Молекулярная биология, 2022, T. 56, № 3, стр. 391-417

Гетерогенность популяции митохондрий в клетках растений и других организмов

Т. А. Тарасенко a*, М. В. Кулинченко a

a Сибирский институт физиологии и биохимии растений Сибирского отделения Российской академии наук
664033 Иркутск, Россия

* E-mail: bolotova_t.a@mail.ru

Поступила в редакцию 22.09.2021
После доработки 10.10.2021
Принята к публикации 11.10.2021

Аннотация

Популяция митохондрий в клетках эукариот отличается неоднородностью. Гетерогенность митохондрий может быть определена как вариация тех или иных характеристик митохондрий в пределах одной или разных клеток. Различия между митохондриями могут быть отнесены к негенетическим (структурно-морфологические и биоэнергетические особенности) или к генетическим (различия в числе копий или в последовательности митохондриальной (мт) ДНК). Изменения в последовательности мтДНК могут находить отражение в явлении гетероплазмии, то есть сосуществовании в клетке/организме различных митохондриальных генотипов. В обзоре рассмотрены особенности организации и динамики хондриома клеток растений в сравнении с другими таксономическими группами организмов. Особое внимание уделено причинам и механизмам, ведущим к митохондриальной гетерогенности, феномену гетероплазмии у растений и возможности функциональной специализации у митохондрий, а также роли этих процессов для всего организма. Анализ многочисленных данных показывает, что причиной неоднородного состояния митохондрий в клетке могут быть разные факторы, в том числе видоспецифические особенности процессов митохондриальной динамики, отвечающие за гомогенность популяции этих органелл клетки.

Ключевые слова: митохондриальная динамика, гетерогенность митохондрий, митохондриальная популяция, митохондриальная ДНК, гетероплазмия, комплементация, рекомбинация

Список литературы

  1. Kornick K., Bogner B., Sutter L., Das M. (2019) Population dynamics of mitochondria in cells: a mini-mal mathematical model. Front. Phys. 7, 146. https://doi.org/10.3389/fphy.2019.00146

  2. Welchen E., Garciìa L., Mansilla N., Gonzalez D.H. (2014) Coordination of plant mitochondrial biogenesis: keeping pace with cellular requirements. Front. Plant Sci. 4, 551. https://doi.org/10.3389/fpls.2013.00551

  3. Galloway C.A., Yoon Y. (2013) Mitochondrial morphology in metabolic diseases. Antioxid. Redox Signal. 19, 415–430. https://doi.org/10.1089/ars.2012.4779

  4. Mishra N.C., Kumar S. (2005) Apoptosis: a mitochondrial perspective on cell deathю Indian J. Exp. Biol43, 25–34.

  5. Howell K.A., Millar A.H., Whelan J. (2006) Ordered assembly of mitochondria during rice germination begins with promitochondrial structures rich in components of the protein import apparatus. Plant Mol. Biol. 60, 201–223. https://doi.org/10.1007/s11103-005-3688-7

  6. Fuchs R., Kopischke M., Klapprodt C., Hause G., Meye A.J., Schwarzländer M., Fricker M.D., Lipka V. (2016) Immobilized subpopulations of leaf epidermal mitochondria mediate PENETRATION2-dependent pathogen entry control in Arabidopsis. Plant Cell. 28, 130–145. https://doi.org/10.1105/tpc.15.00887

  7. Tarasenko T.A., Subota I.Yu., Tarasenko V.I., Konstantinov Y.M., Koulintchenko M.V. (2020) Plant mitochondrial subfractions have different ability to import DNA. Theor. Exp. Plant Physiol. 32, 5–18. https://doi.org/10.1007/s40626-020-00167-w

  8. Murcha M.W., Huang T., Whelan J. (1999) Import of precursor proteins into mitochondria from soybean tissues during development. FEBS Lett. 464, 53‒59. https://doi.org/10.1016/s0014-5793(99)01674-9

  9. Weber-Lotfi F., Koulintchenko M., Ibrahim N., Hammann P., Mileshina D., Konstantinov Yu.M., Dietrich A. (2015) Nucleic acid import into mitochondria: new insights into the translocation pathways. Biochim. Biophys. Acta. 1853, 3165–3181. https://doi.org/10.1016/j.bbamcr.2015.09.011

  10. Millar A.H., Sweetlove L.J., Giegé P., Leaver C.J. (2001) Analysis of the Arabidopsis mitochondrial proteome. Plant Physiol. 127, 1711–1727.

