E. (2018) Hyperphosphorylation of Tau associates with changes in its function beyond microtubule stability. Front. Cell. Neurosci. 12, 338.

  186. Nieznanski K., Podlubnaya Z.A., Nieznanska H. (2006) Prion protein inhibits microtubule assembly by inducing tubulin oligomerization. Biochem. Biophys. Res. Commun. 349, 391–399.

  187. Tang Y.C., Amon A. (2013) Gene copy-number alterations: a cost-benefit analysis. Cell. 152, 394–405.

  188. Mulla W., Zhu J., Li R. (2014) Yeast: a simple model system to study complex phenomena of aneuploidy. FEMS Microbiol. Rev. 38, 201–212.

  189. Torres E.M., Sokolsky T., Tucker C.M., Chan L.Y., Boselli M., Dunham M.J., Amon A. (2007) Effects of aneuploidy on cellular physiology and cell division in haploid yeast. Science. 317, 916–924.

  190. Torres E.M., Williams B.R., Tang Y.C., Amon A. (2010) Thoughts on aneuploidy. Cold Spring Harb. Symp. Quant. Biol. 75, 445–451.

  191. Oromendia A.B., Dodgson S.E., Amon A. (2012) Aneuploidy causes proteotoxic stress in yeast. Genes Dev. 26, 2696–2708.

  192. Tang Y.C., Williams B.R., Siegel J.J., Amon A. (2011) Identification of aneuploidy-selective antiproliferation compounds. Cell. 144, 499–512.

  193. Stingele S., Stoehr G., Peplowska K., Cox J., Mann M., Storchova Z. (2012) Global analysis of genome, transcriptome and proteome reveals the response to aneuploidy in human cells. Mol. Syst. Biol. 8, 608.

  194. Donnelly N., Storchova Z. (2014) Dynamic karyotype, dynamic proteome: buffering the effects of aneuploidy. Biochim. Biophys. Acta. 1843, 473–481.

  195. Santaguida S., Vasile E., White E., Amon A. (2015) Aneuploidy-induced cellular stresses limit autophagic degradation. Genes Dev. 29, 2010–2021.

  196. Юров Ю.Б., Ворсанова С.Г., Соловьев И.В., Юров И.Ю. (2010) Нестабильность хромосом в нервных клетках человека в норме и при нервно-психических заболеваниях. Генетика. 46, 1352–1355.

  197. Rehen S.K., Yung Y.C., McCreight M.P., Kaushal D., Yang A.H., Almeida B.S., Kingsbury M.A., Cabral K.M., McConnell M.J., Anliker B., Fontanoz M., Chun J. (2005) Constitutional aneuploidy in the normal human brain. J. Neurosci. 25, 2176–2180.

  198. Rehen S.K., McConnell M.J., Kaushal D., Kingsbury M.A., Yang A.H., Chun J. (2001) Chromosomal variation in neurons of the developing and adult mammalian nervous system. Proc. Natl. Acad. Sci. USA. 98, 13361–13366.

  199. Epstein C.J., Foster D.B., DeArmond S.J., Prusiner S.B. (1991) Acceleration of scrapie in trisomy 16 diploid aggregation chimeras. Ann. Neurol. 29, 95–97.

  200. Popovitch E.R., Wisniewski H.M., Barcikowska M., Silverman W., Bancher C., Sersen E., Wen G.Y. (1990) Alzheimer neuropathology in non-Down’s syndrome mentally retarded adults. Acta Neuropathol. 80, 362–367.

  201. Wisniewski K.E., Dalton A.J., McLachlan C., Wen G.Y., Wisniewski H.M. (1985) Alzheimer’s disease in Down’s syndrome: clinicopathologic studies. Neurology. 35, 957–961.

  202. Oliver C., Holland A.J. (1986) Down’s syndrome and Alzheimer’s disease: a review. Psychol. Med. 16, 307–322.

  203. Patterson D., Gardiner K., Kao F.T., Tanzi R., Watkins P., Gusella J.F. (1988) Mapping of the gene encoding the beta-amyloid precursor protein and its relationship to the Down syndrome region of chromosome 21. Proc. Natl. Acad. Sci. USA. 85, 8266–8270.

  204. Oyama F., Cairns N.J., Shimada H., Oyama R., Titani K., Ihara Y. (1994) Down’s syndrome: up-regulation of beta-amyloid protein precursor and tau mRNAs and their defective coordination. J. Neurochem. 62, 1062–1066.

  205. Patterson D., Costa A.C. (2005) Down syndrome and genetics - a case of linked histories. Nat. Rev. Genet. 6, 137–147.

