Молекулярная биология, 2020, T. 54, № 6, стр. 883-921

Ключевые молекулярные механизмы старения, биомаркеры и потенциальные интервенции

Е. Н. Прошкина a, И. А. Соловьёв ab, М. В. Шапошников a, А. А. Москалев abc*

a Институт биологии Коми научного центра Уральского отделения Российской академии наук
167982 Сыктывкар, Россия

b Сыктывкарский государственный университет им. Питирима Сорокина
167001 Сыктывкар, Россия

c Институт молекулярной биологии им. В.А. Энгельгардта Российской академии наук
119991 Москва, Россия

* E-mail: amoskalev@ib.komisc.ru

Поступила в редакцию 08.05.2020
После доработки 21.05.2020
Принята к публикации 21.05.2020

Аннотация

В обзоре рассмотрены механизмы старения на молекулярном, клеточном, тканевом и системном уровнях. Первичные молекулярные повреждения вызывают клеточный ответ, направленный на компенсацию нарушений, однако постепенно выходят из строя сами механизмы восстановления и поддержания гомеостаза. Когда количество ошибок в регуляторных сетях достигает критического порога, на системном уровне происходит фазовый переход из состояния здоровья в состояние болезни. Рассмотрены подходы к количественной оценке процесса старения (биомаркеры старения), а также интервенции, перспективные с точки зрения возможности замедления процессов старения и уменьшения риска развития возрастзависимых заболеваний.

Ключевые слова: старение, возрастзависимые заболевания, биомаркеры старения, геропротекторы

DOI: 10.31857/S0026898420060099

Список литературы

  1. Анисимов В.Н. (2010) Медицина антистарения: состояние и перспективы. Российский семейный врач. 14, 4–12.

  2. Анисимов В.Н. (2000) Средства профилактики преждевременного старения (геропротекторы). Успехи геронтологии. 4, 55–74.

  3. Москалев А.А., Шапошников М.В., Соловьёв И.А. (2017) Исследование геропротекторных свойств ингибиторов активности связанных со старением сигнальных каскадов на модельных организмах. Мед. Вест. Сев. Кав. 12, 342–347.

  4. Gonzalez-Freire M., Diaz-Ruiz A., Hauser D., Martinez-Romero J., Ferrucci L., Bernier M., de Cabo R. (2020) The road ahead for health and lifespan interventions. Ageing Res. Rev. 59, 101037.

  5. Moskalev A., Chernyagina E., Tsvetkov V., Fedintsev A., Shaposhnikov M., Krut’ko V., Zhavoronkov A., Kennedy B.K. (2016) Developing criteria for evaluation of geroprotectors as a key stage toward translation to the clinic. Aging Cell. 15, 407–415.

  6. Gompertz B. (1825) On the Nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies. Phil. Transact. Royal Soc. London. 115, 513–583.

  7. Bayersdorf R., Schumacher B. (2019) Recent advances in understanding the mechanisms determining longevity. F1000Res. 8, F1000 Faculty Rev-1403.

  8. Шапошников М.В., Прошкина Е.Н., Шилова Л.А., Москалев А.А. (2015) Роль репарации повреждений ДНК в долголетии. Москва: Товарищество научных изданий КМК.

  9. Moskalev A.A., Shaposhnikov M.V., Plyusnina E.N., Zhavoronkov A., Budovsky A., Yanai H., Fraifeld V.E. (2013) The role of DNA damage and repair in aging through the prism of Koch-like criteria. Ageing Res. Rev. 12, 661–684.

  10. Risques R.A., Kennedy S.R. (2018) Aging and the rise of somatic cancer-associated mutations in normal tissues. PLoS Genet. 14, e1007108.

  11. Forsberg L.A., Gisselsson D., Dumanski J.P. (2017) Mosaicism in health and disease – clones picking up speed. Nat. Rev. Genet. 18, 128–142.

  12. Burtner C.R., Kennedy B.K. (2010) Progeria syndromes and ageing: what is the connection? Nat. Rev. Mol. Cell Biol. 11, 567–578.

  13. Kubben N., Misteli T. (2017) Shared molecular and cellular mechanisms of premature ageing and ageing-associated diseases. Nat. Rev. Mol. Cell Biol. 18, 595–609.

  14. Keijzers G., Bakula D., Scheibye-Knudsen M. (2017) Monogenic diseases of DNA repair. N. Engl. J. Med. 377, 1868–1876.

  15. Петрусева И.O., Евдокимов A.Н., Лаврик O.И. (2017) Поддержание стабильности генома у Heterocephalus glabe. Acta Naturae. 9, 31–41.

  16. Seim I., Fang X., Xiong Z., Lobanov A.V., Huang Z., Ma S., Feng Y., Turanov A.A., Zhu Y., Lenz T.L., Gerashchenko M.V., Fan D., Hee Yim S., Yao X., Jordan D., Xiong Y., Ma Y., Lyapunov A.N., Chen G., Kulakova O.I., Sun Y., Lee S.G., Bronson R.T., Moskalev A.A., Sunyaev S.R., Zhang G., Krogh A., Wang J., Gladyshev V.N. (2013) Genome analysis reveals insights into physiology and longevity of the Brandt’s bat Myotis brandtii. Nat. Commun. 4, 2212.

  17. Keane M., Semeiks J., Webb A.E., Li Y.I., Quesada V., Craig T., Madsen L.B., van Dam S., Brawand D., Marques P.I., Michalak P., Kang L., Bhak J., Yim H.S., Grishin N.V., Nielsen N.H., Heide-Jorgensen M.P., Oziolor E.M., Matson C.W., Church G.M., Stuart G.W., Patton J.C., George J.C., Suydam R., Larsen K., Lopez-Otin C., O’Connell M.J., Bickham J.W., Thomsen B., de Magalhaes J.P. (2015) Insights into the evolution of longevity from the bowhead whale genome. Cell Rept. 10, 112–122.

  18. Schmidt H., Malik A., Bicker A., Poetzsch G., Avivi A., Shams I., Hankeln T. (2017) Hypoxia tolerance, longevity and cancer-resistance in the mole rat Spalax – a liver transcriptomics approach. Sci. Rep. 7, 14348.

  19. Wirthlin M., Lima N.C.B., Guedes R.L.M., Soares A.E.R., Almeida L.G.P., Cavaleiro N.P., Loss de Morais G., Chaves A.V., Howard J.T., Teixeira M.d.M., Schneider P.N., Santos F.R., Schatz M.C., Felipe M.S., Miyaki C.Y., Aleixo A., Schneider M.P.C., Jarvis E.D., Vasconcelos A.T.R., Prosdocimi F., Mello C.V. (2018) Parrot genomes and the evolution of heightened longevity and cognition. Curr. Biol. 28, 4001–4008. e4007.

  20. Bhargava V., Goldstein C.D., Russell L., Xu L., Ahmed M., Li W., Casey A., Servage K., Kollipara R., Picciarelli Z., Kittler R., Yatsenko A., Carmell M., Orth K., Amatruda J.F., Yanowitz J.L., Buszczak M. (2020) GCNA preserves genome integrity and fertility across species. Dev. Cell. 52, 38–52. e10.

  21. Zhang L., Dong X., Lee M., Maslov A.Y., Wang T., Vijg J. (2019) Single-cell whole-genome sequencing reveals the functional landscape of somatic mutations in B lymphocytes across the human lifespan. Proc. Natl. Acad. Sci. USA. 116, 9014–9019.

  22. García-Nieto P.E., Morrison A.J., Fraser H.B. (2019) The somatic mutation landscape of the human body. Genome Biol. 20, 298.

  23. Zhang L., Vijg J. (2018) Somatic Mutagenesis in mammals and its implications for human disease and aging. Annu. Rev. Genet. 52, 397–419.

  24. Tiwari V., Wilson D.M., III (2019) DNA damage and associated DNA repair defects in disease and premature aging. Am. J. Hum. Genet. 105, 237–257.

  25. Mendelsohn A.R., Larrick J.W. (2017) The NAD+/PARP1/SIRT1 axis in aging. Rejuvenation Res. 20, 244–247.

  26. Hämäläinen R.H., Landoni J.C., Ahlqvist K.J., Goffart S., Ryytty S., Rahman M.O., Brilhante V., Icay K., Hautaniemi S., Wang L., Laiho M., Suomalainen A. (2019) Defects in mtDNA replication challenge nuclear genome stability through nucleotide depletion and provide a unifying mechanism for mouse progerias. Nat. Metab. 1, 958–965.

  27. Cho S., Vashisth M., Abbas A., Majkut S., Vogel K., Xia Y., Ivanovska I.L., Irianto J., Tewari M., Zhu K., Tichy E.D., Mourkioti F., Tang H.-Y., Greenberg R.A., Prosser B.L., Discher D.E. (2019) Mechanosensing by the lamina protects against nuclear rupture, DNA damage, and cell-cycle arrest. Dev. Cell. 49, 920–935. e925.

  28. Cardoso A.C., Lam N.T., Savla J.J., Nakada Y., Pereira A.H.M., Elnwasany A., Menendez-Montes I., Ensley E.L., Bezan Petric U., Sharma G., Sherry A.D., Malloy C.R., Khemtong C., Kinter M.T., Tan W.L.W., Anene-Nzelu C.G., Foo R.S.-Y., Nguyen N.U.N., Li S., Ahmed M.S., Elhelaly W.M., Abdisalaam S., Asaithamby A., Xing C., Kanchwala M., Vale G., Eckert K.M., Mitsche M.A., McDonald J.G., Hill J.A., Huang L., Shaul P.W., Szweda L.I., Sadek H.A. (2020) Mitochondrial substrate utilization regulates cardiomyocyte cell-cycle progression. Nat. Metab. 2, 167–178.

  29. Huang W.T., Akhter H., Jiang C., MacEwen M., Ding Q., Antony V., Thannickal V.J., Liu R.M. (2015) Plasminogen activator inhibitor 1, fibroblast apoptosis resistance, and aging-related susceptibility to lung fibrosis. Exp. Gerontol. 61, 62–75.

  30. Soria-Valles C., Lopez-Soto A., Osorio F.G., Lopez-Otin C. (2017) Immune and inflammatory responses to DNA damage in cancer and aging. Mech. Ageing Dev. 165, 10–16.

  31. Hodskinson M.R., Bolner A., Sato K., Kamimae-Lanning A.N., Rooijers K., Witte M., Mahesh M., Silhan J., Petek M., Williams D.M., Kind J., Chin J.W., Patel K.J., Knipscheer P. (2020) Alcohol-derived DNA crosslinks are repaired by two distinct mechanisms. Nature. 579, 603–608.

  32. Yoshida K., Gowers K.H.C., Lee-Six H., Chandrasekharan D.P., Coorens T., Maughan E.F., Beal K., Menzies A., Millar F.R., Anderson E., Clarke S.E., Pennycuick A., Thakrar R.M., Butler C.R., Kakiuchi N., Hirano T., Hynds R.E., Stratton M.R., Martincorena I., Janes S.M., Campbell P.J. (2020) Tobacco smoking and somatic mutations in human bronchial epithelium. Nature. 578, 266–272.

  33. Cheung V., Yuen V.M., Wong G.T.C., Choi S.W. (2019) The effect of sleep deprivation and disruption on DNA damage and health of doctors. Anaesthesia. 74, 434–440.

  34. Barroso-Vilares M., Macedo J.C., Reis M., Warren J.D., Compton D., Logarinho E. (2020) Small-molecule inhibition of aging-associated chromosomal instability delays cellular senescence. EMBO Rep. 21, e49248.

  35. Janssen A., Colmenares S.U., Karpen G.H. (2018) Heterochromatin: guardian of the genome. Annu. Rev. Cell. Dev. Biol. 34, 265–288.

  36. Qiu G.H., Zheng X., Fu M., Huang C., Yang X. (2019) The protective function of non-coding DNA in DNA damage accumulation with age and its roles in age-related diseases. Biogerontology. 20, 741–761.

  37. Qiu G.H., Huang C., Zheng X., Yang X. (2018) The protective function of noncoding DNA in genome defense of eukaryotic male germ cells. Epigenomics. 10, 499–517.

  38. Akbari M., Kirkwood T.B.L., Bohr V.A. (2019) Mitochondria in the signaling pathways that control longevity and health span. Ageing Res. Rev. 54, 100940.

  39. Olovnikov A.M. (1973) A theory of marginotomy. The incomplete copying of template margin in enzymic synthesis of polynucleotides and biological significance of the phenomenon. J. Theor. Biol. 41, 181–190.

  40. Оловников А.М. (1971) Принцип маргинотомии в матричном синтезе полинуклеотидов. Докл. АН СССР. 201, 1496–1499.

  41. Turner K.J., Vasu V., Griffin D.K. (2019) Telomere biology and human phenotype. Cells. 8, 73.

  42. Hewitt G., Jurk D., Marques F.D.M., Correia-Melo C., Hardy T., Gackowska A., Anderson R., Taschuk M., Mann J., Passos J.F. (2012) Telomeres are favoured targets of a persistent DNA damage response in ageing and stress-induced senescence. Nat. Commun. 3, 708–708.

  43. Fumagalli M., Rossiello F., Clerici M., Barozzi S., Cittaro D., Kaplunov J.M., Bucci G., Dobreva M., Matti V., Beausejour C.M., Herbig U., Longhese M.P., d’Adda di Fagagna F. (2012) Telomeric DNA damage is irreparable and causes persistent DNA-damage-response activation. Nat. Cell Biol. 14, 355–365.

  44. Wood J.G., Helfand S.L. (2013) Chromatin structure and transposable elements in organismal aging. Front. Genet. 4, 274.

  45. De Cecco M., Criscione S.W., Peckham E.J., Hillenmeyer S., Hamm E.A., Manivannan J., Peterson A.L., Kreiling J.A., Neretti N., Sedivy J.M. (2013) Genomes of replicatively senescent cells undergo global epigenetic changes leading to gene silencing and activation of transposable elements. Aging Cell. 12, 247–256.

  46. Cardelli M. (2018) The epigenetic alterations of endogenous retroelements in aging. Mech. Ageing Dev. 174, 30–46.

  47. Buzdin A.A., Prassolov V., Garazha A.V. (2017) Friends-enemies: endogenous retroviruses are major transcriptional regulators of human DNA. Front Chem. 5, 35.

  48. Andrenacci D., Cavaliere V., Lattanzi G. (2020) The role of transposable elements activity in aging and their possible involvement in laminopathic diseases. Ageing Res. Rev. 57, 100995.

  49. Mattioli E., Andrenacci D., Garofalo C., Prencipe S., Scotlandi K., Remondini D., Gentilini D., Di Blasio A.M., Valente S., Scarano E., Cicchilitti L., Piaggio G., Mai A., Lattanzi G. (2018) Altered modulation of lamin A/C-HDAC2 interaction and p21 expression during oxidative stress response in HGPS. Aging Cell. 17, e12824.

  50. Ashapkin V.V., Kutueva L.I., Kurchashova S.Y., Kireev I.I. (2019) Are there common mechanisms between the Hutchinson–Gilford progeria syndrome and natural aging? Front. Genet. 10, 455.

  51. Worman H.J. (2012) Nuclear lamins and laminopathies. J. Pathol. 226, 316–325.

  52. Romero-Bueno R., de la Cruz Ruiz P., Artal-Sanz M., Askjaer P., Dobrzynska A. (2019) Nuclear organization in stress and aging. Cells. 8, 664.

