Молекулярная биология, 2020, T. 54, № 6, стр. 939-954

Клеточная заместительная терапия при болезни Паркинсона – история развития и перспективы использования в клинической практике

Н. В. Католикова ab*, А. Б. Малашичева bc, Р. Р. Гайнетдинов ad

a Институт трансляционной биомедицины Санкт-Петербургского государственного университета
199034 Санкт-Петербург, Россия

b Институт цитологии Российской академии наук
194064 Санкт-Петербург, Россия

c Национальный медицинский исследовательский центр им. В.А. Алмазова Министерства здравоохранения Российской Федерации
197341 Санкт-Петербург, Россия

d Клиника высоких медицинских технологий им. Н.И. Пирогова Санкт-Петербургского государственного университета
199034 Санкт-Петербург, Россия

* E-mail: nkatolikova@yandex.ru

Поступила в редакцию 23.04.2020
После доработки 16.06.2020
Принята к публикации 25.06.2020

Аннотация

Болезнь Паркинсона широко распространенное нейродегенеративное заболевание, которое характеризуется гибелью дофаминергических нейронов в черной субстанции среднего мозга. Клинически болезнь проявляется тремором, брадикинезией, ригидностью мышц и другими моторными и не моторными симптомами, которые в конечном итоге приводят к инвалидизации пациентов. На сегодняшний день существуют только симптоматические варианты лечения болезни Паркинсона, поэтому поиск новых подходов рассматривается как одно из важнейших направлений терапии этого заболевания. Идея о возможности применения клеточной заместительной терапии, основанная на локальном характере и специфичности повреждения конкретного типа нейронов при болезни Паркинсона, появилась еще в 1970-х годах. Выбор источника клеток, метода и места их введения, показания к проведению данной операции и особенности ведения пациентов прошли длительный путь развития. К настоящему моменту эффективность клеточной заместительной терапии подтверждена целым рядом исследований на модельных животных. Уже начаты клинические испытания, в ближайшее время планируется проведение еще нескольких. В представленном обзоре описаны основные предпосылки к применению клеточной заместительной терапии при болезни Паркинсона, этапы развития этого метода и клинические испытания, начавшиеся в последние несколько лет.

Ключевые слова: болезнь Паркинсона, клеточная заместительная терапия, эмбриональные стволовые клетки, индуцированные плюрипотентные стволовые клетки, дифференцировка клеток, нейрональные прогениторы

DOI: 10.31857/S0026898420060063

Список литературы

  1. Иллариошкин С.Н., Левина О.С. (2017) Руководство по диагностике и лечению болезни Паркинсона. Москва: ООО “ИПК Парето-Принт”, 336 с.

  2. Ungerstedt U. (1968) 6-Hydroxy-dopamine induced degeneration of central monoamine neurons. Eur. J. Pharmacol. 5(1), 107–110. https://doi.org/10.1016/0014-2999(68)90164-7

  3. Ungerstedt U., Arbuthnott G.W. (1970) 6-Hydroxy-dopamine induced degeneration of central monoamine neurons. Eur. J. Pharmacol. 24(3), 485–493. https://doi.org/10.1016/0006-8993(70)90187-3

  4. Björklund A., Lindvall O. (2017) Replacing dopamine neurons in Parkinson’s disease: how did it happen? J. Parkinson’s Disease. 7(s1), S23–S33. https://doi.org/10.3233/JPD-179002

  5. Olson L., Seiger A. (1972) Brain tissue transplanted to the anterior chamber of the eye. 1. Fluorescence histochemistry of immature catecholamine and 5-hydroxytryptamine neurons reinnervating the rat iris. Z. Zellforsch. Mikrosk. Anat. 135(2), 175–194. https://doi.org/10.1007/bf00315125

  6. Das G.D., Altman J. (1971) Transplanted precursors of nerve cells: their fate in the cerebellums of young rats. Science. 173(3997), 637–638. https://doi.org/10.1126/science.173.3997.637

  7. Bjorklund A., Stenevi U. (1979) Reconstruction of the nigrostriatal dopamine pathway by intracerebral nigral transplants. Bram Res. 177(3), 555–560. https://doi.org/10.1016/0006-8993(79)90472-4

  8. Björklund A., Gage F.H., Stenevi U., Dunnett S.B. (1983) Intracerebral grafting of neuronal cell suspensions. VI. Survival and growth of intrahippocampal implants of septal cell suspensions. Acta Physiol. Scand. Suppl. 522, 49–58. PMID: 6586055