  206. Prasher V.P., Farrer M.J., Kessling A.M., Fisher E.M., West R.J., Barber P.C., Butler A.C. (1998) Molecular mapping of Alzheimer-type dementia in Down’s syndrome. Ann. Neurol. 43, 380–383.

  207. Blom E.S., Viswanathan J., Kilander L., Helisalmi S., Soininen H., Lannfelt L., Ingelsson M., Glaser A., Hiltunen M. (2008) Low prevalence of APP duplications in Swedish and Finnish patients with early-onset Alzheimer’s disease. Eur. J. Hum. Genet. 16, 171–175.

  208. Rovelet-Lecrux A., Hannequin D., Raux G., Le Meur N., Laquerriere A., Vital A., Dumanchin C., Feuillette S., Brice A., Vercelletto M., Dubas F., Frebourg T., Campion D. (2006) APP locus duplication causes autosomal dominant early-onset Alzheimer disease with cerebral amyloid angiopathy. Nat. Genet. 38, 24–26.

  209. Potter H. (1991) Review and hypothesis: Alzheimer disease and Down syndrome–chromosome 21 nondisjunction may underlie both disorders. Am. J. Hum. Genet. 48, 1192–1200.

  210. Heston L.L., Mastri A.R. (1977) The genetics of Alzheimer’s disease: associations with hematologic malignancy and Down’s syndrome. Arch. Gen. Psychiatry. 34, 976–981.

  211. Heyman A., Wilkinson W.E., Hurwitz B.J., Schme-chel D., Sigmon A.H., Weinberg T., Helms M.J., Swift M. (1983) Alzheimer’s disease: genetic aspects and associated clinical disorders. Ann. Neurol. 14, 507–515.

  212. Geller L.N., Potter H. (1999) Chromosome missegregation and trisomy 21 mosaicism in Alzheimer’s disease. Neurobiol. Dis. 6, 167–179.

  213. Schupf N., Kapell D., Lee J.H., Ottman R., Mayeux R. (1994) Increased risk of Alzheimer’s disease in mothers of adults with Down’s syndrome. Lancet. 344, 353–356.

  214. Potter H., Granic A., Caneus J. (2016) Role of trisomy 21 mosaicism in sporadic and familial Alzheimer’s disease. Curr. Alzheimer Res. 13, 7–17.

  215. Wang X., DeKosky S.T., Luedecking-Zimmer E., Ganguli M., Kamboh M.I. (2002) Genetic variation in alpha(1)-antichymotrypsin and its association with Alzheimer’s disease. Hum. Genet. 110, 356–365.

  216. Ye Z., Ye Q., Shao B., He J., Zhu Z., Cheng J., Chen Y., Chen S., Huang X. (2015) Association between alpha-1 antichymotrypsin gene A/T polymorphism and primary intracerebral hemorrhage: a meta-analysis. Int. J. Clin. Exp. Med. 8, 20796–20804.

  217. Lanoiselee H.M., Nicolas G., Wallon D., Rovelet-Lecrux A., Lacour M., Rousseau S., Richard A.C., Pasquier F., Rollin-Sillaire A., Martinaud O., Quillard-Muraine M., de la Sayette V., Boutoleau-Bretonniere C., Etcharry-Bouyx F., Chauvire V., Sarazin M., le Ber I., Epelbaum S., Jonveaux T., Rouaud O., Ceccaldi M., Felician O., Godefroy O., Formaglio M., Croisile B., Auriacombe S., Chamard L., Vincent J.L., Sauvee M., Marelli-Tosi C., Gabelle A., Ozsancak C., Pariente J., Paquet C., Hannequin D., Campion D., collaborators of the CNR-MAJ project (2017) APP, PSEN1, and PSEN2 mutations in early-onset Alzheimer disease: a genetic screening study of familial and sporadic cases. PLoS Med. 14, e1002270.

  218. Roses A.D. (1996) Apolipoprotein E and Alzheimer’s disease. A rapidly expanding field with medical and epidemiological consequences. Ann. N. Y. Acad. Sci. 802, 50–57.

  219. Strittmatter W.J., Roses A.D. (1995) Apolipoprotein E and Alzheimer disease. Proc. Natl. Acad. Sci. USA. 92, 4725–4727.

  220. Ma J., Yee A., Brewer H.B., Jr., Das S., Potter H. (1994) Amyloid-associated proteins alpha 1-antichymotrypsin and apolipoprotein E promote assembly of Alzheimer beta-protein into filaments. Nature. 372, 92–94.