  53. Niedernhofer L.J., Gurkar A.U., Wang Y., Vijg J., Hoeijmakers J.H.J., Robbins P.D. (2018) Nuclear genomic instability and aging. Annu. Rev. Biochem. 87, 295–322.

  54. Hetz C., Chevet E., Harding H.P. (2013) Targeting the unfolded protein response in disease. Nat. Rev. Drug Discov. 12, 703–719.

  55. Hampel B., Wagner M., Teis D., Zwerschke W., Huber L.A., Jansen-Durr P. (2005) Apoptosis resistance of senescent human fibroblasts is correlated with the absence of nuclear IGFBP-3. Aging Cell. 4, 325–330.

  56. Zhang L., Yousefzadeh M.J., Suh Y., Niedernhofer L.J., Robbins P.D. (2019) Signal transduction, ageing and disease. In: Biochemistry and Cell Biology of Ageing: Part II Clinical Science. Eds Harris J.R., Korolchuk V.I. Singapore: Springer Singapore, pp. 227–247.

  57. Robinson A.R., Yousefzadeh M.J., Rozgaja T.A., Wang J., Li X., Tilstra J.S., Feldman C.H., Gregg S.Q., Johnson C.H., Skoda E.M., Frantz M.C., Bell-Temin H., Pope-Varsalona H., Gurkar A.U., Nasto L.A., Robinson R.A.S., Fuhrmann-Stroissnigg H., Czerwinska J., McGowan S.J., Cantu-Medellin N., Harris J.B., Maniar S., Ross M.A., Trussoni C.E., LaRusso N.F., Cifuentes-Pagano E., Pagano P.J., Tudek B., Vo N.V., Rigatti L.H., Opresko P.L., Stolz D.B., Watkins S.C., Burd C.E., Croix C.M.S., Siuzdak G., Yates N.A., Robbins P.D., Wang Y., Wipf P., Kelley E.E., Niedernhofer L.J. (2018) Spontaneous DNA damage to the nuclear genome promotes senescence, redox imbalance and aging. Redox Biol. 17, 259–273.

  58. Nakad R., Schumacher B. (2016) DNA damage response and immune defense: links and mechanisms. Front. Genet. 7, 147.

  59. Goulielmaki E., Ioannidou A., Tsekrekou M., Stratigi K., Poutakidou I.K., Gkirtzimanaki K., Aivaliotis M., Evangelou K., Topalis P., Altmüller J., Gorgoulis V.G., Chatzinikolaou G., Garinis G.A. (2020) Tissue-infiltrating macrophages mediate an exosome-based metabolic reprogramming upon DNA damage. Nat. Commun. 11, 42.

  60. Shanbhag N.M., Evans M.D., Mao W., Nana A.L., Seeley W.W., Adame A., Rissman R.A., Masliah E., Mucke L. (2019) Early neuronal accumulation of DNA double strand breaks in Alzheimer’s disease. Acta Neuropathol. Commun. 7, 77.

  61. Kim H.-N., Chang J., Shao L., Han L., Iyer S., Manolagas S.C., O’Brien C.A., Jilka R.L., Zhou D., Almeida M. (2017) DNA damage and senescence in osteoprogenitors expressing Osx1 may cause their decrease with age. Aging Cell. 16, 693–703.

  62. Walter D., Lier A., Geiselhart A., Thalheimer F.B., Huntscha S., Sobotta M.C., Moehrle B., Brocks D., Bayindir I., Kaschutnig P., Muedder K., Klein C., Jauch A., Schroeder T., Geiger H., Dick T.P., Holland-Letz T., Schmezer P., Lane S.W., Rieger M.A., Essers M.A., Williams D.A., Trumpp A., Milsom M.D. (2015) Exit from dormancy provokes DNA-damage-induced attrition in haematopoietic stem cells. Nature. 520, 549–552.

  63. Rodier F., Muñoz D.P., Teachenor R., Chu V., Le O., Bhaumik D., Coppé J.-P., Campeau E., Beauséjour C.M., Kim S.-H., Davalos A.R., Campisi J. (2011) DNA-SCARS: distinct nuclear structures that sustain damage-induced senescence growth arrest and inflammatory cytokine secretion. J. Cell Sci. 124, 68.

  64. Lu Y., Krishnan A., Brommer B., Tian X., Meer M., Vera D.L., Wang C., Zeng Q., Yu D., Bonkowski M.S., Yang J.-H., Hoffmann E.M., Zhou S., Korobkina E., Davidsohn N., Schultz M.B., Chwalek K., Rajman L.A., Church G.M., Hochedlinger K., Gladyshev V.N., Horvath S., Gregory-Ksander M.S., Ksander B.R., He Z., Sinclair D.A. (2019) Reversal of ageing- and injury-induced vision loss by Tet-dependent epigenetic reprogramming. bioRxiv. https://doi.org/10.1101/710210

  65. Paluvai H., Di Giorgio E., Brancolini C. (2020) The histone code of senescence. Cells. 9, 466.

  66. Vanyushin B.F., Nemirovsky L.E., Klimenko V.V., Vasiliev V.K., Belozersky A.N. (1973) The 5-methylcytosine in DNA of rats. Tissue and age specificity and the changes induced by hydrocortisone and other agents. Gerontologia. 19, 138–152.

  67. Vanyushin B.F., Kirnos M.D. (1977) Structure of animal mitochondrial DNA (base composition, pyrimidine clusters, character of methylation). Biochim Biophys Acta. 475, 323–336.

  68. Booth L.N., Brunet A. (2016) The aging epigenome. Mol. Cell. 62, 728–744.

  69. Kane A.E., Sinclair D.A. (2019) Epigenetic changes during aging and their reprogramming potential. Crit. Rev. Biochem. Mol. Biol. 54, 61–83.

  70. Morgan A.E., Davies T.J., Mc Auley M.T. (2018) The role of DNA methylation in ageing and cancer. Proc. Nutr. Soc. 77, 412–422.

  71. Xie W., Baylin S.B., Easwaran H. (2019) DNA methylation in senescence, aging and cancer. Oncoscience. 6, 291–293.

  72. Unnikrishnan A., Hadad N., Masser D.R., Jackson J., Freeman W.M., Richardson A. (2018) Revisiting the genomic hypomethylation hypothesis of aging. Ann. N.Y. Acad. Sci. 1418, 69–79.

  73. Ashapkin V.V., Kutueva L.I., Vanyushin B.F. (2019) Epigenetic clock: just a convenient marker or an active driver of aging? Adv. Exp. Med. Biol. 1178, 175–206.

  74. Michalak E.M., Burr M.L., Bannister A.J., Dawson M.A. (2019) The roles of DNA, RNA and histone methylation in ageing and cancer. Nat. Rev. Mol. Cell Biol. 20, 573–589.

  75. Yu R., McCauley B., Dang W. (2020) Loss of chromatin structural integrity is a source of stress during aging. Hum. Genet. 139, 371–380.

  76. Baldensperger T., Eggen M., Kappen J., Winterhalter P.R., Pfirrmann T., Glomb M.A. (2020) Comprehensive analysis of posttranslational protein modifications in aging of subcellular compartments. Sci. Rep. 10, 7596.

  77. Contrepois K., Coudereau C., Benayoun B.A., Schuler N., Roux P.F., Bischof O., Courbeyrette R., Carvalho C., Thuret J.Y., Ma Z., Derbois C., Nevers M.C., Volland H., Redon C.E., Bonner W.M., Deleuze J.F., Wiel C., Bernard D., Snyder M.P., Rube C.E., Olaso R., Fenaille F., Mann C. (2017) Histone variant H2A.J accumulates in senescent cells and promotes inflammatory gene expression. Nat. Commun. 8, 14995.

  78. Tvardovskiy A., Schwammle V., Kempf S.J., Rogowska-Wrzesinska A., Jensen O.N. (2017) Accumulation of histone variant H3.3 with age is associated with profound changes in the histone methylation landscape. Nucleic Acids Res. 45, 9272–9289.

  79. Wang Y., Yuan Q., Xie L. (2018) Histone modifications in aging: the underlying mechanisms and implications. Curr. Stem Cell Res. Therapy. 13, 125–135.

  80. Li Y., Jin M., O’Laughlin R., Bittihn P., Tsimring L.S., Pillus L., Hasty J., Hao N. (2017) Multigenerational silencing dynamics control cell aging. Proc. Natl. Acad. Sci. USA. 114, 11253–11258.

  81. Majidinia M., Mir S.M., Mirza-Aghazadeh-Attari M., Asghari R., Kafil H.S., Safa A., Mahmoodpoor A., Yousefi B. (2020) MicroRNAs, DNA damage response and ageing. Biogerontology. 21, 275–291.

  82. Lenart P., Novak J., Bienertova-Vasku J. (2018) PIWI-piRNA pathway: setting the pace of aging by reducing DNA damage. Mech. Ageing Dev. 173, 29–38.

  83. Sousa-Victor P., Ayyaz A., Hayashi R., Qi Y., Madden D.T., Lunyak V.V., Jasper H. (2017) Piwi is required to limit exhaustion of aging somatic stem cells. Cell Rept. 20, 2527–2537.

  84. Kour S., Rath P.C. (2016) Long noncoding RNAs in aging and age-related diseases. Ageing Res. Rev. 26, 1–21.

  85. Greene J., Baird A.M., Brady L., Lim M., Gray S.G., McDermott R., Finn S.P. (2017) Circular RNAs: biogenesis, function and role in human diseases. Front. Mol. Biosci. 4, 38.

  86. Cai H., Li Y., Niringiyumukiza J.D., Su P., Xiang W. (2019) Circular RNA involvement in aging: an emerging player with great potential. Mech. Ageing Dev. 178, 16–24.

  87. Mori M.A., Ludwig R.G., Garcia-Martin R., Brandao B.B., Kahn C.R. (2019) Extracellular miRNAs: from biomarkers to mediators of physiology and disease. Cell Metab. 30, 656–673.

  88. Dluzen D.F., Noren Hooten N., Evans M.K. (2017) Extracellular RNA in aging. Wiley Interdiscip. Rev. RNA. 8, .https://doi.org/10.1002/wrna.1385

  89. Koga H., Kaushik S., Cuervo A.M. (2011) Protein homeostasis and aging: the importance of exquisite quality control. Ageing Res. Rev. 10, 205–215.

  90. Trigo D., Nadais A., da Cruz E.S.O.A.B. (2019) Unravelling protein aggregation as an ageing related process or a neuropathological response. Ageing Res. Rev. 51, 67–77.

  91. Grune T. (2020) Oxidized protein aggregates: formation and biological effects. Free Radic. Biol. Med. 150, 120–124.

  92. Hipp M.S., Kasturi P., Hartl F.U. (2019) The proteostasis network and its decline in ageing. Nat. Rev. Mol. Cell Biol. 20, 421–435.

  93. Fournet M., Bonte F., Desmouliere A. (2018) Glycation damage: a possible hub for major pathophysiological disorders and aging. Aging Dis. 9, 880–900.

  94. Vanhooren V., Navarrete Santos A., Voutetakis K., Petropoulos I., Libert C., Simm A., Gonos E.S., Friguet B. (2015) Protein modification and maintenance systems as biomarkers of ageing. Mech. Ageing Dev. 151, 71–84.

  95. Gorisse L., Pietrement C., Vuiblet V., Schmelzer C.E., Kohler M., Duca L., Debelle L., Fornes P., Jaisson S., Gillery P. (2016) Protein carbamylation is a hallmark of aging. Proc. Natl. Acad. Sci. USA. 113, 1191–1196.

  96. Moldogazieva N.T., Mokhosoev I.M., Mel’nikova T.I., Porozov Y.B., Terentiev A.A. (2019) Oxidative stress and advanced lipoxidation and glycation end products (ALEs and AGEs) in aging and age-related diseases. Oxid. Med. Cell Longev. 2019, 3085756.

  97. Birch H.L. (2018) Extracellular matrix and ageing. Subcell. Biochem. 90, 169–190.

  98. Cheon S.Y., Kim H., Rubinsztein D.C., Lee J.E. (2019) Autophagy, cellular aging and age-related human diseases. Exp. Neurobiol. 28, 643–657.

  99. Basisty N., Holtz A., Schilling B. (2020) Accumulation of “old proteins” and the critical need for MS-based protein turnover measurements in aging and longevity. Proteomics. 20, e1800403.

  100. Lee C.W., Wilfling F., Ronchi P., Allegretti M., Mosalaganti S., Jentsch S., Beck M., Pfander B. (2020) Selective autophagy degrades nuclear pore complexes. Nat. Cell Biol. 22, 159–166.

  101. Stead E.R., Castillo-Quan J.I., Miguel V.E.M., Lujan C., Ketteler R., Kinghorn K.J., Bjedov I. (2019) Agephagy – adapting autophagy for health during aging. Front. Cell Dev. Biology. 7, 308.

  102. Wong S.Q., Kumar A.V., Mills J., Lapierre L.R. (2020) Autophagy in aging and longevity. Hum. Genet. 139, 277–290.

  103. Taylor R.C. (2016) Aging and the UPR(ER). Brain Res. 1648, 588–593.

  104. Martinez G., Duran-Aniotz C., Cabral-Miranda F., Vivar J.P., Hetz C. (2017) Endoplasmic reticulum proteostasis impairment in aging. Aging Cell. 16, 615–623.

  105. Brehme M., Voisine C., Rolland T., Wachi S., Soper J.H., Zhu Y., Orton K., Villella A., Garza D., Vidal M., Ge H., Morimoto R.I. (2014) A chaperome subnetwork safeguards proteostasis in aging and neurodegenerative disease. Cell Rept. 9, 1135–1150.

  106. Hansen M., Rubinsztein D.C., Walker D.W. (2018) Autophagy as a promoter of longevity: insights from model organisms. Nat. Rev. Mol. Cell Biol. 19, 579–593.

  107. Hegde A.N., Smith S.G., Duke L.M., Pourquoi A., Vaz S. (2019) Perturbations of ubiquitin-proteasome-mediated proteolysis in aging and Alzheimer’s disease. Front. Aging Neurosci. 11, 324.

  108. Vaiserman A.M., Lushchak O.V., Koliada A.K. (2016) Anti-aging pharmacology: promises and pitfalls. Ageing Res. Rev. 31, 9–35.

  109. Nilsson M.I., Tarnopolsky M.A. (2019) Mitochondria and aging-the role of exercise as a countermeasure. Biology (Basel). 8, 40.

  110. Zheng Q., Huang J., Wang G. (2019) Mitochondria, telomeres and telomerase subunits. Front. Cell Dev. Biology. 7, 274.

  111. Moro L. (2019) Mitochondrial dysfunction in aging and cancer. J. Clin. Med. 8, 1983.

  112. Hekimi S., Lapointe J., Wen Y. (2011) Taking a “good” look at free radicals in the aging process. Trends Cell Biol. 21, 569–576.

  113. Gomes P., Viana S.D., Nunes S., Rolo A.P., Palmeira C.M., Reis F. (2020) The yin and yang faces of the mitochondrial deacetylase sirtuin 3 in age-related disorders. Ageing Res. Rev. 57, 100983.

  114. Tao R., Coleman M.C., Pennington J.D., Ozden O., Park S.H., Jiang H., Kim H.S., Flynn C.R., Hill S., Hayes McDonald W., Olivier A.K., Spitz D.R., Gius D. (2010) Sirt3-mediated deacetylation of evolutionarily conserved lysine 122 regulates MnSOD activity in response to stress. Mol. Cell. 40, 893–904.

