Молекулярная биология, 2021, T. 55, № 6, стр. 883-896

Плазмолипин и его роль в клеточных процессах

А. А. Шульгин ab*, Т. Д. Лебедев a, В. С. Прасолов a, П. В. Спирин a

a Институт молекулярной биологии им. В.А. Энгельгардта Российской академии наук
119991 Москва, Россия

b Московский физико-технический институт (национальный исследовательский университет)
141701 Долгопрудный, Московская обл., Россия

* E-mail: ashu69@mail.ru

Поступила в редакцию 04.03.2021
После доработки 26.03.2021
Принята к публикации 05.04.2021

Аннотация

Изучение механизмов возникновения и развития онкологических и нейродегенеративных заболеваний представляет важное направление современной биомедицины. В прогнозировании течения заболеваний и разработке эффективных методов борьбы с ними существенная роль принадлежит молекулярным маркерам, связанным с перестройкой внутриклеточной сигнализации. Таким маркером может быть протеолипид плазмолипин – один из основных компонентов миелиновой оболочки, участвующий в формировании и нормальном функционировании нервной системы. Плазмолипин вовлечен во внутриклеточный транспорт, формирование липидных рафтов и Notch-сигнализацию. Полагают, что плазмолипин может участвовать в развитии целого ряда патологий, включая онкозаболевания, шизофрению, болезнь Альцгеймера, сахарный диабет типа 2. Плазмолипин и его гомологи рассматривают в качестве клеточных рецепторов, необходимых для проникновения некоторых вирусов в клетку. В представленном обзоре обобщены данные о структуре плазмолипина, его функциях в нормальных клетках и при патологических нарушениях.

Ключевые слова: протеолипиды, нейродегенеративные заболевания, Notch-сигнализация, SNARE, MARVEL, внутриклеточный транспорт, липидные рафты, ионные каналы

Список литературы

  1. Folch J., Lees M. (1951) Proteolipides, a new type of tissue lipoproteins; their isolation from brain. J. Biol. Chem. 191(2), 807–817.

  2. Eng L.F., Chao F.-C., Gerstl B., Pratt D., Tavaststjerna M.G. (1968) The maturation of human white matter myelin. Fractionation of the myelin membrane proteins. Biochem. 7(12), 4455–4465.

  3. Siegel G., Albers R.W., Brady S., Price D. (2006) Basic Neurochemistry: Molecular, Cellular and Medical Aspects. 7th ed. Elsevier Acad. Press Inc.

  4. Agrawal H.C., Hartman B.K., Shearer W.T., Kalmbach S., Margolis F.L. (1977) Purification and immunohistochemical localization of rat brain myelin proteolipid protein. J. Neurochem. 28, 495–508.

  5. Lees M., Sakura D., Sapirstein V., Curatolo W. (1979) Structure and function of proteolipids in myelin and non-myelin membranes. Biochim. Biophys. Acta. 559, 209–230.

  6. Folch-Pi J., Stoffyn P.J. (1972) Proteolipids from membrane systems. Ann. N.Y. Acad. Sci195, 86–107.

  7. Guerin M., Napias C. (1978) Phosphate transport in yeast mitochondria: purification and characterization of a mitoribosomal synthesis dependent proteolipid showing a high affinity for phosphate. Biochem. 17(13), 2510–2516.

  8. Racker E., Eytan E. (1975) A coupling factor from sarcoplasmic reticulum required for the translocation of Ca2+ ions in a reconstituted Ca2+ATPase pump. J. Biol. Chem. 250(18), 7533–7534.

  9. Farrell L.B., Nagley P. (1987) Human liver cDNA clones encoding proteolipid subunit 9 of the mitochondrial ATPase complex. Biochem. Biophys. Res. Commun. 144(3), 1257–1264.

  10. Sapirstein V., Rounds T.C. (1983) Circular dichroism and fluorescence studies on a cation channel forming plasma membrane proteolipid. Biochemistry. 22(14), 3330–3335.

  11. Fischer I., Durrie R., Sapirstein V. (1994) Plasmolipin: the other myelin proteolipid. A review of studies on its structure, expression, and function. Neurochem. Res. 19(8), 959–966.