  9. Brundin P., Isacson O., Björklund A. (1985) Monitoring of cell viability in suspensions of embryonic CNS tissue and its use as a criterion for intracerebral graft survival. Brain Res. 331(2), 251–259. https://doi.org/10.1016/0006-8993(85)91550-1

  10. Björklund A., Schmidt R.H., Stenevi U. (1980) Functional reinnervation of the neostriatum in the adult rat by use of intraparenchymal grafting of dissociated cell suspensions from the substantia nigra. Cell Tissue Res. 212(1), 39–45. https://doi.org/10.1007/BF00234031

  11. Perlow M.J., Freed W.J., Hoffer B.J., Seiger A., Olson L., Wyatt R.J. (1979) Brain grafts reduce motor abnormalities produced by destruction of nigrostriatal dopamine system. Science. 204(4393), 643–647. https://doi.org/10.1126/science.571147

  12. Backlund E.O., Granberg P.O., Hamberger B., Knutsson E., Martensson A., Sedvall G., Seiger A., Olson L. (1985) Transplantation of adrenal medullary tissue to striatum in parkinsonism. First clinical trials. J. Neurosurg. 62, 169–173. https://doi.org/10.3171/jns.1985.62.2.0169

  13. Lindvall O., Backlund E.O., Farde L., Sedvall G., Freedman R., Hoffer B., Nobin A., Seiger A., Olson L. (1987) Transplantation in Parkinson’s disease: two cases of adrenal medullary grafts to the putamen. Ann. Neurol. 22(4), 457–468. https://doi.org/10.1002/ana.410220403

  14. Brundin P., Nilsson O.G., Strecker R.E., Lindvall O., Astedt B., Bjorklund A. (1986) Experimental brain research behavioural effects of human fetal dopamine neurons grafted in a rat model of Parkinson’s disease. Exp. Brain Res. 65(1), 235–240. https://doi.org/10.1007/BF00243848

  15. Brederlau A., Correia A.S., Anisimov S.V., Elmi M., Paul G., Roybon L., Morizane A., Bergquist F., Riebe I., Nannmark U., Carta M., Hanse E., Takahashi J., Sasai Y., Funa K., Brundin P., Eriksson P.S., Li J.Y. (2006) Transplantation of human embryonic stem cell-derived cells to a rat model of Parkinson’s disease: effect of in vitro differentiation on graft survival and teratoma formation. Stem Cells. 24(6), 1433–1440. https://doi.org/10.1634/stemcells.2005-0393

  16. Lindvall O., Rehncrona S., Brundin P., Gustavii B., Astedt B., Widner H., Lindholm T., Björklund A., Leenders K.L., Rothwell J.C., Frackowiak R., Marsden D., Johnels B., Steg G., Freedman R., Hoffer B.J., Seiger A., Bygdeman M., Strömberg I., Olson L. (1989) Human fetal dopamine neurons grafted into the striatum in two patients with severe Parkinson’s disease. a detailed account of methodology and a 6-month follow-up. Ach. Neurol. 46(6), 615–631. https://doi.org/10.1001/archneur.1989.00520420033021

  17. Lindvall O., Brundin P., Widner H., Rehncrona S., Gustavii B., Frackowiak R., Leenders K.L., Sawle G., Rothwell J.C., Marsden C.D., Bjorklund A. (1990) Grafts of fetal dopamine neurons survive and improve motor function in Parkinson’s disease. Science. 247(4942), 574–577. https://doi.org/10.1126/science.2105529

  18. Piccini P., Brooks D.J., Björklund A., Gunn R.N., Grasby P.M., Rimoldi O., Brundin P., Hagell P., Rehncrona S., Widner H., Lindvall O. (1999) Dopamine release from nigral transplants visualized in vivo in a Parkinson’s patient. Nat. Neurosci. 2(12), 1137–1140. https://doi.org/10.1038/16060

  19. Li W., Englund E., Widner H., Mattsson B., van Wes-ten D., Lätt J., Rehncrona S., Brundin P., Björklund A., Lindvall O., Li J.-Y. (2016) Extensive graft-derived dopaminergic innervation is maintained 24 years after transplantation in the degenerating parkinsonian brain. Proc. Natl. Acad. Sci. USA. 113(23), 6544–6549. https://doi.org/10.1073/pnas.1605245113