  221. Zekanowski C., Wojda U. (2009) Aneuploidy, chromosomal missegregation, and cell cycle reentry in Alzheimer’s disease. Acta Neurobiol. Exp. (Wars). 69, 232–253.

  222. Doshay L.J. (1954) Problem situations in the treatment of paralysis agitans. J. Am. Med. Assoc. 156, 680–684.

  223. Driver J.A., Kurth T., Buring J.E., Gaziano J.M., Logroscino G. (2007) Prospective case-control study of nonfatal cancer preceding the diagnosis of Parkinson’s disease. Cancer Causes Control. 18, 705–711.

  224. Driver J.A., Logroscino G., Buring J.E., Gaziano J.M., Kurth T. (2007) A prospective cohort study of cancer incidence following the diagnosis of Parkinson’s disease. Cancer Epidemiol. Biomarkers Prev. 16, 1260–1265.

  225. Elbaz A., Peterson B.J., Yang P., Van Gerpen J.A., Bower J.H., Maraganore D.M., McDonnell S.K., Ahlskog J.E., Rocca W.A. (2002) Nonfatal cancer preceding Parkinson’s disease: a case-control study. Epidemiology. 13, 157–164.

  226. Elbaz A., Peterson B.J., Bower J.H., Yang P., Maraganore D.M., McDonnell S.K., Ahlskog J.E., Rocca W.A. (2005) Risk of cancer after the diagnosis of Parkinson’s disease: a historical cohort study. Mov. Disord. 20, 719–725.

  227. Fois A.F., Wotton C.J., Yeates D., Turner M.R., Goldacre M.J. (2010) Cancer in patients with motor neuron disease, multiple sclerosis and Parkinson’s disease: record linkage studies. J. Neurol. Neurosurg. Psychiatry. 81, 215–221.

  228. Olsen J.H., Friis S., Frederiksen K. (2006) Malignant melanoma and other types of cancer preceding Parkinson disease. Epidemiology. 17, 582–587.

  229. Olsen J.H., Friis S., Frederiksen K., McLaughlin J.K., Mellemkjaer L., Moller H. (2005) Atypical cancer pattern in patients with Parkinson’s disease. Br. J. Cancer. 92, 201–205.

  230. Driver J.A. (2014) Inverse association between cancer and neurodegenerative disease: review of the epidemiologic and biological evidence. Biogerontology. 15, 547–557.

  231. Bajaj A., Driver J.A., Schernhammer E.S. (2010) Parkinson’s disease and cancer risk: a systematic review and meta-analysis. Cancer Causes Control. 21, 697–707.

  232. Musicco M., Adorni F., Di Santo S., Prinelli F., Pettenati C., Caltagirone C., Palmer K., Russo A. (2013) Inverse occurrence of cancer and Alzheimer disease: a population-based incidence study. Neurology. 81, 322–328.

  233. Roe C.M., Fitzpatrick A.L., Xiong C., Sieh W., Kuller L., Miller J.P., Williams M.M., Kopan R., Behrens M.I., Morris J.C. (2010) Cancer linked to Alzheimer disease but not vascular dementia. Neurology. 74, 106–112.

  234. Frain L., Swanson D., Cho K., Gagnon D., Lu K.P., Betensky R.A., Driver J. (2017) Association of cancer and Alzheimer’s disease risk in a national cohort of veterans. Alzheimers Dement. 13, 1364–1370.

  235. Sorensen S.A., Fenger K., Olsen J.H. (1999) Significantly lower incidence of cancer among patients with Huntington disease: An apoptotic effect of an expanded polyglutamine tract? Cancer. 86, 1342–1346.

  236. Yamada M., Sasaki H., Mimori Y., Kasagi F., Sudoh S., Ikeda J., Hosoda Y., Nakamura S., Kodama K. (1999) Prevalence and risks of dementia in the Japanese population: RERF’s adult health study Hiroshima subjects. Radiation effects research foundation. J. Am. Geriatr. Soc. 47, 189–195.

  237. Koval L., Proshkina E., Shaposhnikov M., Moskalev A. (2020) The role of DNA repair genes in radiation-induced adaptive response in Drosophila melanogaster is differential and conditional. Biogerontology. 21, 45–56.

  238. Gueguen Y., Bontemps A., Ebrahimian T.G. (2019) Adaptive responses to low doses of radiation or chemicals: their cellular and molecular mechanisms. Cell. Mol. Life Sci. 76, 1255–1273.

  239. Mattson M.P., Calabrese E.J. (2010) Hormesis: what it is and why it matters. In: Hormesis: A Revolution in Biology, Toxicology and Medicine. Totowa US: Humana Press Inc, pp. 1–13.