  12. Tosteson M.T., Sapirstein V. (1981) Protein interactions with lipid bilayers: the channels of kidney plasma membrane proteolipids. J. Membrane Biol. 63, 77–84.

  13. Gillen C., Gleichmann M., Greiner-Petter R., Zoidl G., Kupfer S., Bosse F., Auer J., Muller H.W. (1996) Full-length cloning, expression and cellular localization of rat plasmolipin mRNA, a proteolipid of PNS and CNS. Europ. J. Neurosci. 8, 405–414.

  14. Wilson G.F., Chiu S.Y. (1993) Mitogenic factors regulate ion channels in Schwann cells cultured from newborn rat sciatic nerve. J. Physiol. 470, 501–520.

  15. Fischer I., Sapirstein V. (1986) Characterization and biosynthesis of the plasma membrane proteolipid protein in neural tissue. J. Neurochem. 47, 232–238.

  16. Fischer I., Sapirstein V. (1994) Molecular cloning of plasmolipin. Characterization of a novel proteolipid restricted to brain and kidney. J. Biol. Chem. 269(40), 24912–24919.

  17. Kalwy S.A., Smith R., Kidd G.J. (1997) Myelin proteolipid protein expressed in COS-1 cells is targeted to actin-associated surfaces. J. Neurosci. Res. 48, 201–211.

  18. Cochary E.F., Bizzozero O.A., Sapirstein V., Nolan C., Fischer I. (1990) Presence of the plasma membrane proteolipid (plasmolipin) in myelin. J. Neurochem. 55, 602–610.

  19. Rost B., Sander C. (1994) Combining evolutionary information and neural networks to predict protein secondary structure. Proteins. 19, 55–72.

  20. Yaffe Y., Shepshelovitch J., Nevo-Yassaf I., Yeheskel A., Shmerling H., Kwiatek J.M., Gaus K., Pasmanik-Chor M., Hirschberg K. (2012) The MARVEL transmembrane motif of occluding mediates oligomerization and targeting to the basolateral surface in epithelia. J. Cell. Sci. 125(15), 3545–3556.

  21. Hamacher M., Pippirs U., Kohler A., Muller H.W., Bosse F. (2001) Plasmolipin: genomic structure, chromosomal localization, protein expression pattern, and putative association with Bardet-Biedl syndrome. Mammalian Genome. 12, 933–937.

  22. Strausberg R.L., Feingold E.A., Grouse L.H., Derge J.G., Klausner R.D., Collins F.S., Wagner L., Shenmen C.M., Schuler G.D., Altschul S.F., Zeeberg B., Buetow K.H., Schaefer C.F., Bhat N.K., Hopkins R.F., Jordan H., Moore T., Max S.I., Wang J., Hsieh F., Diatchenko L., Marusina K., Farmer A.A., Rubin G.M., Hong L., Stapleton M., Soares M.B., Bonaldo M.F., Casavant T.L., Scheetz T.E., Brownstein M.J., Usdin T.B., Toshiyuki S., Carninci P., Prange C., Raha S.S., Loquellano N.A., Peters G.J., Abramson R.D., Mullahy S.J., Bosak S.A., McEwan P.J., McKernan K.J., Malek J.A., Gunaratne P.H., Richards S., Worley K.C., Hale S., Garcia A.M., Gay L.J., Hulyk S.W., Villalon D.K., Muzny D.M., Sodergren E.J., Lu X., Gibbs R.A., Fahey J., Helton E., Ketteman M., Madan A., Rodrigues S., Sanchez A., Whiting M., Madan A., Young A.C., Shevchenko Y., Bouffard G.G., Blakesley R.W., Touchman J.W., Green E.D., Dickson M.C., Rodriguez A.C., Grimwood J., Schmutz J., Myers R.M., Butterfield Y.S.N., Krzywinski M.I., Skalska U., Smailus D.E., Schnerch A., Schein J.E., Jones S.J.M., Marra M.A. (2002) Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. Proc. Natl. Acad. Sci. USA. 99(26), 16899–16903.