  20. Freed C.R., Greene P.E., Breeze R.E., Tsai W.Y., DuMouchel W., Kao R., Dillon S., Winfield H., Culver S., Trojanowski J.Q., Eidelberg D., Fahn S. (2001) Transplantation of embryonic dopamine neurons for severe Parkinson’s disease. N. Engl. J. Med. 344(10), 710–719. https://doi.org/10.1056/NEJM200103083441002

  21. Olanow C.W., Goetz C.G., Kordower J.H., Stoessl A.J., Sossi V., Brin M.F., Shannon K.M., Nauert G.M., Perl D.P., Godbold J., Freeman T.B. (2003) A double-blind controlled trial of bilateral fetal nigral transplantation in Parkinson’s disease. Ann. Neurol. 54(3), 403–414. https://doi.org/10.1002/ana.10720

  22. Mínguez-Castellanos A., Escamilla-Sevilla F., Hotton G.R., Toledo-Aral J.J., Ngel Ortega-Moreno A., Méndez-Ferrer S., Martín-Linares J.M., Katati M.J., Mir P., Villadiego J., Meersmans M., Pérez-García M., Brooks D.J., Arjona V., López J., López-Barneo J. (2007) Carotid body autotransplantation in Parkinson disease: a clinical and positron emission tomography study. J. Neurol. Neurosurg. Psychiatry. 78, 825–831. https://doi.org/10.1136/jnnp.2006.106021

  23. Gross R.E., Watts R.L., Hauser R.A., Bakay R.A., Reichmann H., von Kummer R., Ondo W.G., Reissig E., Eisner W., Steiner-Schulze H., Siedentop H., Fichte K., Hong W., Cornfeldt M., Beebe K., Sandbrink R. (2011) Spheramine investigational group. Intrastriatal transplantation of microcarrier-bound human retinal pigment epithelial cells versus sham surgery in patients with advanced Parkinson’s disease: a double-blind, randomised, controlled trial. Lancet Neurol. 10(6), 509–519. PMID: 2156557.https://doi.org/10.1016/S1474-4422(11)70097-7

  24. Lindvall O., Björklund A. (2004) Cell therapy in Parkinson’s disease. NeuroRx: J. Am. Soc. Exp. NeuroTherap. 1(4), 382–393. https://doi.org/10.1602/neurorx.1.4.382

  25. Barker R.A., Farrell K., Guzman N.V., He X., Lazic S.E., Moore S., Morris R., Tyers P., Wijeyekoon R., Daft D., Hewitt S., Dayal V., Foltynie T., Kefalopoulou Z., Mahlknecht P., Lao-Kaim N. P., Piccini P., Bjartmarz H., Björklund A., Winkler C. (2019) Designing stem-cell-based dopamine cell replacement trials for Parkinson’s disease. Nat. Med. 25(7), 1045–1053. https://doi.org/10.1038/s41591-019-0507-2

  26. Kordower J.H., Rosenstein J.M., Collier T.J., Levey A.E., Mufson E.J., Freeman T.B., Olanow C.W., Burke M.A., Chen E.-Y., Li M., Martel L. (1996) Functional fetal nigral grafts in a patient with Parkinson’s disease: chemoanatomic, ultrastructural, and metabolic studies. J. Comp. Neurol. 370(2), 203–230. https://doi.org/10.1002/(SICI)1096-9861(19960624)370: 2<203::AID-CNE6>3.0.CO;2-6

  27. Kefalopoulou Z., Politis M., Piccini P., Mencacci N., Bhatia K., Jahanshahi M., Widner H., Rehncrona S., Brundin P., Björklund A., Lindvall O., Limousin P., Quinn N., Foltynie T. (2014) Long-term clinical outcome of fetal cell transplantation for Parkinson disease: two case reports. JAMA Neurol. 71(1), 83–87. https://doi.org/10.1001/jamaneurol.2013.4749

  28. Thomson J.A., Itskovitz-Eldor J., Shapiro S.S., Waknitz M.A., Swiergiel J.J., Marshall V. S., Jones J.M. (1998) Embryonic stem cell lines derived from human blastocysts. Science. 282(5391), 1145–1147. https://doi.org/10.1126/science.282.5391.1145

  29. Thomson J.A., Odorico J.S. (2000) Human embryonic stem cell and embryonic germ cell lines. Trends Biotechnol. 18(2), 53–57. PMID: https://doi.org/10.1016/s0167-7799(99)01410-9