  115. Whitehall J.C., Greaves L.C. (2019) Aberrant mitochondrial function in ageing and cancer. Biogerontology. 21, 445–459https://doi.org/10.1007/s10522-10019-09853-y

  116. Reynolds J.C., Bwiza C.P., Lee C. (2020) Mitonuclear genomics and aging. Hum. Genet. 139, 381–399.

  117. Billard P., Poncet D.A. (2019) Replication stress at telomeric and mitochondrial DNa: common origins and consequences on ageing. Int. J. Mol. Sci. 20, 4959.

  118. Gaziev A.I., Abdullaev S., Podlutsky A. (2014) Mitochondrial function and mitochondrial DNA maintenance with advancing age. Biogerontology. 15, 417–438.

  119. Muftuoglu M., Mori M.P., de Souza-Pinto N.C. (2014) Formation and repair of oxidative damage in the mitochondrial DNA. Mitochondrion. 17, 164–181.

  120. Газиев А.И., Подлуцкий А.Я. (2003) Низкая эффективность репарации ДНК в митохондриях. Цитология. 45, 403–417.

  121. Газиев А.И., Шайхаев Г.О. (2010) Ядерно-митохондриальные псевдогены. Молекуляр. биология. 44, 405–417.

  122. Moehle E.A., Shen K., Dillin A. (2019) Mitochondrial proteostasis in the context of cellular and organismal health and aging. J. Biol. Chem. 294, 5396–5407.

  123. Nakada K., Sato A., Hayashi J. (2009) Mitochondrial functional complementation in mitochondrial DNA-based diseases. Int. J. Biochem. Cell. Biol. 41, 1907–1913.

  124. Sharma A., Smith H.J., Yao P., Mair W.B. (2019) Causal roles of mitochondrial dynamics in longevity and healthy aging. EMBO Rep. 20, e48395.

  125. Garza-Lombo C., Pappa A., Panayiotidis M.I., Franco R. (2020) Redox homeostasis, oxidative stress and mitophagy. Mitochondrion. 51, 105–117.

  126. Thomas H.E., Zhang Y., Stefely J.A., Veiga S.R., Thomas G., Kozma S.C., Mercer C.A. (2018) Mitochondrial complex I activity is required for maximal autophagy. Cell Rept. 24, 2404–2417. e2408.

  127. Tan J.X., Finkel T. (2020) Mitochondria as intracellular signaling platforms in health and disease. J. Cell Biol. 219, e202002179.

  128. Melber A., Haynes C.M. (2018) UPR(mt) regulation and output: a stress response mediated by mitochondrial-nuclear communication. Cell Res. 28, 281–295.

  129. McManus M.J., Picard M., Chen H.W., De Haas H.J., Potluri P., Leipzig J., Towheed A., Angelin A., Sengupta P., Morrow R.M., Kauffman B.A., Vermulst M., Narula J., Wallace D.C. (2019) Mitochondrial DNA variation dictates expressivity and progression of nuclear DNA mutations causing cardiomyopathy. Cell Metab. 29, 78–90. e75.

  130. Maniyadath B., Shukla N., Kolthur-Seetharam U. (2018) Gene expression, epigenetics and ageing. Subcell. Biochem. 90, 471–504.

  131. Stegeman R., Weake V.M. (2017) Transcriptional signatures of aging. J. Mol. Biol. 429, 2427–2437.

  132. Solovev I., Shaposhnikov M., Moskalev A. (2020) Multi-omics approaches to human biological age estimation. Mech. Ageing Dev. 185, 111192–111192.

  133. Anisimova A.S., Meerson M.B., Gerashchenko M.V., Kulakovskiy I.V., Dmitriev S.E., Gladyshev V.N. (2020) Multi-faceted deregulation of gene expression and protein synthesis with age. bioRxiv. https://doi.org/10.1101/2020.1101.1119.911404

  134. Wood S.H., Craig T., Li Y., Merry B., de Magalhaes J.P. (2013) Whole transcriptome sequencing of the aging rat brain reveals dynamic RNA changes in the dark matter of the genome. Age (Dordr). 35, 763–776.

  135. Dönertaş H.M., İzgi H., Kamacıoğlu A., He Z., Khaitovich P., Somel M. (2017) Gene expression reversal toward pre-adult levels in the aging human brain and age-related loss of cellular identity. Sci. Rep. 7, 5894–5894.

  136. Rangaraju S., Solis G.M., Thompson R.C., Gomez-Amaro R.L., Kurian L., Encalada S.E., Niculescu A.B., 3rd, Salomon D.R., Petrascheck M. (2015) Suppression of transcriptional drift extends C. elegans lifespan by postponing the onset of mortality. eLife. 4, e08833–e08833.

  137. Zhavoronkov A., Buzdin A.A., Garazha A.V., Borisov N.M., Moskalev A.A. (2014) Signaling pathway cloud regulation for in silico screening and ranking of the potential geroprotective drugs. Front. Genet. 5, 49.

  138. de Magalhaes J.P., Curado J., Church G.M. (2009) Meta-analysis of age-related gene expression profiles identifies common signatures of aging. Bioinformatics. 25, 875–881.

  139. Lai R.W., Lu R., Danthi P.S., Bravo J.I., Goumba A., Sampathkumar N.K., Benayoun B.A. (2019) Multi-level remodeling of transcriptional landscapes in aging and longevity. BMB Rept. 52, 86–108.

  140. Stoeger T., Grant R.A., McQuattie-Pimentel A.C., Anekalla K., Liu S.S., Tejedor-Navarro H., Singer B.D., Abdala-Valencia H., Schwake M., Tetreault M.-P., Perlman H., Balch W.E., Chandel N., Ridge K., Sznajder J.I., Morimoto R.I., Misharin A.V., Budinger G.R.S., Amaral L.A.N. (2019) Aging is associated with a systemic length-driven transcriptome imbalance. bioRxiv. https://doi.org/10.1101/691154

  141. Ferrucci L., Gonzalez-Freire M., Fabbri E., Simonsick E., Tanaka T., Moore Z., Salimi S., Sierra F., de Cabo R. (2020) Measuring biological aging in humans: a quest. Aging Cell. 19, e13080.

  142. Lopez-Otin C., Blasco M.A., Partridge L., Serrano M., Kroemer G. (2013) The hallmarks of aging. Cell. 153, 1194–1217.

  143. Everitt A.V., Rattan S.I.S., le Couteur D.G., de Cabo R. (2010) Calorie Restriction, Aging and Longevity. New York: Springer.

  144. Kalache A., de Hoogh A.I., Howlett S.E., Kennedy B., Eggersdorfer M., Marsman D.S., Shao A., Griffiths J.C. (2019) Nutrition interventions for healthy ageing across the lifespan: a conference report. Eur. J.Nutrit. 58, 1–11.

  145. Piper Matthew D.W., Partridge L., Raubenheimer D., Simpson Stephen J. (2011) Dietary restriction and aging: a unifying perspective. Cell Metab. 14, 154–160.

  146. Miyamoto T., Wright G., Amrein H. (2013) Nutrient sensors. Curr. Biol. 23, R369–373.

  147. Kenyon C.J. (2010) The genetics of ageing. Nature. 464, 504–512.

  148. Kim E. (2009) Mechanisms of amino acid sensing in mTOR signaling pathway. Nutr. Res. Pract. 3, 64–71.

  149. Grimaldi P.A. (2007) Peroxisome proliferator-activated receptors as sensors of fatty acids and derivatives. Cell. Mol. Life Sci. 64, 2459–2464.

  150. Johnson S.C. (2018) Nutrient sensing, signaling and ageing: the role of IGF-1 and mTOR in ageing and age-related disease. Subcell. Biochem. 90, 49–97.

  151. Papadopoli D., Boulay K., Kazak L., Pollak M., Mallette F., Topisirovic I., Hulea L. (2019) mTOR as a central regulator of lifespan and aging. F1000Res. 8, F1000 Faculty Rev-1998.

  152. Jeon S.M. (2016) Regulation and function of AMPK in physiology and diseases. Exp. Mol. Med. 48, e245.

  153. Salminen A., Kaarniranta K., Kauppinen A. (2016) Age-related changes in AMPK activation: role for AMPK phosphatases and inhibitory phosphorylation by upstream signaling pathways. Ageing Res. Rev. 28, 15–26.

  154. Kosciuk T., Wang M., Hong J.Y., Lin H. (2019) Updates on the epigenetic roles of sirtuins. Curr. Opin. Chem. Biol. 51, 18–29.

  155. Yaribeygi H., Farrokhi F.R., Butler A.E., Sahebkar A. (2019) Insulin resistance: review of the underlying molecular mechanisms. J. Cell. Physiol. 234, 8152–8161.

  156. Ryan A.S. (2000) Insulin resistance with aging. Sports Med. 30, 327–346.

  157. Lann D., LeRoith D. (2007) Insulin resistance as the underlying cause for the metabolic syndrome. Med. Clin. North Am. 91, 1063–1077.

  158. Fontana L., Partridge L., Longo V.D. (2010) Extending healthy life span – from yeast to humans. Science. 328, 321.

  159. Laplante M., Sabatini D.M. (2012) mTOR signaling in growth control and disease. Cell. 149, 274–293.

  160. Filippi B.M., Lam T.K. (2014) Leptin and aging. Aging (Albany NY). 6, 82–83.

  161. Zhang G., Li J., Purkayastha S., Tang Y., Zhang H., Yin Y., Li B., Liu G., Cai D. (2013) Hypothalamic programming of systemic ageing involving IKK-β, NF-κB and GnRH. Nature. 497, 211–216.

  162. Bauer M.E. (2005) Stress, glucocorticoids and ageing of the immune system. Stress. 8, 69–83.

  163. Galley J.D., Bailey M.T. (2014) Impact of stressor exposure on the interplay between commensal microbiota and host inflammation. Gut Microbes. 5, 390–396.

  164. Дильман В.М. (1960) Возрастная гиперхолестеринемия как показатель повышенной активности гипоталамических центров. Терапевтический архив. 32, 72–77.

  165. Москалев А.А., Кременцова А.В., Малышева О.А. (2008) Влияние мелатонина на продолжительность жизни Drosophila melanogaster при различных режимах освещения. Экологическая генетика. 6, 24–32.

  166. Tan D.X., Xu B., Zhou X., Reiter R.J. (2018) Pineal calcification, melatonin production, aging, associated health consequences and rejuvenation of the pineal gland. Molecules. 23,

  167. Wang Y., Chen F., Ye L., Zirkin B., Chen H. (2017) Steroidogenesis in Leydig cells: effects of aging and environmental factors. Reproduction (Cambridge, England). 154, R111–R122.

  168. Taneja C., Gera S., Kim S.M., Iqbal J., Yuen T., Zaidi M. (2019) FSH-metabolic circuitry and menopause. J. Mol. Endocrinol. 63, R73–R80.

  169. Jung Y., Brack A.S. (2014) Cellular mechanisms of somatic stem cell aging. Curr. Topics Dev. Biol. 107, 405–438.

  170. Ren R., Ocampo A., Liu G.-H., Izpisua Belmonte J.C. (2017) Regulation of stem cell aging by metabolism and epigenetics. Cell Metab. 26, 460–474.

  171. Sameri S., Samadi P., Dehghan R., Salem E., Fayazi N., Amini R. (2020) Stem cell aging in lifespan and disease: a state-of-the-art review. Curr. Stem Cell Res. Therapy. 15, 362–378. https://doi.org/10.2174/1574888X15666200213105155

  172. Oh J., Lee Y.D., Wagers A.J. (2014) Stem cell aging: mechanisms, regulators and therapeutic opportunities. Nat. Med. 20, 870–880.

  173. Москалёв А.А. (2009) Роль стволовой ниши в процессах старения организма. Рос. хим. журн. 53, 83–87.

  174. Carlson M.E., Conboy M.J., Hsu M., Barchas L., Jeong J., Agrawal A., Mikels A.J., Agrawal S., Schaffer D.V., Conboy I.M. (2009) Relative roles of TGF-beta1 and Wnt in the systemic regulation and aging of satellite cell responses. Aging Cell. 8, 676–689.

  175. Franceschi C., Bonafè M., Valensin S., Olivieri F., De Luca M., Ottaviani E., De Benedictis G. (2000) Inflamm-aging. An evolutionary perspective on immunosenescence. Ann. N.Y. Acad. Sci. 908, 244–254.

  176. Coppé J.P., Desprez P.Y., Krtolica A., Campisi J. (2010) The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu. Rev. Pathol. 5, 99–118.

  177. Elabd C., Cousin W., Upadhyayula P., Chen R.Y., Chooljian M.S., Li J., Kung S., Jiang K.P., Conboy I.M. (2014) Oxytocin is an age-specific circulating hormone that is necessary for muscle maintenance and regeneration. Nat. Commun. 5, 4082.

  178. Sinha M., Jang Y.C., Oh J., Khong D., Wu E.Y., Manohar R., Miller C., Regalado S.G., Loffredo F.S., Pancoast J.R., Hirshman M.F., Lebowitz J., Sha-drach J.L., Cerletti M., Kim M.-J., Serwold T., Goodyear L.J., Rosner B., Lee R.T., Wagers A.J. (2014) Restoring systemic GDF11 levels reverses age-related dysfunction in mouse skeletal muscle. Science. 344, 649–652.

  179. Katsimpardi L., Litterman N.K., Schein P.A., Miller C.M., Loffredo F.S., Wojtkiewicz G.R., Chen J.W., Lee R.T., Wagers A.J., Rubin L.L. (2014) Vascular and neurogenic rejuvenation of the aging mouse brain by young systemic factors. Science. 344, 630–634.

  180. Ancel S., Mashinchian O., Feige J.N. (2019) Adipogenic progenitors keep muscle stem cells young. Aging. 11, 7331–7333.

  181. Li H., Hou L. (2018) Regulation of melanocyte stem cell behavior by the niche microenvironment. Pigment Cell Melanoma Res. 31, 556–569.

  182. Ho Y.-H., Méndez-Ferrer S. (2020) Microenvironmental contributions to hematopoietic stem cell aging. Haematologica. 105, 38–46.

  183. Chakkalakal J.V., Jones K.M., Basson M.A., Brack A.S. (2012) The aged niche disrupts muscle stem cell quiescence. Nature. 490, 355–360.

  184. Geiger H., Koehler A., Gunzer M. (2007) Stem cells, aging, niche, adhesion and Cdc42: a model for changes in cell–cell interactions and hematopoietic stem cell aging. Cell Cycle. 6, 884–887.

  185. Stearns-Reider K.M., D’Amore A., Beezhold K., Rothrauff B., Cavalli L., Wagner W.R., Vorp D.A., Tsamis A., Shinde S., Zhang C., Barchowsky A., Rando T.A., Tuan R.S., Ambrosio F. (2017) Aging of the skeletal muscle extracellular matrix drives a stem cell fibrogenic conversion. Aging Cell. 16, 518–528.

  186. Doles J., Storer M., Cozzuto L., Roma G., Keyes W.M. (2012) Age-associated inflammation inhibits epidermal stem cell function. Genes Dev. 26, 2144–2153.

  187. Choi J., Artandi S. (2009) Stem cell aging and aberrant differentiation within the niche. Cell Stem Cell. 5, 6–8.

  188. Schultz M.B., Sinclair D.A. (2016) When stem cells grow old: phenotypes and mechanisms of stem cell aging. Development. 143, 3.