  23. Martin J., Han C., Gordon L.A., Terry A., Prabhakar S., She X., Xie G., Hellsten U., Man Chan Y., Altherr M., Couronne O., Aerts A., Bajorek E., Black S., Blumer H., Branscomb E., Brown N.C., Bruno W.J., Buckingham J.M., Callen D.F., Campbell C.S., Campbell M.L., Campbell E.W., Caoile C., Challacombe J.F., Chas-teen L.A., Chertkov O., Chi H.C., Christensen M., Clark L.M., Cohn J.D., Denys M., Detter J.C., Dickson M., Dimitrijevic-Bussod M., Escobar J., Fawcett J.J., Flowers D., Fotopulos D., Glavina T., Gomez T., Gonzales E., Goodstein D., Goodwin L.A., Grady D.L., Grigoriev I., Groza M., Hammon N., Hawkins T., Haydu L., Hildebrand C., Huang W., Israni S., Jett J., Jewett P.B., Kadner K., Kimball H., Kobayashi A., Krawczyk M.-K., Leyba T., Longmire J.L., Lopez F., Lou Y., Lowry S., Ludeman T., Manohar C.F., Mark G.A., McMurray K.L., Mein-cke L.J., Morgan J., Moyzis R.K., Mundt M.O., Munk C., Nandkeshwar R.D., Pitluck C., Pollard M., Predki P., Parson-Quintana B., Ramirez C., Rash S., Retterer J., Ricke D.O., Robinson D.L., Rodriguez A., Salamov A., Saunders E.H., Scott D., Shough T., Stallings R.L., Stalvey M., Sutherland R.D., Tapia R., Tesmer J.G., Thayer N., Thompson L.S., Tice H., Torney D.C., Tran-Gyamfi M., Tsai M., Ulanovsky L.E., Ustaszewska A., Vo N., White P.S., Williams A.L., Wills P.L., Wu J.-R., Wu K., Yang J., Dejong P., Bruce D., Doggett N.A., Deaven L., Schmutz J., Grimwood J., Richardson P., Rokhsar D.S., Eichler E.E., Gilna P., Lucas S.M., Myers R.M., Rubin E.M., Pennacchio L.A. (2004) The sequence and analysis of duplication-rich human chromosome 16. Nature. 432(7020), 988–994.

  24. Fischer I., Cochary E.F., Konola J.T., Romano-Clarke G. (1991) Expression of plasmolipin in oligodendrocytes. J. Neurosci. Res. 28, P. 81–89.

  25. Alonso M.A., Weissman S.M. (1987) cDNA cloning and sequence of MAL, a hydrophobic protein associated with human T-cell differentiation. Proc. Natl. Acad. Sci. USA. 84, 1997–2001.

  26. Magyar J., Ebensperger C., Schaeren-Wiemers N., Suter U. (1997) Myelin and lymphocyte protein (MAL/MVP17/VIP17) and plasmolipin are members of an extended gene family. Gene. 189, P. 269–275.

  27. Kim T., Fiedler K., Madison D.L., Krueger W.H., Pfeiffer S.E. (1995) Cloning and characterization of MVPl7: a developmentally regulated myelin protein in oligodendrocytes. J. Neurosci. Res. 42, 413–422.

  28. Puertollano R., Alonso M.A. (1999) MAL, an integral element of the apical sorting machinery, is an itinerant protein that cycles between the trans-Golgi network and the plasma membrane. Mol. Biol. Cell. 10, 3435–3447.

  29. Puertollano R., Martin-Belmonte F., Millan J., de Marco M.C., Albar J.P., Kremer L., Alonso M.A. (1999) The MAL proteolipid is necessary for normal apical transport and accurate sorting of the influenza virus hemagglutinin in Madin-Darby canine kidney cells. J. Cell Biol. 145(1), 141–151.

  30. Martin-Belmonte F., Arvan P., Alonso M.A. (2001) MAL mediates apical transport of secretory proteins in polarized epithelial Madin-Darby canine kidney cells. J. Biol. Chem. 276(52), 49337–49342.

  31. Perez P., Puertollano R., Alonso M.A. (1997) Structural and biochemical similarities reveal a family of proteins related to the MAL proteolipid, a component of detergent-insoluble membrane microdomains. Biochem. Biophys. Res. Commun. 232, 618–621.

  32. Sanchez-Pulido L., Martin-Belmonte F., Valencia A., Alonso M.A. (2002) MARVEL: a conserved domain involved in membrane apposition events. Trends Biochem. Sci. 27(12), 599–601.