  30. Takahashi K., Yamanaka S. (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 126(4), 663–676. https://doi.org/10.1016/j.cell.2006.07.024

  31. Park I.H., Zhao R., West J.A., Yabuuchi A., Huo H., Ince T.A., Lerou P.H., Lensch M.W., Daley G.Q. (2008) Reprogramming of human somatic cells to pluripotency with defined factors. Nature. 45(7175), 141–146. https://doi.org/10.1038/nature06534

  32. Umekage M., Sato Y., Takasu N. (2019) Overview: an iPS cell stock at CiRA. Inflammation Regeneration. 39(1). https://doi.org/10.1186/s41232-019-0106-0

  33. Okabe S., Forsberg-Nilsson K., Spiro A.C., Segal M., McKay R.D. (1996) Development of neuronal precursor cells and functional postmitotic neurons from embryonic stem cells in vitro. Mech. Dev. 59(1), 89–102. https://doi.org/10.1016/0925-4773(96)00572-2

  34. Bain G., Kitchens D., Yao M., Huettner J.E., Gottlieb D.I. (1995) Embryonic stem cells express neuronal properties in vitro. Dev. Biol. 168(2), 342–357. https://doi.org/10.1006/dbio.1995.1085

  35. Reubinoff B.E., Itsykson P., Turetsky T., Pera M.F., Reinhartz E., Itzik A., Ben-Hur T. (2001) Neural progenitors from human embryonic stem cells. Nat. Biotechnol. 19(12), 1134–1140. https://doi.org/10.1038/nbt1201-1134

  36. Zhang S.C., Wernig M., Duncan I.D., Brüstle O., Thomson J.A. (2001) In vitro differentiation of transplantable neural precursors from human embryonic stem cells. Nat. Biotechnol. 19(12), 1129–1133. https://doi.org/10.1038/nbt1201-1129

  37. Reubinoff B.E., Pera M.F., Fong C.Y., Trounson A., Bongso A. (2000) Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat. Biotechnol. 18(4), 399–404. https://doi.org/10.1038/74447

  38. Wiles M.V., Johansson B.M. (1999) Embryonic stem cell development in a chemically defined medium. Exp. Cell Res. 247(1), 241–248. PMID: 10047466https://doi.org/10.1006/excr.1998.4353

  39. Ying Q.-L., Smith A.G. (2003) Defined conditions for neural commitment and differentiation. Meth. Enzymol. 365, 327–341. https://doi.org/10.1016/s0076-6879(03)65023-8

  40. Itskovitz-Eldor J., Schuldiner M., Karsenti D., Eden A., Yanuka O., Amit M., Soreq H., Benvenisty N. (2000) Differentiation of human embryonic stem cells into embryoid bodies compromising the three embryonic germ layers. Mol. Med. 6(2), 88–95. http://www.ncbi. nlm.nih.gov/pubmed/10859025.

  41. Keller G.M. (1995) In vitro differentiation of embryonic stem cells. Curr. Opin. Cell Biol. 7(6), 862–869. https://doi.org/10.1016/0955-0674(95)80071-9

  42. Chambers S.M., Fasano C.A., Papapetrou E.P., Tomishima M., Sadelain M., Studer L. (2009) Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat. Biotechnol. 27(3), 275–280. https://doi.org/10.1038/nbt.1529

  43. Sasai Y., Lu B., Steinbeisser H., Geissert D., Gont L.K., De Robertis E.M. (1994) Xenopus chordin: a novel dorsalizing factor activated by organizer-specific homeobox genes. Cell. 79(5), 779–790. https://doi.org/10.1016/0092-8674(94)90068-x

  44. Hemmati-Brivanlou A., Kelly O.G., Melton D.A. (1994) Follistatin, an antagonist of activin, is expressed in the spemann organizer and displays direct neuralizing activity. Cell. 77(2), 283–295. https://doi.org/10.1016/0092-8674(94)90320-4

  45. Smith W.C., Harland R.M. (1992) Expression cloning of noggin, a new dorsalizing factor localized to the spemann organizer in Xenopus embryos. Cell. 70, 829–840. https://doi.org/10.1016/0092-8674(92)90316-5

  46. Smith J.R., Vallier L., Lupo G., Alexander M., Harris W.A., Pedersen R.A. (2008) Inhibition of activin/nodal signaling promotes specification of human embryonic stem cells into neuroectoderm. Dev. Biol. 313(1), 107–117. https://doi.org/10.1016/j.ydbio.2007.10.003