  189. Latchney S.E., Calvi L.M. (2017) The aging hematopoietic stem cell niche: phenotypic and functional changes and mechanisms that contribute to hematopoietic aging. Semin. Hematol. 54, 25–32.

  190. Inomata K., Aoto T., Binh N.T., Okamoto N., Tanimura S., Wakayama T., Iseki S., Hara E., Masunaga T., Shimizu H., Nishimura E.K. (2009) Genotoxic stress abrogates renewal of melanocyte stem cells by triggering their differentiation. Cell. 137, 1088–1099.

  191. Brack A.S., Conboy M.J., Roy S., Lee M., Kuo C.J., Keller C., Rando T.A. (2007) Increased Wnt signaling during aging alters muscle stem cell fate and increases fibrosis. Science. 317, 807–810.

  192. Campisi J., d’Adda di Fagagna F. (2007) Cellular senescence: when bad things happen to good cells. Nat. Rev. Mol. Cell Biol. 8, 729–740.

  193. Aravinthan A. (2015) Cellular senescence: a hitchhiker’s guide. Human Cell. 28, 51–64.

  194. Herbig U., Ferreira M., Condel L., Carey D., Sedivy J.M. (2006) Cellular senescence in aging primates. Science. 311, 1257.

  195. Chapman J., Fielder E., Passos J.F. (2019) Mitochondrial dysfunction and cell senescence: deciphering a complex relationship. FEBS Lett. 593, 1566–1579.

  196. Kang C. (2019) Senolytics and senostatics: a two-pronged approach to target cellular senescence for delaying aging and age-related diseases. Mol. Cells. 42, 821–827.

  197. Khosla S., Farr J.N., Tchkonia T., Kirkland J.L. (2020) The role of cellular senescence in ageing and endocrine disease. Nat. Rev. Endocrinol. 16, 263–275.

  198. da Silva P.F.L., Ogrodnik M., Kucheryavenko O., Glibert J., Miwa S., Cameron K., Ishaq A., Saretzki G., Nagaraja-Grellscheid S., Nelson G., von Zglinicki T. (2019) The bystander effect contributes to the accumulation of senescent cells in vivo. Aging Cell. 18, e12848–e12848.

  199. Freund A., Orjalo A.V., Desprez P.-Y., Campisi J. (2010) Inflammatory networks during cellular senescence: causes and consequences. Trends Mol. Med. 16, 238–246.

  200. Stout M.B., Tchkonia T., Pirtskhalava T., Palmer A.K., List E.O., Berryman D.E., Lubbers E.R., Escande C., Spong A., Masternak M.M., Oberg A.L., LeBrasseur N.K., Miller R.A., Kopchick J.J., Bartke A., Kirkland J.L. (2014) Growth hormone action predicts age-related white adipose tissue dysfunction and senescent cell burden in mice. Aging. 6, 575–586.

  201. del Nogal M., Troyano N., Calleros L., Griera M., Rodriguez-Puyol M., Rodriguez-Puyol D., Ruiz-Torres M.P. (2014) Hyperosmolarity induced by high glucose promotes senescence in human glomerular mesangial cells. Int. J. Biochem. Cell. Biol. 54, 98–110.

  202. Li M., You L., Xue J., Lu Y. (2018) Ionizing radiation-induced cellular senescence in normal, non-transformed cells and the involved DNA damage response: a mini review. Front. Pharmacol. 9, 522.

  203. von Zglinicki T., Petrie J., Kirkwood T.B.L. (2003) Telomere-driven replicative senescence is a stress response. Nat. Biotechnol. 21, 229–230.

  204. Anderson R., Lagnado A., Maggiorani D., Walaszczyk A., Dookun E., Chapman J., Birch J., Salmonowicz H., Ogrodnik M., Jurk D., Proctor C., Correia-Melo C., Victorelli S., Fielder E., Berlinguer-Palmini R., Owens A., Greaves L.C., Kolsky K.L., Parini A., Douin-Echinard V., LeBrasseur N.K., Arthur H.M., Tual-Chalot S., Schafer M.J., Roos C.M., Miller J.D., Robertson N., Mann J., Adams P.D., Tchkonia T., Kirkland J.L., Mialet-Perez J., Richardson G.D., Passos J.F. (2019) Length-independent telomere damage drives post-mitotic cardiomyocyte senescence. EMBO J. 38, e100492.

  205. da Silva P.F.L., Schumacher B. (2019) DNA damage responses in ageing. Open Biol. 9, 190168.

  206. Andriani G.A., Almeida V.P., Faggioli F., Mauro M., Tsai W.L., Santambrogio L., Maslov A., Gadina M., Campisi J., Vijg J., Montagna C. (2016) Whole chromosome instability induces senescence and promotes SASP. Sci. Rep. 6, 35218–35218.

  207. Korolchuk V.I., Miwa S., Carroll B., von Zglinicki T. (2017) Mitochondria in cell senescence: is mitophagy the weakest link? EBioMedicine. 21, 7–13.

  208. Serrano M., Lin A.W., McCurrach M.E., Beach D., Lowe S.W. (1997) Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell. 88, 593–602.

  209. Hernandez-Segura A., Nehme J., Demaria M. (2018) Hallmarks of cellular senescence. Trends Cell Biol. 28, 436–453.

  210. Hernandez-Segura A., de Jong T.V., Melov S., Guryev V., Campisi J., Demaria M. (2017) Unmasking transcriptional heterogeneity in senescent cells. Curr. Biol. 27, 2652–2660.

  211. Wang E. (1995) Senescent human fibroblasts resist programmed cell death, and failure to suppress bcl2 is involved. Cancer Res. 55, 2284–2292.

  212. Dimri G.P., Lee X., Basile G., Acosta M., Scott G., Roskelley C., Medrano E.E., Linskens M., Rubelj I., Pereira-Smith O. (1995) A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc. Natl. Acad. Sci. USA. 92, 9363–9367.

  213. Sharpless N.E. (2004) Ink4a/Arf links senescence and aging. Exp. Gerontol. 39, 1751–1759.

  214. Choudhury A.R., Ju Z., Djojosubroto M.W., Schienke A., Lechel A., Schaetzlein S., Jiang H., Stepczynska A., Wang C., Buer J., Lee H.-W., von Zglinicki T., Ganser A., Schirmacher P., Nakauchi H., Rudolph K.L. (2007) Cdkn1a deletion improves stem cell function and lifespan of mice with dysfunctional telomeres without accelerating cancer formation. Nat. Genet. 39, 99–105.

  215. Georgakopoulou E.A., Tsimaratou K., Evangelou K., Fernandez Marcos P.J., Zoumpourlis V., Trougakos I.P., Kletsas D., Bartek J., Serrano M., Gorgoulis V.G. (2013) Specific lipofuscin staining as a novel biomarker to detect replicative and stress-induced senescence. A method applicable in cryo-preserved and archival tissues. Aging. 5, 37–50.

  216. Davalos A.R., Kawahara M., Malhotra G.K., Schaum N., Huang J., Ved U., Beausejour C.M., Coppe J.P., Rodier F., Campisi J. (2013) p53-dependent release of Alarmin HMGB1 is a central mediator of senescent phenotypes. J. Cell Biol. 201, 613–629.

  217. Narita M., Nũnez S., Heard E., Narita M., Lin A.W., Hearn S.A., Spector D.L., Hannon G.J., Lowe S.W. (2003) Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell. 113, 703–716.

  218. Basisty N., Kale A., Jeon O.H., Kuehnemann C., Payne T., Rao C., Holtz A., Shah S., Sharma V., Ferrucci L., Campisi J., Schilling B. (2020) A proteomic atlas of senescence-associated secretomes for aging biomarker development. PLoS Biol. 18, e3000599.

  219. Zhu Y., Tchkonia T., Pirtskhalava T., Gower A.C., Ding H., Giorgadze N., Palmer A.K., Ikeno Y., Hubbard G.B., Lenburg M., O’Hara S.P., LaRusso N.F., Miller J.D., Roos C.M., Verzosa G.C., LeBrasseur N.K., Wren J.D., Farr J.N., Khosla S., Stout M.B., McGowan S.J., Fuhrmann-Stroissnigg H., Gurkar A.U., Zhao J., Colangelo D., Dorronsoro A., Ling Y.Y., Barghouthy A.S., Navarro D.C., Sano T., Robbins P.D., Niedernhofer L.J., Kirkland J.L. (2015) The Achilles’ heel of senescent cells: from transcriptome to senolytic drugs. Aging cell. 14, 644–658.

  220. Kirkland J.L., Tchkonia T. (2017) Cellular senescence: a translational perspective. EBioMedicine. 21, 21–28.

  221. Baar M.P., Brandt R.M.C., Putavet D.A., Klein J.D.D., Derks K.W.J., Bourgeois B.R.M., Stryeck S., Rijksen Y., van Willigenburg H., Feijtel D.A., van der Pluijm I., Essers J., van Cappellen W.A., van I.W.F., Houtsmuller A.B., Pothof J., de Bruin R.W.F., Madl T., Hoeijmakers J.H.J., Campisi J., de Keizer P.L.J. (2017) Targeted apoptosis of senescent cells restores tissue homeostasis in response to chemotoxicity and aging. Cell. 169, 132–147. e116.

  222. Franceschi C., Campisi J. (2014) Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J. Gerontol. A Biol. Sci. Med. Sci. 69(Suppl. 1), S4–S9.

  223. Müller L., Di Benedetto S., Pawelec G. (2019) The immune system and its dysregulation with aging. In: Biochem. Cell Biol. Ageing: Part II Clin. Sci. Eds Harris J.R., Korolchuk V.I. Singapore: Springer Singapore, pp. 21–43.

  224. Sempowski G.D., Hale L.P., Sundy J.S., Massey J.M., Koup R.A., Douek D.C., Patel D.D., Haynes B.F. (2000) Leukemia inhibitory factor, oncostatin M, IL-6, and stem cell factor mRNA expression in human thymus increases with age and is associated with thymic atrophy. J. Immunol. 164, 2180–2187.

  225. Majumdar S., Nandi D. (2018) Thymic atrophy: experimental studies and therapeutic interventions. Scand. J. Immunol. 87, 4–14.

  226. Chaudhry M.S., Velardi E., Dudakov J.A., van den Brink M.R. (2016) Thymus: the next (re)generation. Immunol. Rev. 271, 56–71.

  227. Crooke S.N., Ovsyannikova I.G., Poland G.A., Kennedy R.B. (2019) Immunosenescence: a systems-level overview of immune cell biology and strategies for improving vaccine responses. Exp. Gerontol. 124, 110632.

  228. Pera A., Caserta S., Albanese F., Blowers P., Morrow G., Terrazzini N., Smith H.E., Rajkumar C., Reus B., Msonda J.R., Verboom M., Hallensleben M., Blasczyk R., Davies K.A., Kern F. (2018) CD28null pro-atherogenic CD4 T-cells explain the link between CMV infection and an increased risk of cardiovascular death. Theranostics. 8, 4509–4519.

  229. Michaud M., Balardy L., Moulis G., Gaudin C., Peyrot C., Vellas B., Cesari M., Nourhashemi F. (2013) Proinflammatory cytokines, aging, and age-related diseases. J. Am. Med. Dir. Assoc. 14, 877–882.

  230. Feldman N., Rotter-Maskowitz A., Okun E. (2015) DAMPs as mediators of sterile inflammation in aging-related pathologies. Ageing Res. Rev. 24, 29–39.

  231. Ferrucci L., Fabbri E. (2018) Inflammageing: chronic inflammation in ageing, cardiovascular disease, and frailty. Nat. Rev. Cardiol. 15, 505–522.

  232. Franceschi C., Garagnani P., Parini P., Giuliani C., Santoro A. (2018) Inflammaging: a new immune–metabolic viewpoint for age-related diseases. Nat. Rev. Endocrinol. 14, 576–590.

  233. Huang J., Xie Y., Sun X., Zeh H.J., 3rd, Kang R., Lotze M.T., Tang D. (2015) DAMPs, ageing, and cancer: the “DAMP hypothesis”. Ageing Res. Rev. 24, 3–16.

  234. Gong T., Liu L., Jiang W., Zhou R. (2020) DAMP-sensing receptors in sterile inflammation and inflammatory diseases. Nat. Rev. Immunol. 20, 95–112.

  235. Mangan M.S.J., Olhava E.J., Roush W.R., Seidel H.M., Glick G.D., Latz E. (2018) Targeting the NLRP3 inflammasome in inflammatory diseases. Nat. Rev. Drug Discov. 17, 588–606.

  236. De Cecco M., Ito T., Petrashen A.P., Elias A.E., Skvir N.J., Criscione S.W., Caligiana A., Brocculi G., Adney E.M., Boeke J.D., Le O., Beauséjour C., Ambati J., Ambati K., Simon M., Seluanov A., Gorbunova V., Slagboom P.E., Helfand S.L., Neretti N., Sedivy J.M. (2019) L1 drives IFN in senescent cells and promotes age-associated inflammation. Nature. 566, 73–78.

  237. Vizioli M.G., Liu T., Miller K.N., Robertson N.A., Gilroy K., Lagnado A.B., Perez-Garcia A., Kiourtis C., Dasgupta N., Lei X., Kruger P.J., Nixon C., Clark W., Jurk D., Bird T.G., Passos J.F., Berger S.L., Dou Z., Adams P.D. (2020) Mitochondria-to-nucleus retrograde signaling drives formation of cytoplasmic chromatin and inflammation in senescence. Genes Dev. 34, 428–445.

  238. Wu Y., Wei Q., Yu J. (2019) The cGAS/STING pathway: a sensor of senescence-associated DNA damage and trigger of inflammation in early age-related macular degeneration. Clin. Interv. Aging. 14, 1277–1283.

  239. Ablasser A., Hur S. (2020) Regulation of cGAS- and RLR-mediated immunity to nucleic acids. Nat. Immunol. 21, 17–29.

  240. Lugrin J., Martinon F. (2018) The AIM2 inflammasome: sensor of pathogens and cellular perturbations. Immunol. Rev. 281, 99–114.

  241. Rai V., Maldonado A.Y., Burz D.S., Reverdatto S., Yan S.F., Schmidt A.M., Shekhtman A. (2012) Signal transduction in receptor for advanced glycation end products (RAGE): solution structure of C-terminal rage (ctRAGE) and its binding to mDia1. J. Biol. Chem. 287, 5133–5144.

  242. Senatus L.M., Schmidt A.M. (2017) The AGE-RAGE axis: implications for age-associated arterial diseases. Front. Genet. 8, 187.

  243. Enioutina E.Y., Bareyan D., Daynes R.A. (2011) A role for immature myeloid cells in immune senescence. J. Immunol. 186, 697–707.

  244. Ergen A.V., Boles N.C., Goodell M.A. (2012) Rantes/Ccl5 influences hematopoietic stem cell subtypes and causes myeloid skewing. Blood. 119, 2500–2509.

  245. Kuilman T., Peeper D.S. (2009) Senescence-messaging secretome: SMS-ing cellular stress. Nat. Rev. Cancer. 9, 81–94.

  246. Rea I.M., Gibson D.S., McGilligan V., McNerlan S.E., Alexander H.D., Ross O.A. (2018) Age and age-related diseases: role of inflammation triggers and cytokines. Front. Immunol. 9, 586.