  33. Janz R., Sudhof T.C., Hammer R.E., Unni V., Siegelbaum S.A., Bolshakov V.Y. (1999) Essential roles in synaptic plasticity for synaptogyrin I and synaptophysin I. Neuron. 24(3), 687–700.

  34. Haass N.K., Kartenbeck M.A., Leube R.E. (1996) Pantophysin is a ubiquitously expressed synaptophysin homologue and defines constitutive transport vesicles. J. Cell Biol. 134(3), 731–746.

  35. Furuse M., Hirase T., Itoh M., Nagafuchi A., Yonemura S., Tsukita S. (1993) Occludin: a novel integral membrane protein localizing at tight junctions. J. Cell Biol. 123(6), 1777–1788.

  36. Raleigh D.R., Marchiando A.M., Zhang Y., Shen L., Sasaki H., Wang Y., Long M., Turner J.R. (2010) Tight junction-associated MARVEL proteins marveld3, tricellulin, and occludin have distinct but overlapping functions. Mol. Biol. Cell. 21, 1200–1213.

  37. Chou A., Lee A., Hendargo K.J., Reddy V.S., Shly-kov M.A., Kuppusamykrishnan H., Medrano-Soto A., Saier Jr M.A. (2017) Characterization of the tetraspan junctional complex (4JC) superfamily. Biochim. Biophys. Acta. 1859(3), 402–414.

  38. Bosse F., Hasse B., Pippirs U., Greiner-Petter R., Muller H.W. (2003) Proteolipid plasmolipin: localization in polarized cells, regulated expression and lipid raft association in CNS and PNS myelin. J. Neurochem. 86, 508–518.

  39. Cochary E., Konola J., Fischer I. (1990) Expression and localization of plasmolipin in oligodendroglia. Trans. Am. Soc. Neurochem. 21, 397.

  40. Sapirstein V., Durrie R., Nolan C., Marks N. (1993) Identification of membrane-bound carbonic anhydrase in white matter coated vesicles: the fate of carbonic anhydrase and other white matter coated vesicle proteins in triethyl tin-induced leukoencephalopathy. J. Neurosci. Res. 35, 83–91.

  41. Sapirstein V., Durrie R., Cherksey B., Beard M.E., Flynn C.J., Fischer I. (1992) Isolation and characterization of periaxolemmal and axolemmal enriched membrane fractions from the rat central nervous system. J. Neurosci. Res. 32, 593–604.

  42. Yaffe Y., Hugger I., Yassaf I.N., Shepshelovitch J., Sklan E.H., Elkabetz Y., Yeheskel A., Pasmanik-Chor M., Benzing C., Macmillan A., Gaus K., Eshed-Eisenbach Y., Peles E., Hirschberg K. (2015) The myelin proteolipid plasmolipin forms oligomers and induces liquid-ordered membranes in the Golgi complex. J. Cell Sci. 128, 2293–2302.

  43. Shea T., Fischer I., Sapirstein V. (1986) Expression of a plasma membrane proteolipid during differentiation of neuronal and glial cells in primary culture. J. Neurochem. 47, 697–706.

  44. Hasse B., Bosse F., Muller H.W. (2002) Proteins of peripheral myelin are associated with glycosphingolipid/cholesterol-enriched membranes. J. Neurosci. Res. 69, 227–232.

  45. Fredriksson K., Van Itallie C.M., Aponte A., Gucek M., Tietgens A.J., Anderson J.M. (2015) Proteomic analysis of proteins surrounding occludin and claudin-4 reveals their proximity to signaling and trafficking networks. PloS One. 10(3), e0117074.

  46. Sapirstein V., Nolan C., Stern R., Ciocci M., Masur S. (1988) Identification of the plasma membrane proteolipid protein as a constituent of brain coated vesicles and synaptic plasma membrane. J. Neurochem. 51, 925–933.

  47. Sapirstein V., Nolan C., Stern R., Gray-Board G., Beard M. (1992) Identification of plasmolipin as a major constituent of white matter clathrin-coated vesicles. J. Neurochem. 58, 1372–1378.

  48. Haucke V. (2005) Phosphoinositide regulation of clathrin-mediated endocytosis. Biochem. Soc. Trans. 33(6), 1285–1289.