  47. Ye W., Shimamura K., Rubenstein J.L., Hynes M.A., Rosenthal A. (1998) FGF and Shh signals control dopaminergic and serotonergic cell fate in the anterior neural plate. Cell. 93(5), 755–766. https://doi.org/10.1016/s0092-8674(00)81437-3

  48. Maye P., Becker S., Siemen H., Thorne J., Byrd N., Carpentino J., Grabel L. (2004) Hedgehog signaling is required for the differentiation of ES cells into neurectoderm. Dev. Biol. 265(1), 276–290. https://doi.org/10.1016/j.ydbio.2003.09.027

  49. Davidson K.C., Jamshidi P., Daly R., Hearn M.T.W., Pera M.F., Dottori M. (2007) Wnt3a regulates survival, expansion, and maintenance of neural progenitors derived from human embryonic stem cells. Mol. Cell. Neurosci. 36(3), 408–415. https://doi.org/10.1016/j.mcn.2007.07.013

  50. Rao B.M., Zandstra P.W. (2005) Culture development for human embryonic stem cell propagation: molecular aspects and challenges. Curr. Opin. Biotechnol. 16(5), 568–576. https://doi.org/10.1016/j.copbio.2005.08.001

  51. Hitoshi S., Alexson T., Tropepe V., Donoviel D., Elia A.J., Nye J.S., Conlon R.A., Mak T.W., Bernstein A., van der Kooy D. (2002) Notch pathway molecules are essential for the maintenance, but not the generation, of mammalian neural stem cells. Genes. Dev. 16(7), 846–858. https://doi.org/10.1101/gad.975202

  52. Smidt M.P., van Schaick H.S., Lanctôt C., Tremblay J.J., Cox J.J., van der Kleij A.A., Wolterink G., Drouin J., Burbach J.P. (1997) A homeodomain gene Ptx3 has highly restricted brain expression in mesencephalic dopaminergic neurons. Proc. Natl. Acad. Sci. USA. 94(24), 13305–13310. https://doi.org/10.1073/pnas.94.24.13305

  53. Saucedo-Cardenas O., Quintana-Hau J.D., Le W.D., Smidt M.P., Cox J.J., De Mayo F., Burbach J.P.H., Conneely O.M. (1998) Nurr1 is essential for the induction of the dopaminergic phenotype and the survival of ventral mesencephalic late dopaminergic precursor neurons. Proc. Natl. Acad. Sci. USA. 95(7), 4013–4018. https://doi.org/10.1073/pnas.95.7.4013

  54. Simon H.H., Saueressig H., Wurst W., Goulding M.D., O’Leary D.D.M. (2001). Fate of midbrain dopaminergic neurons controlled by the engrailed genes. J. Neurosci. 21(9), 3126–3134. https://doi.org/10.1523/jneurosci.21-09-03126.2001

  55. Yan Y., Yang D., Zarnowska E.D., Du Z., Werbel B., Valliere C., Pearce R.A., Thomson J.A., Zhang S.-C. (2005) Directed differentiation of dopaminergic neuronal subtypes from human embryonic stem cells. Stem Cells (Dayton, Ohio). 23(6), 781–790. https://doi.org/10.1634/stemcells.2004-0365

  56. Parmar M., Grealish S., Henchcliffe C. (2020) The future of stem cell therapies for Parkinson disease. Nat. Rev. Neurosci. 21(2), 103–115. https://doi.org/10.1038/s41583-019-0257-7

  57. Vierbuchen T., Ostermeier A., Pang Z.P., Kokubu Y., Südhof T.C., Wernig M. (2010) Direct conversion of fibroblasts to functional neurons by defined factors. Nature. 463(7284), 1035–1041. https://doi.org/10.1038/nature08797

  58. Kim S.M., Kim J.W., Kwak T.H., Park S.W., Kim K.P., Park H., Lim K.T., Kang K., Kim J., Yang J.H., Han H., Lee I., Hyun J.K., Bae Y.M., Schöler H.R., Lee H.T., Han D.W. (2016) Generation of integration-free induced neural stem cells from mouse fibroblasts. Biol. Chem. 291(27), 14199–14212. https://doi.org/10.1074/jbc.M115.713578