  240. Hwang S., Jeong H., Hong E.H., Joo H.M., Cho K.S., Nam S.Y. (2019) Low-dose ionizing radiation alleviates Abeta42-induced cell death via regulating AKT and p38 pathways in Drosophila Alzheimer’s disease models. Biol. Open. 8(2), bio036657. https://doi.org/10.1242/bio.036657

  241. Ishimaru D., Andrade L.R., Teixeira L.S., Quesado P.A., Maiolino L.M., Lopez P.M., Cordeiro Y., Costa L.T., Heckl W.M., Weissmuller G., Foguel D., Silva J.L. (2003) Fibrillar aggregates of the tumor suppressor p53 core domain. Biochemistry. 42, 9022–9027.

  242. Ano Bom A.P., Rangel L.P., Costa D.C., de Oliveira G.A., Sanches D., Braga C.A., Gava L.M., Ramos C.H., Cepeda A.O., Stumbo A.C., De Moura Gallo C.V., Cordeiro Y., Silva J.L. (2012) Mutant p53 aggregates into prion-like amyloid oligomers and fibrils: implications for cancer. J. Biol. Chem. 287, 28152–28162.

  243. Lim S., Yoo B.K., Kim H.S., Gilmore H.L., Lee Y., Lee H.P., Kim S.J., Letterio J., Lee H.G. (2014) Amyloid-beta precursor protein promotes cell proliferation and motility of advanced breast cancer. BMC Cancer. 14, 928.

  244. Itoh H., Kataoka H., Koita H., Nabeshima K., Inoue T., Kangawa K., Koono M. (1991) Establishment of a new human cancer cell line secreting protease nexin-II/amyloid beta protein precursor derived from squamous-cell carcinoma of lung. Int. J. Cancer. 49, 436–443.

  245. Yang Z., Fan Y., Deng Z., Wu B., Zheng Q. (2012) Amyloid precursor protein as a potential marker of malignancy and prognosis in papillary thyroid carcinoma. Oncol. Lett. 3, 1227–1230.

  246. Miyazaki T., Ikeda K., Horie-Inoue K., Inoue S. (2014) Amyloid precursor protein regulates migration and metalloproteinase gene expression in prostate cancer cells. Biochem. Biophys. Res. Commun. 452, 828–833.

  247. Botelho M.G., Wang X., Arndt-Jovin D.J., Becker D., Jovin T.M. (2010) Induction of terminal differentiation in melanoma cells on downregulation of beta-amyloid precursor protein. J/Invest/Dermatol. 130, 1400–1410.

  248. Peters H.L., Yan Y., Nordgren T.M., Cutucache C.E., Joshi S.S., Solheim J.C. (2013) Amyloid precursor-like protein 2 suppresses irradiation-induced apoptosis in Ewing sarcoma cells and is elevated in immune-evasive Ewing sarcoma cells. Cancer Biol. Ther. 14, 752–760.

  249. Liang J., Pan Y., Zhang D., Guo C., Shi Y., Wang J., Chen Y., Wang X., Liu J., Guo X., Chen Z., Qiao T., Fan D. (2007) Cellular prion protein promotes proliferation and G1/S transition of human gastric cancer cells SGC7901 and AGS. FASEB J. 21, 2247–2256.

  250. Malaga-Trillo E., Solis G.P., Schrock Y., Geiss C., Luncz L., Thomanetz V., Stuermer C.A. (2009) Regulation of embryonic cell adhesion by the prion protein. PLoS Biol. 7, e55.

  251. Du L., Rao G., Wang H., Li B., Tian W., Cui J., He L., Laffin B., Tian X., Hao C., Liu H., Sun X., Zhu Y., Tang D.G., Mehrpour M., Lu Y., Chen Q. (2013) CD44-positive cancer stem cells expressing cellular prion protein contribute to metastatic capacity in colorectal cancer. Cancer Res. 73, 2682–2694.

  252. Cheng Y., Tao L., Xu J., Li Q., Yu J., Jin Y., Chen Q., Xu Z., Zou Q., Liu X. (2014) CD44/cellular prion protein interact in multidrug resistant breast cancer cells and correlate with responses to neoadjuvant chemotherapy in breast cancer patients. Mol. Carcinog. 53, 686–697.

  253. Danish Rizvi S.M., Hussain T., Subaiea G.M., Shakil S., Ahmad A. (2018) Therapeutic targeting of amyloid precursor protein and its processing enzymes for breast cancer treatment. Curr. Protein Pept. Sci. 19, 841–849.

Дополнительные материалы отсутствуют.