  49. Sapirstein V., Nolan C., Stadler I.I., Fischer I. (1992) Expression of plasmolipin in the developing rat brain. J. Neurosci. Res. 31, 96–102.

  50. Shea T.B., Fischer I. (1989) Expression of the plasma membrane proteolipid in mouse neuroblastoma cells: transient increase in synthesis during differentiation with N6,O2-dibutyryl adenosine 3',5'-cyclic monophosphate. Expl. Cell. Biol. 57, 131–138.

  51. Magal L.G., Yaffe Y., Shepshelovich J., Aranda J.F., de Marco M.C., Gaus K., Alonso M.A., Hirschberg K. (2009) Clustering and lateral concentration of raft lipids by the MAL protein. Mol. Biol. Cell. 20(16), 3751–3762.

  52. Seabra M.C., Mules E.H., Hume A.N. (2002) Rab GTPases, intracellular traffic and disease. Trends Mol. Med. 2002. 8(1), 23–30.

  53. Bonifacino J.S., Glick B.S. (2004) The mechanisms of vesicle budding and fusion. Cell. 116(2), 153–166.

  54. Mills I.G., Praefcke G.J.K., Vallis Y., Peter B.J., Olesen L.E., Gallop J.L., Butler P.J.G., Evans P.R., McMahon H.T. (2003) EpsinR: an AP1/clathrin interacting protein involved in vesicle trafficking. J. Cell. Biol. 160(2), 213–222.

  55. Perret E., Lakkaraju A., Deborde S., Schreiner R., Rodriguez-Bouln E. (2005) Evolving endosomes: how many varieties and why? Curr. Opin. Cell Biol. 17(4), 423–434.

  56. Winckler B., Faundez V., Maday S., Cai Q., Almeida C.G., Zhang H. (2018) The endolysosomal system and proteostasis: from development to degeneration. J. Neurosci. 38(44), 9364–9374.

  57. Hu C., Ahmed M., Melia T.J., Sollner T., Mayer T., Rothman J. (2003) Fusion of cells by flipped SNAREs. Science. 300(5626), 1745–1749.

  58. Miller S.E., Collins B.M., McCoyA.J., Robinson M.S., Owen D.J. (2007) A SNARE-adaptor interaction is a new mode of cargo recognition in clathrin-coated vesicles. Nature. 450(7169), 570–574.

  59. Chidambaram S., Müllers N., Wiederhold K., Haucke V., Fischer von Mollard G. (2004) Specific interaction between SNAREs and epsin N-terminal homology (ENTH) domains of epsin-related proteins in trans-Golgi network to endosome transport. J. Biol. Chem. 279(6), 4175–4179.

  60. Попова Н.В., Деев И.Е., Петренко А.Г. (2013) Клатрин-зависимый эндоцитоз и белки-адаптеры. Acta Naturae. 5(3), 66–77.

  61. Prekeris R., Yang B., Oorschot V., Klumperman J., Scheller R.H. (1999) Differential roles of syntaxin 7 and syntaxin 8 in endosomal trafficking. Mol. Biol. Cell. 10(11), 3891–3908.

  62. Guelte A.L., Macara I.G. (2015) Plasmolipin – a new player in endocytosis and epithelial development. EMBO J. 34(9), 1147–1148.

  63. Rodriguez-Fraticelli A.E., Bagwell J., Bosch-Fortea M., Boncompain G., Reglero-Real N., Garcia-Leon M.J., Andres G., Toribio M.L., Alonso M.A., Millan J., Perez F., Bagnat M., Martin-Belmonte F. (2015). Developmental regulation of apical endocytosis controls epithelial patterning in vertebrate tubular organs. Nat. Cell. Biol. 17, 241–250.

  64. Rodriguez-Boulan E., Macara I.G. (2014) Organization and execution of the epithelial polarity programme. Nat. Rev. Mol. Cell Biol. 15, 225–242.

  65. Roux K.J., Kim D.I., Raida M., Burke B. (2012) A promiscuous biotin ligase fusion protein identifies proximal and interacting proteins in mammalian cells. J. Cell. Biol. 196(6), 801–810.

  66. Thompson B.J., Pichaud F., Roper K. (2013) Sticking together the Crumbs – an unexpected function for an old friend. Nat. Rev. Mol. Cell. Biol. 14, 307–314.