  247. Watanabe S., Kawamoto S., Ohtani N., Hara E. (2017) Impact of senescence-associated secretory phenotype and its potential as a therapeutic target for senescence-associated diseases. Cancer Sci. 108, 563–569.

  248. Huh J.Y., Park Y.J., Ham M., Kim J.B. (2014) Crosstalk between adipocytes and immune cells in adipose tissue inflammation and metabolic dysregulation in obesity. Mol. Cells. 37, 365–371.

  249. Francisco V., Pino J., Gonzalez-Gay M.A., Mera A., Lago F., Gómez R., Mobasheri A., Gualillo O. (2018) Adipokines and inflammation: is it a question of weight? Br. J. Pharmacol. 175, 1569–1579.

  250. Fain J.N. (2006) Release of interleukins and other inflammatory cytokines by human adipose tissue is enhanced in obesity and primarily due to the nonfat cells. In: Vitamins & Hormones. 74. Acad. Press, 443–477.

  251. Forsythe L.K., Wallace J.M., Livingstone M.B. (2008) Obesity and inflammation: the effects of weight loss. Nutr. Res. Rev. 21, 117–133.

  252. Tilg H., Moschen A.R. (2006) Adipocytokines: mediators linking adipose tissue, inflammation and immunity. Nat. Rev. Immunol. 6, 772–783.

  253. Frasca D., Blomberg B.B. (2016) Inflammaging decreases adaptive and innate immune responses in mice and humans. Biogerontology. 17, 7–19.

  254. Buford T.W. (2017) (Dis)Trust your gut: the gut microbiome in age-related inflammation, health, and disease. Microbiome. 5, 80.

  255. Nagpal R., Mainali R., Ahmadi S., Wang S., Singh R., Kavanagh K., Kitzman D.W., Kushugulova A., Marotta F., Yadav H. (2018) Gut microbiome and aging: physiological and mechanistic insights. Nutr. Healthy Aging. 4, 267–285.

  256. Dudakov J.A., Hanash A.M., van den Brink M.R. (2015) Interleukin-22: immunobiology and pathology. Annu. Rev. Immunol. 33, 747–785.

  257. Satoh-Takayama N., Vosshenrich C.A., Lesjean-Pottier S., Sawa S., Lochner M., Rattis F., Mention J.J., Thiam K., Cerf-Bensussan N., Mandelboim O., Eberl G., Di Santo J.P. (2008) Microbial flora drives interleukin 22 production in intestinal NKp46+ cells that provide innate mucosal immune defense. Immunity. 29, 958–970.

  258. Rakoff-Nahoum S., Paglino J., Eslami-Varzaneh F., Edberg S., Medzhitov R. (2004) Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell. 118, 229–241.

  259. Ngo V.L., Abo H., Maxim E., Harusato A., Geem D., Medina-Contreras O., Merlin D., Gewirtz A.T., Nusrat A., Denning T.L. (2018) A cytokine network involving IL-36γ, IL-23, and IL-22 promotes antimicrobial defense and recovery from intestinal barrier damage. Proc. Natl. Acad. Sci. USA. 115, E5076–e5085.

  260. Sugimoto K., Ogawa A., Mizoguchi E., Shimomura Y., Andoh A., Bhan A.K., Blumberg R.S., Xavier R.J., Mizoguchi A. (2008) IL-22 ameliorates intestinal inflammation in a mouse model of ulcerative colitis. J. Clin. Invest. 118, 534–544.

  261. Kühn F., Adiliaghdam F., Cavallaro P.M., Hamarneh S.R., Tsurumi A., Hoda R.S., Munoz A.R., Dhole Y., Ramirez J.M., Liu E., Vasan R., Liu Y., Samarbafzadeh E., Nunez R.A., Farber M.Z., Chopra V., Malo M.S., Rahme L.G., Hodin R.A. (2020) Intestinal alkaline phosphatase targets the gut barrier to prevent aging. JCI Insight. 5, 134049.

  262. Lycke N.Y., Bemark M. (2017) The regulation of gut mucosal IgA B-cell responses: recent developments. Mucosal Immunol. 10, 1361–1374.

  263. Macpherson A.J., Harris N.L. (2004) Interactions between commensal intestinal bacteria and the immune system. Nat. Rev. Immunol. 4, 478–485.

  264. Bourassa M.W., Alim I., Bultman S.J., Ratan R.R. (2016) Butyrate, neuroepigenetics and the gut microbiome: can a high fiber diet improve brain health? Neurosci. Lett. 625, 56–63.

  265. Jeffery I.B., Lynch D.B., O’Toole P.W. (2016) Composition and temporal stability of the gut microbiota in older persons. ISME J. 10, 170–182.

  266. Meier J., Sturm A. (2009) The intestinal epithelial barrier: does it become impaired with age? Dig. Dis. 27, 240–245.

  267. Bai J., Liu F. (2019) The cGAS-cGAMP-STING pathway: a molecular link between immunity and metabolism. Diabetes. 68, 1099.

  268. Scheid M.M.A., Moreno Y.M.F., Maróstica Junior M.R., Pastore G.M. (2013) Effect of prebiotics on the health of the elderly. Food Res. Int. 53, 426–432.

  269. Stebegg M., Silva-Cayetano A., Innocentin S., Jenkins T.P., Cantacessi C., Gilbert C., Linterman M.A. (2019) Heterochronic faecal transplantation boosts gut germinal centres in aged mice. Nat. Commun. 10, 2443.

  270. Wu H., Esteve E., Tremaroli V., Khan M.T., Caesar R., Mannerås-Holm L., Ståhlman M., Olsson L.M., Serino M., Planas-Fèlix M., Xifra G., Mercader J.M., Torrents D., Burcelin R., Ricart W., Perkins R., Fernàndez-Real J.M., Bäckhed F. (2017) Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug. Nat. Med. 23, 850–858.

  271. Hurez V., Dao V., Liu A., Pandeswara S., Gelfond J., Sun L., Bergman M., Orihuela C.J., Galvan V., Padrón Á., Drerup J., Liu Y., Hasty P., Sharp Z.D., Curiel T.J. (2015) Chronic mTOR inhibition in mice with rapamycin alters T, B, myeloid, and innate lymphoid cells and gut flora and prolongs life of immune-deficient mice. Aging Cell. 14, 945–956.

  272. Qiao Y., Sun J., Xia S., Tang X., Shi Y., Le G. (2014) Effects of resveratrol on gut microbiota and fat storage in a mouse model with high-fat-induced obesity. Food Funct. 5, 1241–1249.

  273. Neil J.A., Cadwell K. (2018) The intestinal virome and immunity. J. Immunol. 201, 1615–1624.

  274. Mukhopadhya I., Segal J.P., Carding S.R., Hart A.L., Hold G.L. (2019) The gut virome: the “missing link” between gut bacteria and host immunity? Therapeut. Adv. Gastroenterol. 12, 1756284819836620.

  275. Bayo J., Molina R., Perez J., Perez-Ruiz E., Aparicio J., Beato C., Berros J.P., Bolanos M., Grana B., Santaballa A. (2019) SEOM clinical guidelines to primary prevention of cancer (2018). Clin. Transl. Oncol. 21, 106–113.

  276. Mancuso R., Sicurella M., Agostini S., Marconi P., Clerici M. (2019) Herpes simplex virus type 1 and Alzheimer’s disease: link and potential impact on treatment. Expert. Rev. Anti Infect. Ther. 17, 715–731.

  277. Readhead B., Haure-Mirande J.-V., Funk C.C., Richards M.A., Shannon P., Haroutunian V., Sano M., Liang W.S., Beckmann N.D., Price N.D., Reiman E.M., Schadt E.E., Ehrlich M.E., Gandy S., Dudley J.T. (2018) Multiscale analysis of independent Alzheimer’s cohorts finds disruption of molecular, genetic, and clinical networks by human herpesvirus. Neuron. 99, 64–82. e67.

  278. Reinke H., Asher G. (2019) Crosstalk between metabolism and circadian clocks. Nat. Rev. Mol. Cell Biol. 20, 227–241.

  279. Соловьёв И.А., Шапошников М.В., Москалев А.А. (2018) Генетические механизмы влияния света и фототрансдукции на продолжительность жизни Drosophila melanogaster. Вавиловский журн. генет. селекции. 22, 878–886.

  280. Kinouchi K., Magnan C., Ceglia N., Liu Y., Cervan-tes M., Pastore N., Huynh T., Ballabio A., Baldi P., Masri S., Sassone-Corsi P. (2018) Fasting imparts a switch to Alternative daily pathways in liver and muscle. Cell Rept. 25, 3299–3314. e3296.

  281. Ulgherait M., Chen A., McAllister S.F., Kim H.X., Delventhal R., Wayne C.R., Garcia C.J., Recinos Y., Oliva M., Canman J.C., Picard M., Owusu-Ansah E., Shirasu-Hiza M. (2020) Circadian regulation of mitochondrial uncoupling and lifespan. Nat. Commun. 11, 1927.

  282. Solovev I., Dobrovolskaya E., Shaposhnikov M., Sheptyakov M., Moskalev A. (2019) Neuron-specific overexpression of core clock genes improves stress-resistance and extends lifespan of Drosophila melanogaster. Exp. Gerontol. 117, 61–71.

  283. Solovev I., Shegoleva E., Fedintsev A., Shaposhnikov M., Moskalev A. (2019) Circadian clock genes' overexpression in Drosophila alters diet impact on lifespan. Biogerontology. 20, 159–170.

  284. Adler P., Chiang C.K., Mayne J., Ning Z., Zhang X., Xu B., Cheng H.M., Figeys D. (2019) Aging disrupts the circadian patterns of protein expression in the murine hippocampus. Front. Aging Neurosci. 11, 368.

  285. Zhao J., Warman G.R., Cheeseman J.F. (2019) The functional changes of the circadian system organization in aging. Ageing Res. Rev. 52, 64–71.

  286. Xie Y., Tang Q., Chen G., Xie M., Yu S., Zhao J., Chen L. (2019) New insights into the circadian rhythm and its related diseases. Front. Physiol. 10, 682.

  287. McAlpine C.S., Kiss M.G., Rattik S., He S., Vassalli A., Valet C., Anzai A., Chan C.T., Mindur J.E., Kahles F., Poller W.C., Frodermann V., Fenn A.M., Gregory A.F., Halle L., Iwamoto Y., Hoyer F.F., Binder C.J., Libby P., Tafti M., Scammell T.E., Nahrendorf M., Swirski F.K. (2019) Sleep modulates haematopoiesis and protects against atherosclerosis. Nature. 566, 383–387.

  288. Dimitrov S., Lange T., Gouttefangeas C., Jensen A.T.R., Szczepanski M., Lehnnolz J., Soekadar S., Rammensee H.-G., Born J., Besedovsky L. (2019) Gαs-coupled receptor signaling and sleep regulate integrin activation of human antigen-specific T cells. J. Exp. Med. 216, 517–526.

  289. Axelsson J., Rehman J.U., Akerstedt T., Ekman R., Miller G.E., Hoglund C.O., Lekander M. (2013) Effects of sustained sleep restriction on mitogen-stimulated cytokines, chemokines and T helper 1/ T helper 2 balance in humans. PLoS One. 8, e82291.

  290. Chang J., Garva R., Pickard A., Yeung C.-Y.C., Mallikarjun V., Swift J., Holmes D.F., Calverley B., Lu Y., Adamson A., Raymond-Hayling H., Jensen O., Shearer T., Meng Q.J., Kadler K.E. (2020) Circadian control of the secretory pathway maintains collagen homeostasis. Nat. Cell Biol. 22, 74–86.

  291. Zada D., Bronshtein I., Lerer-Goldshtein T., Garini Y., Appelbaum L. (2019) Sleep increases chromosome dynamics to enable reduction of accumulating DNA damage in single neurons. Nat. Commun. 10, 895.

  292. Bellesi M., Bushey D., Chini M., Tononi G., Cirelli C. (2016) Contribution of sleep to the repair of neuronal DNA double-strand breaks: evidence from flies and mice. Sci. Rep. 6, 36804.

  293. Hablitz L.M., Vinitsky H.S., Sun Q., Staeger F.F., Sigurdsson B., Mortensen K.N., Lilius T.O., Nedergaard M. (2019) Increased glymphatic influx is correlated with high EEG delta power and low heart rate in mice under anesthesia. Sci. Adv. 5, eaav5447.

  294. Lucey B.P., McCullough A., Landsness E.C., Toedebusch C.D., McLeland J.S., Zaza A.M., Fagan A.M., McCue L., Xiong C., Morris J.C., Benzinger T.L.S., Holtzman D.M. (2019) Reduced non–rapid eye movement sleep is associated with tau pathology in early Alzheimer’s disease. Sci. Transl. Med. 11, eaau6550.

  295. Benedict C., Blennow K., Zetterberg H., Cedernaes J. (2020) Effects of acute sleep loss on diurnal plasma dynamics of CNS health biomarkers in young men. Neurology. 94, e1181.

  296. Lucey B.P., Hicks T.J., McLeland J.S., Toedebusch C.D., Boyd J., Elbert D.L., Patterson B.W., Baty J., Morris J.C., Ovod V., Mawuenyega K.G., Bateman R.J. (2018) Effect of sleep on overnight cerebrospinal fluid amyloid β kinetics. Ann. Neurol. 83, 197–204.

  297. Carskadon M.A., Chappell K.R., Barker D.H., Hart A.C., Dwyer K., Gredvig-Ardito C., Starr C., McGeary J.E. (2019) A pilot prospective study of sleep patterns and DNA methylation-characterized epigenetic aging in young adults. BMC Res. Notes. 12, 583.

  298. Hardeland R. (2017) Melatonin as a geroprotector: healthy aging vs. extension of lifespan. In: Anti-Aging Drugs: from Basic Research to Clinical Practice. The Royal Soc. Chem. 474–495.

  299. Finkel T. (2015) The metabolic regulation of aging. Nat. Med. 21, 1416–1423.

  300. Cornu M., Albert V., Hall M.N. (2013) mTOR in aging, metabolism, and cancer. Curr. Opin. Genet. Dev. 23, 53–62.

  301. Schmeisser K., Parker J.A. (2019) Pleiotropic effects of mTOR and autophagy during development and aging. Front. Cell Dev. Biology. 7, 192.

  302. Yeo D., Kang C., Gomez-Cabrera M.C., Vina J., Ji L.L. (2019) Intensified mitophagy in skeletal muscle with aging is downregulated by PGC-1alpha overexpression in vivo. Free Radic. Biol. Med. 130, 361–368.

  303. López-Lluch G., Hunt N., Jones B., Zhu M., Jamieson H., Hilmer S., Cascajo M.V., Allard J., Ingram D.K., Navas P., de Cabo R. (2006) Calorie restriction induces mitochondrial biogenesis and bioenergetic efficiency. Proc. Natl. Acad. Sci. USA. 103, 1768–1773.

  304. Finley L.W.S., Lee J., Souza A., Desquiret-Dumas V., Bullock K., Rowe G.C., Procaccio V., Clish C.B., Arany Z., Haigis M.C. (2012) Skeletal muscle transcriptional coactivator PGC-1α mediates mitochondrial, but not metabolic, changes during calorie restriction. Proc. Natl. Acad. Sci. USA. 109, 2931.

  305. Picca A., Lezza A.M.S. (2015) Regulation of mitochondrial biogenesis through TFAM–mitochondrial DNA interactions: useful insights from aging and calorie restriction studies. Mitochondrion. 25, 67–75.