  59. Caiazzo M., Dell’Anno M.T., Dvoretskova E., Lazarevic D., Taverna S., Leo D., Sotnikova T.D., Menegon A., Roncaglia P., Colciago G., Russo G., Carninci P., Pezzoli G., Gainetdinov R.R., Gustincich S., Dityatev A., Broccoli V. (2011) Direct generation of functional dopaminergic neurons from mouse and human fibroblasts. Nature. 476(7359), 224–227. https://doi.org/10.1038/nature10284

  60. Colasante G., Lignani G., Rubio A., Medrihan L., Yekhlef L., Sessa A., Massimino L., Giannelli S.G., Sacchetti S., Caiazzo M., Leo D., Alexopoulou D., Dell’Anno M.T., Ciabatti E., Orlando M., Studer M., Dahl A., Gainetdinov R.R., Taverna S., Benfenati F., Broccoli V. (2015) Rapid conversion of fibroblasts into functional forebrain GABAergic interneurons by direct genetic reprogramming. Cell Stem Cell. 17(6), 719–734. https://doi.org/10.1016/j.stem.2015.09.002

  61. Dell’Anno M.T., Caiazzo M., Leo D., Dvoretskova E., Medrihan L., Colasante G., Giannelli S., Theka I., Russo G., Mus L., Pezzoli G., Gainetdinov R.R., Benfenati F., Taverna S., Dityatev A., Broccoli V. (2014) Remote control of induced dopaminergic neurons in parkinsonian rats. J. Clin. Invest. 124(7), 3215–3229. https://doi.org/10.1172/JCI74664

  62. Revazova E.S., Turovets N.A., Kochetkova O.D., Kindarova L.B., Kuzmichev L.N., Janus J.D., Pryzhkova M.V. (2007) Patient-specific stem cell lines derived from human parthenogenetic blastocysts. Cloning Stem Cells. 9(3), 432–449. https://doi.org/10.1089/clo.2007.0033

  63. Garitaonandia I., Gonzalez, R., Christiansen-Weber T., Abramihina, T., Poustovoitov, M., Noskov A., Sherman G., Semechkin A., Snyder E., Kern R. (2016) Neural stem cell tumorigenicity and biodistribution assessment for Phase I clinical trial in Parkinson’s disease. Sci. Repts. 6, 34478 https://doi.org/10.1038/srep34478

  64. Garitaonandia I., Gonzalez R., Sherman G., Semechkin A., Evans A., Kern R. (2018) Novel approach to stem cell therapy in Parkinson’s disease. Stem Cells Dev. 27(14), 951–957. https://doi.org/10.1089/scd.2018.0001

  65. Gonzalez R., Garitaonandia I., Poustovoitov M., Abramihina T., McEntire C., Culp B., Attwood J., Noskov A., Christiansen-Weber T., Khater M., Mora-Castilla S., To C., Crain A., Sherman G., Semechkin A., Laurent L.C., Elsworth J.D., Sladek J., Snyder E.Y., Kern R.A. (2016) Neural stem cells derived from human parthenogenetic stem cells engraft and promote recovery in a nonhuman primate model of Parkinson’s disease. Cell Transplantation. 25(11), 1945–1966. https://doi.org/10.3727/096368916X691682

  66. Takahashi J. (2018) Stem cells and regenerative medicine for neural repair. Curr. Opin. Biotechnol. 52, 102–108. https://doi.org/10.1016/j.copbio.2018.03.006

  67. Лебедева О.С., Лагарькова М.А. (2018) Плюрипотентные стволовые клетки для моделирования и клеточной терапии болезни Паркинсона. Биохимия. 83(9), 1046–1056. https://doi.org/10.1134/S0006297918090067

  68. Cyranoski D. (2017) Trials of embryonic stem cells to launch in China. Nature. 546(7656), 15–16. https://doi.org/10.1038/546015a

  69. Gu Q., Wang J., Wang L., Liu Z.-X., Zhu W.-W., Tan Y.-Q., Han W.-F., Wu J., Feng C.-J., Fang J.-H., Liu L., Wang L., Li W., Zhao X.-Y., Hu B.-Y., Hao J., Zhou Q. (2017) Accreditation of biosafe clinical-grade human embryonic stem cells according to chinese regulations. Stem Cell Repts. 9(1), 366–380. https://doi.org/10.1016/J.STEMCR.2017.04.017