  67. Jewett C.E., Prekeris R. (2018) Insane in the apical membrane: trafficking events mediating apicobasal epithelial polarity during tube morphogenesis. Traffic. 19, 666–678.

  68. Vaccari T., Lu H., Kanwar R., Fortini M.E., Bilder D. (2008) Endosomal entry regulates Notch receptor activation in Drosophila melanogaster. J. Cell. Biol. 180(4), 755–762.

  69. Spreyer P., Kuhn G., Hanemann C., Gillen C., Schaal H., Kuhn R., Lemke G., Müller H.W. (1991) Axon-regulated expression of a Schwann cell transcript that is homologous to a ‘growth arrest-specific’ gene. EMBO J. 10(12), 3661–3668.

  70. Schaeren-Wiemers N., Valenzuela D.M., Frank M., Schwab M.E. (1995) Characterization of a rat gene, rMAL, encoding a protein with four hydrophobic domains in central and peripheral myelin. J. Neurosci. 15(8), 5753–5764.

  71. Bennett M.V.L., Bario L.C., Bargiello T.A., Spray D.C., Hertzberg E., Sáez J.C. (1991) Gap junctions: new tools, new answers, new questions. Neuron. 6, 305–320.

  72. Hobson G.M., Garbern J.Y. (2012) Pelizaeus–Merzbacher disease, Pelizaeus–Merzbacher-like disease 1, and related hypomyelinating disorders. Semin. Neurol. 32, 62–67.

  73. Lupski J.R., Wise C.A., Kuwano A., Pentao L., Parke T.J., Glaze D.G., Ledbetter D.H., Greenberg F., Patel P.I. (1992) Gene dosage is a mechanism for Charcot–Marie–Tooth disease type 1A. Nat. Genet. 1(1), 29–33.

  74. Bergoffen J., Scherer S.S., Wang S., Scott M.O., Bone L.J., Paul D.L., Chen K., Lensch M.W., Chance P.F., Fischbeck K.H. Connexin mutations in X-linked Charcot–Marie–Tooth disease. Science. 262(5142), 2039–2042.

  75. Chance P.F., Alderson M.K., Leppig K.A., Lensch M.W., Matsunami N., Smith B., Swanson P.D., Odelberg S.J., Disteche C.M., Bird T.D. (1993) DNA deletion associated with hereditary neuropathy with liability to pressure palsies. Cell. 72, 143–151.

  76. Sato R., Nakano T., Hosonaga M., Sampetrean O., Harigai R., Sasaki T., Koya I., Okano H., Kudoh J., Saya H., Arima Y. (2017) RNA sequencing analysis reveals interactions between breast cancer or melanoma cells and the tissue microenvironment during brain metastasis. Biomed. Res. Int. 1–10.

  77. Bos P.D., Zhang X. H.-F, Nadal C., Shu W., Go-mis R.R., Nguyen D.X., Minn A.J., van de Vijver M.J., Gerald W.L., Foekens J.A., Massagué J. (2009) Genes that mediate breast cancer metastasis to the brain. Nature. 459(7249), 1005–1009.

  78. Luo X., Xu S., Zhong Y., Tu T., Xu Y., Li X., Wang B., Yang F. (2019) High gene expression levels of VEGFA and CXCL8 in the peritumoral brain zone are associated with the recurrence of glioblastoma: a bioinformatics analysis. Oncol. Lett. 18(6), 6171–6179.

  79. Wang H., Wu Y., Fang R., Sa J., Li Z., Cao H., Cui Y. (2020) Time-varying gene network analysis of human prefrontal cortex development. Front. Genet. 11, 1–17.

  80. Bellesi M., Haswell J.D., Vivo L., Marshall W., Roseboom P., Tononi G., Cirelli C. (2018) Myelin modifications after chronic sleep loss in adolescent mice. Sleep. 41(5), 1–11.

  81. Bellesi M., Pfister-Genskow M., Maret S., Keles S., Tononi G., Cirelli C. (2013) Effects of sleep and wake on oligodendrocytes and their precursors. J. Neurosci. 33(36), 14288–14300.

  82. Nakamura Y., Iwamoto R., Mekada E. (1996) Expression and distribution of CD9 in myelin of the central and peripheral nervous systems. Am. J. Pathol. 149(2), 575–583.