  306. Aquilano K., Vigilanza P., Baldelli S., Pagliei B., Rotilio G., Ciriolo M.R. (2010) Peroxisome proliferator-activated receptor γ co-activator 1α (PGC-1α) and sirtuin 1 (SIRT1) reside in mitochondria: possible direct function in mitochondrial biogenesis. J. Biol. Chem. 285, 21590–21599.

  307. Martins R., Lithgow G.J., Link W. (2016) Long live FOXO: unraveling the role of FOXO proteins in aging and longevity. Aging cell. 15, 196–207.

  308. López-Lluch G., Hernández-Camacho J.D., Fernández-Ayala D.J.M., Navas P. (2018) Mitochondrial dysfunction in metabolism and ageing: shared mechanisms and outcomes? Biogerontology. 19, 461–480.

  309. Schlachetzki J.C.M., Toda T., Mertens J. (2020) When function follows form: nuclear compartment structure and the epigenetic landscape of the aging neuron. Exp. Gerontol. 133, 110876.

  310. Mathieson T., Franken H., Kosinski J., Kurzawa N., Zinn N., Sweetman G., Poeckel D., Ratnu V.S., Schramm M., Becher I., Steidel M., Noh K.-M., Bergamini G., Beck M., Bantscheff M., Savitski M.M. (2018) Systematic analysis of protein turnover in primary cells. Nat. Commun. 9, 689.

  311. Rempel I.L., Steen A., Veenhoff L.M. (2020) Poor old pores – the challenge of making and maintaining nuclear pore complexes in aging. FEBS J. 287, 1058–1075.

  312. Buchwalter A., Kaneshiro J.M., Hetzer M.W. (2019) Coaching from the sidelines: the nuclear periphery in genome regulation. Nat. Rev. Genet. 20, 39–50.

  313. Parrish A.R. (2017) The impact of aging on epithelial barriers. Tissue Barriers. 5, e1343172.

  314. Surber C., Humbert P., Abels C., Maibach H. (2018) The acid mantle: a myth or an essential part of skin health? Curr. Probl. Dermatol. 54, 1–10.

  315. Shin J.-W., Kwon S.-H., Choi J.-Y., Na J.-I., Huh C.-H., Choi H.-R., Park K.-C. (2019) Molecular mechanisms of dermal aging and antiaging approaches. Int. J. Mol. Sci. 20, 2126.

  316. O’Sullivan E.D., Hughes J., Ferenbach D.A. (2017) Renal aging: causes and consequences. J. Am. Soc. Nephrol. 28, 407–420.

  317. Wiggins J.E. (2012) Aging in the glomerulus. J. Gerontol. Ser. A, Biol. Sci. Med. Sci. 67, 1358–1364.

  318. Menon M.C., Chuang P.Y., He C.J. (2012) The glomerular filtration barrier: components and crosstalk. Int. J. Nephrol. 2012, 749010.

  319. Festa B.P., Chen Z., Berquez M., Debaix H., Tokonami N., Prange J.A., Hoek G.v.d., Alessio C., Raimondi A., Nevo N., Giles R.H., Devuyst O., Luciani A. (2018) Impaired autophagy bridges lysosomal storage disease and epithelial dysfunction in the kidney. Nat. Commun. 9, 161.

  320. Zhang J., Hansen K.M., Pippin J.W., Chang A.M., Taniguchi Y., Krofft R.D., Pickering S.G., Liu Z.H., Abrass C.K., Shankland S.J. (2012) De novo expression of podocyte proteins in parietal epithelial cells in experimental aging nephropathy. Am. J. Physiol. Renal Physiol. 302, F571–F580.

  321. Ungvari Z., Tarantini S., Kiss T., Wren J.D., Giles C.B., Griffin C.T., Murfee W.L., Pacher P., Csiszar A. (2018) Endothelial dysfunction and angiogenesis impairment in the ageing vasculature. Nat. Rev. Cardiol. 15, 555–565.

  322. Silva T.M.D., Li Y., Kinzenbaw D.A., Sigmund C.D., Faraci F.M. (2018) Endothelial PPARγ (Peroxisome Proliferator–Activated Receptor-γ) is essential for preventing endothelial dysfunction with aging. Hypertension. 72, 227–234.

  323. Cho J.H., Kim E.C., Son Y., Lee D.W., Park Y.S., Choi J.H., Cho K.H., Kwon K.S., Kim J.R. (2020) CD9 induces cellular senescence and aggravates atherosclerotic plaque formation. Cell Death Differ. 27, 2681–2696.https://doi.org/10.1038/s41418-41020-40537-41419

  324. Sepúlveda C., Palomo I., Fuentes E. (2017) Mechanisms of endothelial dysfunction during aging: predisposition to thrombosis. Mech. Ageing Dev. 164, 91–99.

  325. Stamatovic S.M., Martinez-Revollar G., Hu A., Choi J., Keep R.F., Andjelkovic A.V. (2019) Decline in Sirtuin-1 expression and activity plays a critical role in blood–brain barrier permeability in aging. Neurobiol. Dis. 126, 105–116.

  326. Mitchell S.J., Martin-Montalvo A., Mercken E.M., Palacios H.H., Ward T.M., Abulwerdi G., Minor R.K., Vlasuk G.P., Ellis J.L., Sinclair D.A., Dawson J., Allison D.B., Zhang Y., Becker K.G., Bernier M., de Cabo R. (2014) The SIRT1 activator SRT1720 extends lifespan and improves health of mice fed a standard diet. Cell Rept. 6, 836–843.

  327. Doyle K.P., Cekanaviciute E., Mamer L.E., Buckwalter M.S. (2010) TGFβ signaling in the brain increases with aging and signals to astrocytes and innate immune cells in the weeks after stroke. J. Neuroinflammation. 7, 62.

  328. Senatorov V.V., Jr., Friedman A.R., Milikovsky D.Z., Ofer J., Saar-Ashkenazy R., Charbash A., Jahan N., Chin G., Mihaly E., Lin J.M., Ramsay H.J., Moghbel A., Preininger M.K., Eddings C.R., Harrison H.V., Patel R., Shen Y., Ghanim H., Sheng H., Veksler R., Sudmant P.H., Becker A., Hart B., Rogawski M.A., Dillin A., Friedman A., Kaufer D. (2019) Blood–brain barrier dysfunction in aging induces hyperactivation of TGFβ signaling and chronic yet reversible neural dysfunction. Sci. Transl. Med. 11, eaaw8283.

  329. Erickson M.A., Banks W.A. (2019) Age-associated changes in the immune system and blood–brain barrier functions. Int. J. Mol. Sci. 20, 1632.

  330. Ding F., Yao J., Rettberg J.R., Chen S., Brinton R.D. (2013) Early decline in glucose transport and metabolism precedes shift to ketogenic system in female aging and Alzheimer’s mouse brain: implication for bioenergetic intervention. PLoS One. 8, e79977.

  331. Johanson C., Flaherty S., Messier A., Duncan J., Silverberg G. (2006) Expression of the beta-amyloid transporter, LRP-1, in aging choroid plexus: implications for the CSF-brain system in NPH and Alzheimer’s disease. Cerebrospinal Fluid Res. 3, S29.

  332. Tejera D., Mercan D., Sanchez-Caro J.M., Hanan M., Greenberg D., Soreq H., Latz E., Golenbock D., Heneka M.T. (2019) Systemic inflammation impairs microglial Aβ clearance through NLRP3 inflammasome. EMBO J. 38, e101064.

  333. Sartorius T., Peter A., Heni M., Maetzler W., Fritsche A., Häring H.U., Hennige A.M. (2015) The brain response to peripheral insulin declines with age: a contribution of the blood-brain barrier? PLoS One. 10, e0126804.

  334. Banks W.A., Farr S.A., Morley J.E. (2000) Permeability of the blood-brain barrier to albumin and insulin in the young and aged SAMP8 mouse. J. Gerontol. A Biol. Sci. Med. Sci. 55, B601–B606.

  335. Montagne A., Nation D.A., Sagare A.P., Barisano G., Sweeney M.D., Chakhoyan A., Pachicano M., Joe E., Nelson A.R., D’Orazio L.M., Buennagel D.P., Harrington M.G., Benzinger T.L.S., Fagan A.M., Ringman J.M., Schneider L.S., Morris J.C., Reiman E.M., Caselli R.J., Chui H.C., Tcw J., Chen Y., Pa J., Conti P.S., Law M., Toga A.W., Zlokovic B.V. (2020) APOE4 leads to blood-brain barrier dysfunction predicting cognitive decline. Nature. 581, 71–76.

  336. Branca J.J.V., Gulisano M., Nicoletti C. (2019) Intestinal epithelial barrier functions in ageing. Ageing Res. Rev. 54, 100938.

  337. Rodriguez-Fernandez I.A., Qi Y., Jasper H. (2019) Loss of a proteostatic checkpoint in intestinal stem cells contributes to age-related epithelial dysfunction. Nat. Commun. 10, 1050.

  338. Wilms E., Troost F.J., Elizalde M., Winkens B., de Vos P., Mujagic Z., Jonkers D.M.A.E., Masclee A.A.M. (2020) Intestinal barrier function is maintained with aging – a comprehensive study in healthy subjects and irritable bowel syndrome patients. Sci. Rep. 10, 475.

  339. Фоменко А.Н., Прошкина Е.Н., Фединцев А.Ю., Цветков В.О., Шапошников М.В., Москалев А.А. (2016) Потенциальные геропротекторы. Санкт-Петербург: Европейский Дом.

  340. Whittemore K., Vera E., Martinez-Nevado E., Sanpera C., Blasco M.A. (2019) Telomere shortening rate predicts species life span. Proc. Natl. Acad. Sci. USA. 116, 15122–15127.

  341. Epel E.S., Merkin S.S., Cawthon R., Blackburn E.H., Adler N.E., Pletcher M.J., Seeman T.E. (2008) The rate of leukocyte telomere shortening predicts mortality from cardiovascular disease in elderly men. Aging (Albany NY). 1, 81–88.

  342. Lin Y., Damjanovic A., Metter E.J., Nguyen H., Truong T., Najarro K., Morris C., Longo D.L., Zhan M., Ferrucci L., Hodes R.J., Weng N.P. (2015) Age-associated telomere attrition of lymphocytes in vivo is co-ordinated with changes in telomerase activity, composition of lymphocyte subsets and health conditions. Clin. Sci. (Lond). 128, 367–377.

  343. Jiang H., Schiffer E., Song Z., Wang J., Zurbig P., Thedieck K., Moes S., Bantel H., Saal N., Jantos J., Brecht M., Jeno P., Hall M.N., Hager K., Manns M.P., Hecker H., Ganser A., Dohner K., Bartke A., Meissner C., Mischak H., Ju Z., Rudolph K.L. (2008) Proteins induced by telomere dysfunction and DNA damage represent biomarkers of human aging and disease. Proc. Natl. Acad. Sci. USA. 105, 11299–11304.

  344. Wagner W. (2019) The link between epigenetic clocks for aging and senescence. Front. Genet. 10, 303.

  345. Levine M.E., Lu A.T., Quach A., Chen B.H., Assimes T.L., Bandinelli S., Hou L., Baccarelli A.A., Stewart J.D., Li Y., Whitsel E.A., Wilson J.G., Rei-ner A.P., Aviv A., Lohman K., Liu Y., Ferrucci L., Horvath S. (2018) An epigenetic biomarker of aging for lifespan and healthspan. Aging (Albany NY). 10, 573–591.

  346. Bell C.G., Lowe R., Adams P.D., Baccarelli A.A., Beck S., Bell J.T., Christensen B.C., Gladyshev V.N., Heijmans B.T., Horvath S., Ideker T., Issa J.J., Kelsey K.T., Marioni R.E., Reik W., Relton C.L., Schalkwyk L.C., Teschendorff A.E., Wagner W., Zhang K., Rakyan V.K. (2019) DNA methylation aging clocks: challenges and recommendations. Genome Biol. 20, 249.

  347. Lu A.T., Quach A., Wilson J.G., Reiner A.P., Aviv A., Raj K., Hou L., Baccarelli A.A., Li Y., Stewart J.D., Whitsel E.A., Assimes T.L., Ferrucci L., Horvath S. (2019) DNA methylation GrimAge strongly predicts lifespan and healthspan. Aging (Albany NY). 11, 303–327.

  348. Ashapkin V.V., Kutueva L.I., Vanyushin B.F. (2020) Quantitative analysis of DNA methylation by bisulfite sequencing. Methods Mol. Biol. 2138, 297–312.

  349. Marioni R.E., Shah S., McRae A.F., Chen B.H., Colicino E., Harris S.E., Gibson J., Henders A.K., Redmond P., Cox S.R., Pattie A., Corley J., Murphy L., Martin N.G., Montgomery G.W., Feinberg A.P., Fallin M.D., Multhaup M.L., Jaffe A.E., Joehanes R., Schwartz J., Just A.C., Lunetta K.L., Murabito J.M., Starr J.M., Horvath S., Baccarelli A.A., Levy D., Visscher P.M., Wray N.R., Deary I.J. (2015) DNA methylation age of blood predicts all-cause mortality in later life. Genome Biol. 16, 25.

  350. Bocklandt S., Lin W., Sehl M.E., Sanchez F.J., Sinsheimer J.S., Horvath S., Vilain E. (2011) Epigenetic predictor of age. PLoS One. 6, e14821.

  351. Koch C.M., Wagner W. (2011) Epigenetic-aging-signature to determine age in different tissues. Aging (Albany NY). 3, 1018–1027.

  352. Lim U., Song M.A. (2018) DNA methylation as a biomarker of aging in epidemiologic studies. Methods Mol. Biol. 1856, 219–231.

  353. Horvath S., Erhart W., Brosch M., Ammerpohl O., von Schonfels W., Ahrens M., Heits N., Bell J.T., Tsai P.C., Spector T.D., Deloukas P., Siebert R., Sipos B., Becker T., Rocken C., Schafmayer C., Hampe J. (2014) Obesity accelerates epigenetic aging of human liver. Proc. Natl. Acad. Sci. USA. 111, 15538–15543.

  354. Quach A., Levine M.E., Tanaka T., Lu A.T., Chen B.H., Ferrucci L., Ritz B., Bandinelli S., Neuhouser M.L., Beasley J.M., Snetselaar L., Wallace R.B., Tsao P.S., Absher D., Assimes T.L., Stewart J.D., Li Y., Hou L., Baccarelli A.A., Whitsel E.A., Horvath S. (2017) Epigenetic clock analysis of diet, exercise, education, and lifestyle factors. Aging (Albany NY). 9, 419–446.

  355. Gadecka A., Bielak-Zmijewska A. (2019) Slowing down ageing: the role of nutrients and microbiota in modulation of the epigenome. Nutrients. 11, 1251.

  356. Borkowska J., Domaszewska-Szostek A., Kolodziej P., Wicik Z., Polosak J., Buyanovskaya O., Charzewski L., Stanczyk M., Noszczyk B., Puzianowska-Kuznicka M. (2020) Alterations in 5hmC level and genomic distribution in aging-related epigenetic drift in human adipose stem cells. Epigenomics. 12, 423–437.