  70. Wang Y.-K., Zhu W.-W., Wu M.-H., Wu Y.-H., Liu Z.-X., Liang L.-M., Sheng C., Hao J., Wang L., Li W., Zhou Q., Hu B.-Y. (2018) Human clinical-grade parthenogenetic ESC-derived dopaminergic neurons recover locomotive defects of nonhuman primate models of Parkinson’s disease. Stem Cell Repts. 11(1), 171–182. https://doi.org/10.1016/j.stemcr.2018.05.010

  71. Takahashi J. (2020) Preclinical evaluation of patient-derived cells shows promise for Parkinson’s disease. J. Clin. Invest. https://doi.org/10.1172/JCI134031

  72. Morizane A., Glasser M.F., Ogasawara K., Doi D., Hayashi T., Onoe H., Doi H., Itoh Y., Takara S., Kikuchi T., Yamasaki E., Shiina T., Mawatari A., Takahashi J., Ishigaki H., Mizuma H., Okita K., Yamanaka S. (2017) MHC matching improves engraftment of iPSC-derived neurons in non-human primates. Nat. Commun. 8(1), 1–12. https://doi.org/10.1038/s41467-017-00926-5

  73. Doi D., Samata B., Katsukawa M., Kikuchi T., Morizane A., Ono Y., Sekiguchi K., Nakagawa M., Parmar M., Takahashi J. (2014) Isolation of human induced pluripotent stem cell-derived dopaminergic progenitors by cell sorting for successful transplantation. Stem Cell Repts. 2(3), 337–350. https://doi.org/10.1016/j.stemcr.2014.01.013

  74. Kikuchi T., Morizane A., Doi D., Magotani H., Onoe H., Hayashi T., Mizuma H., Takara S., Takahashi R., Inoue H., Morita S., Yamamoto M., Okita K., Nakagawa M., Parmar M., Takahashi J. (2017) Human iPS cell-derived dopaminergic neurons function in a primate Parkinson’s disease model. Nature. 548(7669), 592–596. https://doi.org/10.1038/nature23664

  75. Studer L. (2017) Strategies for bringing stem cell-derived dopamine neurons to the clinic—The NYSTEM trial. Progress Brain Res. 230, 191–212. https://doi.org/10.1016/bs.pbr.2017.02.008

  76. Kriks S., Shim J.-W., Piao J., Ganat Y.M., Wakeman D.R., Xie Z., Carrillo-Reid L., Auyeung G., Antonacci C., Buch A., Yang L., Beal M.F., Surmeier D.J., Kordo-wer J.H., Tabar V., Studer L. (2011) Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson’s disease. Nature. 480(7378), 547–551. https://doi.org/10.1038/nature10648

  77. Kirkeby A., Grealish S., Wolf D.A., Nelander J., Wood J., Lundblad M., Lindvall O., Parmar M. (2012) Generation of regionally specified neural progenitors and functional neurons from human embryonic stem cells under defined conditions. Cell Repts. 1(6), 703–714. https://doi.org/10.1016/j.celrep.2012.04.009

  78. Kirkeby A., Nolbrant S., Tiklova K., Heuer A., Kee N., Cardoso T., Ottosson D.R., Lelos M.J., Rifes P., Dunnett S.B., Grealish S., Perlmann T., Parmar M. (2017) Predictive markers guide differentiation to improve graft outcome in clinical translation of hESC-based therapy for Parkinson’s disease. Cell Stem Cell. 20(1), 135–148. https://doi.org/10.1016/j.stem.2016.09.004

  79. Barker R.A., Studer L., Cattaneo E., Takahashi J., G-Force PD consortium (2015) G-Force PD: a global initiative in coordinating stem cell-based dopamine treatments for Parkinson’s disease. NP. J. Parkinsons. Dis. 1, 15017. https://doi.org/10.1038/npjparkd.2015.17

  80. Schweitzer J., Song B., Herrington T., Park T., Lee N., Ko S., Jeon J., Cha Y., Kim K., Li Q., Henchcliffe C., Kaplitt M., Neff C., Rapalino O., Seo H., Lee I., Kim J., Kim T., Petsko G., Ritz J., Cohen B., Kong S., Leblanc P., Carter B., Kim K. (2020) Personalized iPSC-derived dopamine progenitor cells for Parkinson’s disease. N. Engl. J. Med. 382, 1926–1932. https://doi.org/10.1056/NEJMoa1915872

Дополнительные материалы отсутствуют.