  83. Aston C., Jiang L., Sokolov B. (2004) Microarray analysis of postmortem temporal cortex from patients with schizophrenia. J. Neurosci. Res. 77(6), 858–866.

  84. Aston C., Jiang L., Sokolov B. (2005) Transcriptional profiling reveals evidence for signaling and oligodendroglial abnormalities in the temporal cortex from patients with major depressive disorder. Mol. Psych. 10, 309–322.

  85. Коломеец Н.С. (2017) Нарушения дифференцировки олигодендроцитов в мозге при шизофрении: связь с основными гипотезами заболевания. Журн. неврологии и психиатрии им. С.С. Корсакова. 117(8), 108–117.

  86. Tang R.Q., Zhao X.Z., Shi Y.Y., Tang W., Gu N.F., Feng G.Y., Xing Y.L., Zhu S.M., Sang H., Liang P.J., He L. (2006) Family-based association study of epsin 4 and schizophrenia. Mol. Psych. 11(4), 395–399.

  87. Harrison P.J. (1999) The neuropathology of schizophrenia. A critical review of the data and their interpretation. Brain. 122, 593–624.

  88. Tkachev D., Mimmack M.L., Ryan M.M., Wayland M., Freeman T., Jones P.B., Starkey M., Webster M.J., Yolken R.H., Bahn S. (2003) Oligodendrocyte dysfunction in schizophrenia and bipolar disorder. Lancet. 362, 798–805.

  89. Mirnics K., Middleton F.A., Marquez A., Lewis D.A., Levitt P. (2000) Molecular characterization of schizophrenia viewed by microarray analysis of gene expression in prefrontal cortex. Neuron. 28, 53–67.

  90. Meucci O., Fatatis A., Simen A.A., Miller R.J. (2000) Expression of CX3CR1 chemokine receptors on neurons and their role in neuronal survival. Proc. Natl. Acad. Sci. USA. 97, 8075–8080.

  91. Pimm J., McQuillin A., Thirumalai S., Lawrence J., Quested D., Bass N., Lamb G., Moorey H., Datta S.R., Kalsi G., Badacsonyi A., Kelly K., Morgan J., Punukollu B., Curtis D., Gurling H. (2005) The epsin 4 gene on chromosome 5q, which encodes the clathrin-associated protein enthoprotin, is involved in the genetic susceptibility to schizophrenia. Am. J. Hum. Genet. 76(5), 902–907.

  92. Musunuri S., Wetterhall M., Ingelsson M., Lannfelt L., Artemenko K., Bergquist J., Kultima K., Shevchenko G. (2014) Quantification of the brain proteome in Alzheimer’s disease using multiplexed mass spectrometry. J. Proteome Res. 13, 2056–2068.

  93. Takematsu E., Spencer A., Auster J., Chen P.-C., Graham A., Martin P., Baker A.B. (2020) Genome wide analysis of gene expression changes in skin from patients with type 2 diabetes. PloS One. 15(2), e0225267.

  94. Shu B., Yang R., Shi Y., Xu Y.-B., Wang P., Lio X.S., Qi S.-H., Xie J.-L. (2016) Notch1 signaling regulates wound healing via changing the characteristics of epidermal stem cells. J. Stem Cell Res. Ther. 6(7), 1–10.

  95. You J., Corley S., Wen L., Hodge C., Höllhumer R., Madigan M.C., Wilkins M.R., Sutton G. (2018) RNA-Seq analysis and comparison of corneal epithelium in keratoconus and myopia patients. Sci. Rep8(1), 1–13.

  96. Bhargava M., Viken K.J., Barkes B., Griffin T.J., Gillespie M., Jagtap P.D., Sajulga R., Peterson E.J., Dincer H.E., Li L., Restrepo C.I., O’Connor B.P., Fingerlin T.E., Perlman D.M., Maier L.A. (2020) Novel protein pathways in development and progression of pulmonary sarcoidosis. Sci. Rep. 10, 13282.

  97. Swindell W.R., Beamer M.A., Sarkar M.K., Loftus S., Fullmer J., Xing X., Ward N.L., Tsoi L.C., Kahlenberg M.J., Liang Y., Gudjonsson J.E. (2018) RNA-Seq analysis of IL-1B and IL-36 responses in epidermal keratinocytes identifies a shared MyD88-dependent gene signature. Front. Immunol. 9(80), 1–20.