  357. Dhahbi J.M. (2014) Circulating small noncoding RNAs as biomarkers of aging. Ageing Res. Rev. 17, 86–98.

  358. Olivieri F., Capri M., Bonafe M., Morsiani C., Jung H.J., Spazzafumo L., Vina J., Suh Y. (2017) Circulating miRNAs and miRNA shuttles as biomarkers: perspective trajectories of healthy and unhealthy aging. Mech. Ageing Dev. 165, 162–170.

  359. Zhang X., Hong R., Chen W., Xu M., Wang L. (2019) The role of long noncoding RNA in major human disease. Bioorg. Chem. 92, 103214.

  360. Johnson A.A., Shokhirev M.N., Wyss-Coray T., Lehallier B. (2020) Systematic review and analysis of human proteomics aging studies unveils a novel proteomic aging clock and identifies key processes that change with age. Ageing Res. Rev. 60, 101070.

  361. Mayer O., Gelzinsky J., Seidlerova J., Materankova M., Mares S., Svobodova V., Trefil L., Cifkova R., Filipovsky J. (2020) The role of advanced glycation end products in vascular aging: which parameter is the most suitable as a biomarker? J. Hum. Hypertens.https://doi.org/10.1038/s41371-41020-40327-41373

  362. Chaleckis R., Murakami I., Takada J., Kondoh H., Yanagida M. (2016) Individual variability in human blood metabolites identifies age-related differences. Proc. Natl. Acad. Sci. USA. 113, 4252–4259.

  363. Xia X., Chen W., McDermott J., Han J.-D.J. (2017) Molecular and phenotypic biomarkers of aging. F1000Res. 6, 860.

  364. Solovev I.A., Shaposhnikov M.V., Moskalev A. (2019) An overview of the molecular and cellular biomarkers of aging. In: Biomarkers of Human Aging. Ed. Moskalev A. Cham: Springer Int. Publ., pp. 67–78.

  365. Moskalev A. (2019) Biomarkers of Human Aging. Cham: Springer Internat. Publ.

  366. Crimmins E., Vasunilashorn S., Kim J.K., Alley D. (2008) Biomarkers related to aging in human populations. Adv. Clin. Chem. 46, 161–216.

  367. Olivetti G., Melissari M., Capasso J.M., Anversa P. (1991) Cardiomyopathy of the aging human heart. Myocyte loss and reactive cellular hypertrophy. Circ. Res. 68, 1560–1568.

  368. Steenman M., Lande G. (2017) Cardiac aging and heart disease in humans. Biophys. Rev. 9, 131–137.

  369. Santhanakrishnan R., Wang N., Larson M.G., Magnani J.W., McManus D.D., Lubitz S.A., Ellinor P.T., Cheng S., Vasan R.S., Lee D.S., Wang T.J., Levy D., Benjamin E.J., Ho J.E. (2016) Atrial fibrillation begets heart failure and vice versa: temporal associations and differences in preserved versus reduced ejection fraction. Circulation. 133, 484–492.

  370. Martos R., Baugh J., Ledwidge M., O’Loughlin C., Murphy N.F., Conlon C., Patle A., Donnelly S.C., McDonald K. (2009) Diagnosis of heart failure with preserved ejection fraction: improved accuracy with the use of markers of collagen turnover. Eur. J. Heart Fail. 11, 191–197.

  371. Ling L.H., Kistler P.M., Ellims A.H., Iles L.M., Lee G., Hughes G.L., Kalman J.M., Kaye D.M., Taylor A.J. (2012) Diffuse ventricular fibrosis in atrial fibrillation: noninvasive evaluation and relationships with aging and systolic dysfunction. J. Am. Coll. Cardiol. 60, 2402–2408.

  372. Tanskanen M., Peuralinna T., Polvikoski T., Notkola I.L., Sulkava R., Hardy J., Singleton A., Kiuru-Enari S., Paetau A., Tienari P.J., Myllykangas L. (2008) Senile systemic amyloidosis affects 25% of the very aged and associates with genetic variation in alpha2-macroglobulin and tau: a population-based autopsy study. Ann. Med. 40, 232–239.

  373. Xie W., Santulli G., Reiken S.R., Yuan Q., Osborne B.W., Chen B.X., Marks A.R. (2015) Mitochondrial oxidative stress promotes atrial fibrillation. Sci. Rep. 5, 11427.

  374. Feridooni H.A., Dibb K.M., Howlett S.E. (2015) How cardiomyocyte excitation, calcium release and contraction become altered with age. J. Mol. Cell. Cardiol. 83, 62–72.

  375. Najafi A., Sequeira V., Kuster D.W., van der Velden J. (2016) β-adrenergic receptor signalling and its functional consequences in the diseased heart. Eur. J. Clin. Invest. 46, 362–374.

  376. Ungvari Z., Tarantini S., Donato A.J., Galvan V., Csiszar A. (2018) Mechanisms of vascular aging. Circ. Res. 123, 849–867.

  377. Zhang H., Wang B., Jin K. (2019) Circulating biomarkers of aging. In: Biomarkers of Human Aging. Ed. Moskalev A. Cham: Springer Internat. Publ., 349–371.

  378. Brandenberger C., Mühlfeld C. (2017) Mechanisms of lung aging. Cell Tissue Res. 367, 469–480.

  379. Lowery E.M., Brubaker A.L., Kuhlmann E., Kovacs E.J. (2013) The aging lung. Clin. Intervent. Aging. 8, 1489–1496.

  380. Sperka T., Rudolph K.L. (2010) Intestinal stem cell aging. In: Mol. Mech. Adult Stem Cell Aging, 1. Ed. Rudolph K.L. Karger, 63–78.

  381. Saffrey M.J. (2014) Aging of the mammalian gastrointestinal tract: a complex organ system. Age (Dordrecht, Netherlands). 36, 9603–9603.

  382. Xu C., Zhu H., Qiu P. (2019) Aging progression of human gut microbiota. BMC Microbiol. 19, 236.

  383. Kavanagh K., Hsu F.-C., Davis A.T., Kritchevsky S.B., Rejeski W.J., Kim S. (2019) Biomarkers of leaky gut are related to inflammation and reduced physical function in older adults with cardiometabolic disease and mobility limitations. GeroScience. 41, 923–933.

  384. Vaiserman A.M., Koliada A.K., Marotta F. (2017) Gut microbiota: A player in aging and a target for anti-aging intervention. Ageing Res. Rev. 35, 36–45.

  385. Bárcena C., Valdés-Mas R., Mayoral P., Garabaya C., Durand S., Rodríguez F., Fernández-García M.T., Salazar N., Nogacka A.M., Garatachea N., Bossut N., Aprahamian F., Lucia A., Kroemer G., Freije J.M.P., Quirós P.M., López-Otín C. (2019) Healthspan and lifespan extension by fecal microbiota transplantation into progeroid mice. Nat. Med. 25, 1234–1242.

  386. Zhang W., Qu J., Liu G.H., Belmonte J.C.I. (2020) The ageing epigenome and its rejuvenation. Nat. Rev. Mol. Cell Biol. 21, 137–150.

  387. Madeo F., Carmona-Gutierrez D., Hofer S.J., Kroemer G. (2019) Caloric restriction mimetics against age-associated disease: targets, mechanisms, and therapeutic potential. Cell Metab. 29, 592–610.

  388. Evans L.W., Stratton M.S., Ferguson B.S. (2020) Dietary natural products as epigenetic modifiers in aging-associated inflammation and disease. Nat. Product Repts. https://doi.org/10.1039/c1039np00057g

  389. Molina-Serrano D., Kyriakou D., Kirmizis A. (2019) Histone modifications as an intersection between diet and longevity. Front. Genet. 10, 192.

  390. Gensous N., Franceschi C., Santoro A., Milazzo M., Garagnani P., Bacalini M.G. (2019) The impact of caloric restriction on the epigenetic signatures of aging. Int. J. Mol. Sci. 20, 2022.

  391. Dai H., Sinclair D.A., Ellis J.L., Steegborn C. (2018) Sirtuin activators and inhibitors: promises, achievements, and challenges. Pharmacol. Ther. 188, 140–154.

  392. Lettieri-Barbato D., Giovannetti E., Aquilano K. (2016) Effects of dietary restriction on adipose mass and biomarkers of healthy aging in human. Aging (Albany NY). 8, 3341–3355.

  393. Rahmani J., Kord Varkaneh H., Clark C., Zand H., Bawadi H., Ryan P.M., Fatahi S., Zhang Y. (2019) The influence of fasting and energy restricting diets on IGF-1 levels in humans: a systematic review and meta-analysis. Ageing Res. Rev. 53, 100910.

  394. Vitale G., Pellegrino G., Vollery M., Hofland L.J. (2019) Role of IGF-1 system in the modulation of longevity: controversies and new insights from a centenarians’ perspective. Front. Endocrinol. (Lausanne). 10, 27.

  395. Solon-Biet S.M., Mitchell S.J., de Cabo R., Raubenheimer D., Le Couteur D.G., Simpson S.J. (2015) Macronutrients and caloric intake in health and longevity. J. Endocrinol. 226, R17–R28.

  396. Martin-Montalvo A., Mercken E.M., Mitchell S.J., Palacios H.H., Mote P.L., Scheibye-Knudsen M., Gomes A.P., Ward T.M., Minor R.K., Blouin M.J., Schwab M., Pollak M., Zhang Y., Yu Y., Becker K.G., Bohr V.A., Ingram D.K., Sinclair D.A., Wolf N.S., Spindler S.R., Bernier M., de Cabo R. (2013) Metformin improves healthspan and lifespan in mice. Nat. Commun. 4, 2192.

  397. Guevara-Aguirre J., Balasubramanian P., Guevara-Aguirre M., Wei M., Madia F., Cheng C.W., Hwang D., Martin-Montalvo A., Saavedra J., Ingles S., de Cabo R., Cohen P., Longo V.D. (2011) Growth hormone receptor deficiency is associated with a major reduction in pro-aging signaling, cancer, and diabetes in humans. Sci. Transl. Med. 3, 70ra13.

  398. van der Spoel E., Jansen S.W., Akintola A.A., Ballieux B.E., Cobbaert C.M., Slagboom P.E., Blauw G.J., Westendorp R.G.J., Pijl H., Roelfsema F., van Heemst D. (2016) Growth hormone secretion is diminished and tightly controlled in humans enriched for familial longevity. Aging Cell. 15, 1126–1131.

  399. Estebanez B., de Paz J.A., Cuevas M.J., Gonzalez-Gallego J. (2018) Endoplasmic reticulum unfolded protein response, aging and exercise: an update. Front. Physiol. 9, 1744.

  400. Erusalimsky J.D. (2020) Oxidative stress, telomeres and cellular senescence: what non-drug interventions might break the link? Free Radic. Biol. Med. 150, 87–95.

  401. Majidinia M., Bishayee A., Yousefi B. (2019) Polyphenols: major regulators of key components of DNA damage response in cancer. DNA Repair. 82, 102679.

  402. Pomatto L.C.D., Davies K.J.A. (2018) Adaptive homeostasis and the free radical theory of ageing. Free Radic. Biol. Med. 124, 420–430.

  403. Fenech M. (2020) The role of nutrition in DNA replication, DNA damage prevention and DNA repair. In: Principles of Nutrigenetics and Nutrigenomics: Fundamentals for Individualized Nutrition. Eds Caterina R.D.E., Martinez J.A., Kohlmeier M. Acad. Press, 27–32.

  404. Nagasaka M., Hashimoto R., Inoue Y., Ishiuchi K., Matsuno M., Itoh Y., Tokugawa M., Ohoka N., Morishita D., Mizukami H., Makino T., Hayashi H. (2018) Anti-tumorigenic activity of chrysin from Oroxylum indicum via pathway. Molecules. 23, 1394.

  405. Vaid M., Prasad R., Singh T., Katiyar S.K. (2017) Dietary grape seed proanthocyanidins inactivate regulatory T cells by promoting NER-dependent DNA repair in dendritic cells in UVB-exposed skin. Oncotarget. 8, 49625–49636.

  406. Vaid M., Sharma S.D., Katiyar S.K. (2010) Proanthocyanidins inhibit photocarcinogenesis through enhancement of DNA repair and xeroderma pigmentosum group A-dependent mechanism. Cancer Prev. Res. (Phila). 3, 1621–1629.

  407. Thilakarathna W., Rupasinghe H.P.V. (2019) Microbial metabolites of proanthocyanidins reduce chemical carcinogen-induced DNA damage in human lung epithelial and fetal hepatic cells in vitro. Food Chem. Toxicol. 125, 479–493.

  408. Nikolic B., Mitic-Culafic D., Vukovic-Gacic B., Knezevic-Vukcevic J. (2011) Modulation of genotoxicity and DNA repair by plant monoterpenes camphor, eucalyptol and thujone in Escherichia coli and mammalian cells. Food Chem. Toxicol. 49, 2035–2045.

  409. Graziano S., Johnston R., Deng O., Zhang J., Gonzalo S. (2016) Vitamin D/vitamin D receptor axis regulates DNA repair during oncogene-induced senescence. Oncogene. 35, 5362–5376.

  410. Драпкина О.М., Шепель Р.Н., Фомин В.В., Свистунов А.А. (2018) Место витамина D в профилактике преждевременного старения и развитии заболеваний, ассоциированных с возрастом. Терапевтический архив. 90, 69–75.

  411. Kreienkamp R., Croke M., Neumann M.A., Bedia-Diaz G., Graziano S., Dusso A., Dorsett D., Carlberg C., Gonzalo S. (2016) Vitamin D receptor signaling improves Hutchinson–Gilford progeria syndrome cellular phenotypes. Oncotarget. 7, 30018–30031.

  412. Georgiadis M.M., Chen Q., Meng J., Guo C., Wireman R., Reed A., Vasko M.R., Kelley M.R. (2016) Small molecule activation of apurinic/apyrimidinic endonuclease 1 reduces DNA damage induced by cisplatin in cultured sensory neurons. DNA Repair. 41, 32–41.

  413. Martinez P., Blasco M.A. (2017) Telomere-driven diseases and telomere-targeting therapies. J. Cell Biol. 216, 875–887.

  414. Ramunas J., Yakubov E., Brady J.J., Corbel S.Y., Holbrook C., Brandt M., Stein J., Santiago J.G., Cooke J.P., Blau H.M. (2015) Transient delivery of modified mRNA encoding TERT rapidly extends telomeres in human cells. FASEB J. 29, 1930–1939.

  415. Soda K. (2020) Spermine and gene methylation: a mechanism of lifespan extension induced by polyamine-rich diet. Amino Acids. 52, 213–224.

  416. Bridgeman S.C., Ellison G.C., Melton P.E., Newsholme P., Mamotte C.D.S. (2018) Epigenetic effects of metformin: from molecular mechanisms to clinical implications. Diabetes Obes. Metab. 20, 1553–1562.

  417. Agathocleous M., Meacham C.E., Burgess R.J., Piskounova E., Zhao Z., Crane G.M., Cowin B.L., Bruner E., Murphy M.M., Chen W., Spangrude G.J., Hu Z., DeBerardinis R.J., Morrison S.J. (2017) Ascorbate regulates haematopoietic stem cell function and leukaemogenesis. Nature. 549, 476–481.

  418. Scheibye-Knudsen M., Mitchell S.J., Fang E.F., Iyama T., Ward T., Wang J., Dunn C.A., Singh N., Veith S., Hasan-Olive M.M., Mangerich A., Wilson M.A., Mattson M.P., Bergersen L.H., Cogger V.C., Warren A., Le Couteur D.G., Moaddel R., Wilson D.M., 3rd, Croteau D.L., de Cabo R., Bohr V.A. (2014) A high-fat diet and NAD+ activate Sirt1 to rescue premature aging in cockayne syndrome. Cell Metab. 20, 840–855.

  419. Gomes A.P., Price N.L., Ling A.J., Moslehi J.J., Montgomery M.K., Rajman L., White J.P., Teodoro J.S., Wrann C.D., Hubbard B.P., Mercken E.M., Palmeira C.M., de Cabo R., Rolo A.P., Turner N., Bell E.L., Sinclair D.A. (2013) Declining NAD+ induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging. Cell. 155, 1624–1638.

  420. Pasyukova E.G., Vaiserman A.M. (2017) HDAC inhibitors: a new promising drug class in anti-aging research. Mech. Ageing Dev. 166, 6–15.

  421. Peleg S., Sananbenesi F., Zovoilis A., Burkhardt S., Bahari-Javan S., Agis-Balboa R.C., Cota P., Wittnam J.L., Gogol-Doering A., Opitz L., Salinas-Riester G., Dettenhofer M., Kang H., Farinelli L., Chen W., Fischer A. (2010) Altered histone acetylation is associated with age-dependent memory impairment in mice. Science. 328, 753–756.

  422. Krishnan V., Chow M.Z., Wang Z., Zhang L., Liu B., Liu X., Zhou Z. (2011) Histone H4 lysine 16 hypoacetylation is associated with defective DNA repair and premature senescence in Zmpste24-deficient mice. Proc. Natl. Acad. Sci. USA. 108, 12325–12330.

  423. Singh P., Thakur M.K. (2018) Histone deacetylase 2 inhibition attenuates downregulation of hippocampal plasticity gene expression during aging. Mol. Neurobiol. 55, 2432–2442.

  424. Narayanan B.A., Narayanan N.K., Re G.G., Nixon D.W. (2003) Differential expression of genes induced by resveratrol in LNCaP cells: P53-mediated molecular targets. Int. J. Cancer. 104, 204–212.

  425. Edwards C., Canfield J., Copes N., Rehan M., Lipps D., Bradshaw P.C. (2014) D-beta-hydroxybutyrate extends lifespan in C. elegans. Aging (Albany NY). 6, 621–644.

  426. Pietrocola F., Castoldi F., Markaki M., Lachkar S., Chen G., Enot D.P., Durand S., Bossut N., Tong M., Malik S.A., Loos F., Dupont N., Marino G., Abdelkader N., Madeo F., Maiuri M.C., Kroemer R., Codogno P., Sadoshima J., Tavernarakis N., Kroemer G. (2018) Aspirin recapitulates features of caloric restriction. Cell Rept. 22, 2395–2407.

  427. van Rooij E., Kauppinen S. (2014) Development of microRNA therapeutics is coming of age. EMBO Mol. Med. 6, 851–864.

  428. Noren Hooten N., Martin-Montalvo A., Dluzen D.F., Zhang Y., Bernier M., Zonderman A.B., Becker K.G., Gorospe M., de Cabo R., Evans M.K. (2016) Metformin-mediated increase in DICER1 regulates microRNA expression and cellular senescence. Aging Cell. 15, 572–581.

  429. Pinto S., Sato V.N., De-Souza E.A., Ferraz R.C., Camara H., Pinca A.P.F., Mazzotti D.R., Lovci M.T., Tonon G., Lopes-Ramos C.M., Parmigiani R.B., Wurtele M., Massirer K.B., Mori M.A. (2018) Enoxacin extends lifespan of C. elegans by inhibiting miR-34-5p and promoting mitohormesis. Redox Biol. 18, 84–92.

  430. Gioia U., Francia S., Cabrini M., Brambillasca S., Michelini F., Jones-Weinert C.W., d’Adda di Fagagna F. (2019) Pharmacological boost of DNA damage response and repair by enhanced biogenesis of DNA damage response RNAs. Sci. Rep. 9, 6460.

  431. Eisenberg T., Knauer H., Schauer A., Buttner S., Ruckenstuhl C., Carmona-Gutierrez D., Ring J., Schroeder S., Magnes C., Antonacci L., Fussi H., Deszcz L., Hartl R., Schraml E., Criollo A., Megalou E., Weiskopf D., Laun P., Heeren G., Breitenbach M., Grubeck-Loebenstein B., Herker E., Fahrenkrog B., Frohlich K.U., Sinner F., Tavernarakis N., Minois N., Kroemer G., Madeo F. (2009) Induction of autophagy by spermidine promotes longevity. Nat. Cell Biol. 11, 1305–1314.

  432. Скулачев М.В., Скулачев В.П. (2017) Доказательство запрограммированности старения млекопитающих и перспективы биохимического подхода в борьбе со старостью. Биохимия. 82, 1747–1770.

  433. Feniouk B.A., Skulachev V.P. (2017) Cellular and molecular mechanisms of action of mitochondria-targeted antioxidants. Curr. Aging Sci. 10, 41–48.

  434. Lukashev A.N., Skulachev M.V., Ostapenko V., Savchenko A.Y., Pavshintsev V.V., Skulachev V.P. (2014) Advances in development of rechargeable mitochondrial antioxidants. Progr. Mol. Biol. Translat. Sci. 127, 251–265.

  435. Bagul P.K., Katare P.B., Bugga P., Dinda A.K., Banerjee S.K. (2018) SIRT-3 Modulation by resveratrol improves mitochondrial oxidative phosphorylation in diabetic heart through deacetylation of TFAM. Cells. 7, 235.

  436. Martinez-Cisuelo V., Gomez J., Garcia-Junceda I., Naudi A., Cabre R., Mota-Martorell N., Lopez-Torres M., Gonzalez-Sanchez M., Pamplona R., Barja G. (2016) Rapamycin reverses age-related increases in mitochondrial ROS production at complex I, oxidative stress, accumulation of mtDNA fragments inside nuclear DNA, and lipofuscin level, and increases autophagy, in the liver of middle-aged mice. Exp. Gerontol. 83, 130–138.

  437. Vernucci E., Tomino C., Molinari F., Limongi D., Aventaggiato M., Sansone L., Tafani M., Russo M.A. (2019) Mitophagy and oxidative stress in cancer and aging: focus on sirtuins and nanomaterials. Oxid. Med. Cell Longev. 2019, 6387357.

  438. Ryu D., Mouchiroud L., Andreux P.A., Katsyuba E., Moullan N., Nicolet-Dit-Felix A.A., Williams E.G., Jha P., Lo Sasso G., Huzard D., Aebischer P., Sandi C., Rinsch C., Auwerx J. (2016) Urolithin A induces mitophagy and prolongs lifespan in C. elegans and increases muscle function in rodents. Nat. Med. 22, 879–888.

  439. Barcena C., Mayoral P., Quiros P.M. (2018) Mitohormesis, an antiaging paradigm. Int. Rev. Cell Mol. Biol. 340, 35–77.

  440. Palmeira C.M., Teodoro J.S., Amorim J.A., Steegborn C., Sinclair D.A., Rolo A.P. (2019) Mitohormesis and metabolic health: the interplay between ROS, cAMP and sirtuins. Free Radic. Biol. Med. 141, 483–491.

  441. Klaus S., Ost M. (2020) Mitochondrial uncoupling and longevity – a role for mitokines? Exp. Gerontol. 130, 110796.

  442. Thoppil H., Riabowol K. (2019) Senolytics: a translational bridge between cellular senescence and organismal aging. Front. Cell Dev. Biol. 7, 367.

  443. Zhu Y., Tchkonia T., Fuhrmann-Stroissnigg H., Dai H.M., Ling Y.Y., Stout M.B., Pirtskhalava T., Giorgadze N., Johnson K.O., Giles C.B., Wren J.D., Niedernhofer L.J., Robbins P.D., Kirkland J.L. (2016) Identification of a novel senolytic agent, navitoclax, targeting the Bcl-2 family of anti-apoptotic factors. Aging Cell. 15, 428–435.

  444. Yosef R., Pilpel N., Tokarsky-Amiel R., Biran A., Ovadya Y., Cohen S., Vadai E., Dassa L., Shahar E., Condiotti R., Ben-Porath I., Krizhanovsky V. (2016) Directed elimination of senescent cells by inhibition of BCL-W and BCL-XL. Nat. Commun. 7, 11190.

  445. Zhu Y., Doornebal E.J., Pirtskhalava T., Giorgadze N., Wentworth M., Fuhrmann-Stroissnigg H., Niedernhofer L.J., Robbins P.D., Tchkonia T., Kirkland J.L. (2017) New agents that target senescent cells: the flavone, fisetin, and the BCL-XL inhibitors, A1331852 and A1155463. Aging (Albany NY). 9, 955–963.

  446. Fuhrmann-Stroissnigg H., Ling Y.Y., Zhao J., McGowan S.J., Zhu Y., Brooks R.W., Grassi D., Gregg S.Q., Stripay J.L., Dorronsoro A., Corbo L., Tang P., Bukata C., Ring N., Giacca M., Li X., Tchkonia T., Kirkland J.L., Niedernhofer L.J., Robbins P.D. (2017) Identification of HSP90 inhibitors as a novel class of senolytics. Nat. Commun. 8, 422.

  447. Ozsvari B., Nuttall J.R., Sotgia F., Lisanti M.P. (2018) Azithromycin and Roxithromycin define a new family of “senolytic” drugs that target senescent human fibroblasts. Aging (Albany NY). 10, 3294–3307.

  448. Muñoz-Espín D., Rovira M., Galiana I., Giménez C., Lozano-Torres B., Paez-Ribes M., Llanos S., Chaib S., Muñoz-Martín M., Ucero A.C., Garaulet G., Mulero F., Dann S.G., VanArsdale T., Shields D.J., Bernardos A., Murguía J.R., Martínez-Máñez R., Serrano M. (2018) A versatile drug delivery system targeting senescent cells. EMBO Mol. Med. 10, e9355.

  449. Guerrero A., Guiho R., Herranz N., Uren A., Withers D.J., Martínez-Barbera J.P., Tietze L.F., Gil J. (2020) Galactose‐modified duocarmycin prodrugs as senolytics. Aging Cell. 19, e13133. https://doi.org/10.1111/acel.13133

  450. Kim K.M., Noh J.H., Bodogai M., Martindale J.L., Yang X., Indig F.E., Basu S.K., Ohnuma K., Morimoto C., Johnson P.F., Biragyn A., Abdelmohsen K., Gorospe M. (2017) Identification of senescent cell surface targetable protein DPP4. Genes Dev. 31, 1529–1534.

  451. Thapa R.K., Nguyen H.T., Jeong J.-H., Kim J.R., Choi H.-G., Yong C.S., Kim J.O. (2017) Progressive slowdown/prevention of cellular senescence by CD9-targeted delivery of rapamycin using lactose-wrapped calcium carbonate nanoparticles. Sci. Rep. 7, 43299.

  452. Moskalev A., Chernyagina E., Kudryavtseva A., Shaposhnikov M. (2017) Geroprotectors: a unified concept and screening approaches. Aging Dis. 8, 354–363.

  453. Moskalev A., Chernyagina E., de Magalhães J.P., Barardo D., Thoppil H., Shaposhnikov M., Budovsky A., Fraifeld V.E., Garazha A., Tsvetkov V., Bronovitsky E., Bogomolov V., Scerbacov A., Kuryan O., Gurinovich R., Jellen L.C., Kennedy B., Mamoshina P., Dobrovolskaya E., Aliper A., Kaminsky D., Zhavo-ronkov A. (2015) Geroprotectors.org: a new, structured and curated database of current therapeutic interventions in aging and age-related disease. Aging. 7, 616–628.

  454. Trendelenburg A.U., Scheuren A.C., Potter P., Müller R., Bellantuono I. (2019) Geroprotectors: a role in the treatment of frailty. Mech. Ageing Dev. 180, 11–20.

  455. Figueira I., Fernandes A., Mladenovic Djordjevic A., Lopez-Contreras A., Henriques C.M., Selman C., Ferreiro E., Gonos E.S., Trejo J.L., Misra J., Rasmussen L.J., Xapelli S., Ellam T., Bellantuono I. (2016) Interventions for age-related diseases: shifting the paradigm. Mech. Ageing Dev. 160, 69–92.

  456. Conboy I.M., Conboy M.J., Smythe G.M., Rando T.A. (2003) Notch-mediated restoration of regenerative potential to aged muscle. Science. 302, 1575.

  457. Carlson M.E., Hsu M., Conboy I.M. (2008) Imbalance between pSmad3 and Notch induces CDK inhibitors in old muscle stem cells. Nature. 454, 528–532.

  458. Brack A.S., Conboy M.J., Roy S., Lee M., Kuo C.J., Keller C., Rando T.A. (2007) Increased Wnt signaling during aging alters muscle stem cell fate and increases fibrosis. Science. 317, 807.

  459. Takahashi K., Yamanaka S. (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 126, 663–676.

  460. Sogabe Y., Seno H., Yamamoto T., Yamada Y. (2018) Unveiling epigenetic regulation in cancer, aging, and rejuvenation with in vivo reprogramming technology. Cancer Sci. 109, 2641–2650.

  461. Ocampo A., Reddy P., Martinez-Redondo P., Platero-Luengo A., Hatanaka F., Hishida T., Li M., Lam D., Kurita M., Beyret E., Araoka T., Vazquez-Ferrer E., Donoso D., Roman J.L., Xu J., Rodriguez Esteban C., Nuñez G., Nuñez Delicado E., Campistol J.M., Guillen I., Guillen P., Izpisua Belmonte J.C. (2016) In vivo amelioration of age-associated hallmarks by partial reprogramming. Cell. 167, 1719–1733. e1712.

  462. Gowing G., Svendsen S., Svendsen C.N. (2017) Ex vivo gene therapy for the treatment of neurological disorders. Prog. Brain Res. 230, 99–132.

  463. Brooks R.W., Robbins P.D. (2018) Treating age-related diseases with somatic stem cells. In: Exosomes, Stem Cells and MicroRNA: Aging, Cancer and Age Related Disorders. Eds Mettinger K.L., Rameshwar P., Kumar V. Springer Internat. Publ. 29–45.

  464. Hong J., Yun C.-O. (2019) Telomere gene therapy: polarizing therapeutic goals for treatment of various diseases. Cells. 8, 392.

  465. Davidsohn N., Pezone M., Vernet A., Graveline A., Oliver D., Slomovic S., Punthambaker S., Sun X., Liao R., Bonventre J.V., Church G.M. (2019) A single combination gene therapy treats multiple age-related diseases. Proc. Natl. Acad. Sci. USA. 116, 23505–23511.

  466. Kim J.-H., Hwang K.-H., Park K.-S., Kong I.D., Cha S.-K. (2015) Biological role of anti-aging protein Klotho. J. Lifestyle Med. 5, 1–6.

  467. Horvath S., Singh K., Raj K., Khairnar S., Sanghavi A., Shrivastava A., Zoller J.A., Li C.Z., Herenu C.B., Canatelli-Mallat M., Lehmann M., Solberg Woods L.C., Martinez A.G., Wang T., Chiavellini P., Levine A.J., Chen H., Goya R.G., Katcher H.L. (2020) Reversing age: dual species measurement of epigenetic age with a single clock. bioRxiv. https://doi.org/10.1101/2020.1105.1107.082917

Дополнительные материалы отсутствуют.