  98. Luo X., Xu S., Zhong Y., Tu T., Xu Y., Li X., Wang B., Yang F. (2019) High gene expression levels of VEGFA and CXCL8 in the peritumoral brain zone are associated with the recurrence of glioblastoma: a bioinformatics analysis. Oncol. Lett. 18, 6171–6179.

  99. Shelton R.C., Claiborne J., Sidoryk-Wegrzynowicz M., Reddy R., Aschner M., Lewis D.A., Mirnics K. (2011) Altered expression of genes involved in inflammation and apoptosis in frontal cortex in major depression. Mol. Psychiatry. 16(7), 751–762.

  100. Zhou B., Zhu Z., Ransom B.R., Xiaoping T. (2021) Oligodendrocyte lineage cells and depression. Mol. Psychiatry. 26, 103–117

  101. Xu L., Qi X., Zhu C., Wan L. (2018) Activation of IL-8 and its participation in cancer in schizophrenia patients: new evidence for the autoimmune hypothesis of schizophrenia. Neur. Dis. Treat. 14, 3393–3403.

  102. Oates C.P., Koenig D., Rhyne J., Bogush N., O’Connel J., Mitchell B.D., Miller M. (2018) Novel polymorphisms associated with hyperalphalipoproteinemia and apparent cardioprotection. J. Clin. Lipidol. 12(1), 110–115.

  103. Sun Y., Hao M., Luo Y., Liang C.-P., Silver D.L., Cheng C., Maxfield F.R., Tall A.R. (2003) Stearoyl-CoA desaturase inhibits ATP-binding cassette transporter A1-mediated cholesterol efflux and modulates membrane domain structure. J. Biol. Chem. 278(8), 5813–5820.

  104. Rothblat G.H., Phillips M.C. (2010) High-density lipoprotein heterogeneity and function in reverse cholesterol transport. Curr. Opin. Lipidol. 21(3), 229–238.

  105. Kwitek-Black A.E., Carmi R., Duyk G.M., Buetow K.H., Elbedour K., Parvari R., Yandava C.N., Stone E.M., Sheffield V.C. (1993) Linkage of Bardet–Biedl syndrome to chromosome 16q and evidence for non-allelic genetic heterogeneity. Nat. Genet. 5, 392–396.

  106. Denner J. (2016) Transspecies transmission of gammaretroviruses and the origin of the gibbon ape leukaemia virus (GaLV) and the koala retrovirus (KoRV). Viruses. 8(336), 1–10.

  107. Miller A.D., Bergholz U., Ziegler M., Stocking C. (2008) Identification of the myelin protein plasmolipin as the cell entry receptor for Mus caroli endogenous retrovirus. J. Virol. 82(14), 6862–6868.

  108. Vatanavicharn T., Pongsomboon S., Tassanakajon A. (2012) Two plasmolipins from the black tiger shrimp, Penaeus monodon and their response to virus pathogens. Dev. Comp. Immunol. 8, 389–394.

  109. Matjank W., Ponprateep S., Rimphanitchayakit V., Rimphanitchayakit V., Tassanakajon A., Somboonwiwat K., Vatanavicharn T. (2018) Plasmolipin, PmPLP1, from Penaeus monodon is a potential receptor for yellow head virus infection. Dev. Compar. Immun. 88, 137–143.

  110. Yuan S., Chu H., Huang J., Zhao X., Ye Z.-W., Lai P.-M., Wen L., Cai J.-P., Mo Y., Cao J., Liang R., Poon V. K.-M., Sze K.-H., Zhou J., To K. K.-W., Chen Z., Chen H., Jin D.-Y., Chan J. F.-W., Yuen K.-Y. (2020) Viruses harness YxxØ motif to interact with host AP2M1 for replication: a vulnerable broad-spectrum antiviral target. Sci. Adv. 6, eaba7910.

  111. Hist J., Motley A., Harasaki K., Chew S.Y.P., Robinson M.S. (2003) EpsinR: an ENTH domain-containing protein that interacts with AP-1. Mol. Biol. Cell. 14(2), 625–641.

Дополнительные материалы отсутствуют.