  11. Stickens D., Verbelen J.P. (1996) Spatial structure of mitochondria and ER denotes changes in cell physiology of cultured tobacco protoplast. Plant. J. 9, 85–92. https://doi.org/10.1046/j.1365-313X.1996.09010085.x

  12. Logan D.C., Leaver C.J. (2000) Mitochondria-targeted GFP highlights the heterogeneity of mitochondrial shape, size and movement within living plant cells. J. Exp. Bot. 51, 865–871. https://doi.org/10.1093/jexbot/51.346.865

  13. Wai T., Langer T. (2016) Mitochondrial dynamics and metabolic regulation. Trends Endocrinol. Metab. 27, 105–117. https://doi.org/10.1016/j.tem.2015.12.001

  14. Johnston I.G. (2019a) Tension and resolution: dynamic, evolving populations of organelle genomes within plant cells. Mol. Plant. 12, 764–783. https://doi.org/10.1016/j.molp.2018.11.002

  15. Frisell W.R., Patwardhan M.V., Mackenzie C.G. (1965) Quantitative studies on the soluble compartments of light and heavy mitochondria from rat liver. J. Biol. Chem. 240, 1829‒1835.

  16. Graham J.M. (2002) OptiPrep density gradient solutions for nonmammalian organelles. ScientificWorldJournal. 2, 1444–1448. https://doi.org/10.1100/tsw.2002.839

  17. Белякович А.Г. (1990) Изучение митохондрий и бактерий c помощью соли тетразолия п-НТФ. Пущино: ОНТИ НЦБИ.

  18. Шишмаков Д.А., Анисимов P.Л., Векшин Н.Л. (2004) Некоторые свойства протомитохондрий. Биол. мембраны. 21, 389‒395.

  19. Dai H., Lo Y.S., Jane W.N., Lee L.W., Chiang K.S. (1998) Population heterogeneity of higher-plant mitochondria in structure and function. Eur. J. Cell Biol. 75, 198‒209. https://doi.org/10.1016/S0171-9335(98)80062-9

  20. Logan D.C., Millar A.H., Sweetlove L.J., Hill S.A., Leaver C.J. (2001) Mitochondrial biogenesis during germination in maize embryos. Plant Physiol. 125, 662‒672. https://doi.org/10.1104/pp.125.2.662

  21. Begunova E.A., Vekshin N.L. (2015) Protomitohondria from liver cells: similarities with and differences from mitochondria. Biophysics. 60, 921–927. https://doi.org/10.1134/S0006350915060032

  22. Lund H.A., Vatter A.E., Hanson J.B. (1958) Biochemical and cytological changes accompanying growth and differentiation in the roots of Zea mays. J. Biophis. Biochem. Cytol. 4, 87‒96. https://doi.org/10.1083/jcb.4.1.87

  23. Logan D.C. (2006) The mitochondrial compartment. J. Exp. Bot. 57, 1225–1243. https://doi.org/10.1093/jxb/erj151

  24. Petrussa E., Bertolini A., Krajnáková J., Casolo V., Macrì F., Vianello A. (2008) Isolation of mitochondria from embryogenic cultures of Picea abies (L.) Karst. and Abies cephalonica Loud.: characterization of a K+ATP channel. Plant Cell Rep. 27, 137‒146. https://doi.org/10.1007/s00299-007-0436-2

  25. Bakeeva L.E., Kirnos M.D., Aleksandrushkina N.I., Kazimirchyuk S.B., Shorning B.Yu., Zamyatnina V.A., Yaguzhinsky L.S., Vanyushin B.F. (1999) Subcellular reorganization of mitochondria producing heavy DNA in aging wheat coleoptiles. FEBS Lett. 457, 122‒125. https://doi.org/10.1016/s0014-5793(99)01025-x

  26. Vauclare P., Diallo N., Bourguignon J., Macherel D., Douce R. (1996) Regulation of the expression of the glycine decarboxylase complex during pea leaf development. Plant Physiol. 112, 1523–1530. https://doi.org/10.1104/pp.112.4.1523

  27. des Francs-Small C.C., Ambard-Bretteville F., Darpas A., Sallantin M., Huet J.C., Pernollet J.C., Rémy R. (1992) Variation of the polypeptide composition of mitochondria isolated from different potato tissues. Plant Physiol. 98, 273‒278. https://doi.org/10.1104/pp.98.1.273

  28. Bahl J., Demandre C., Chauveau M., Alpha M.J., Roussaux J. (1997) Lipid changes in mitochondria of Arum maculatum spadix during inflorescence development. Plant Physiol. Biochem. 35, 693‒700. https://doi.org/10.1007/978-94-015-8394-7_55

  29. Small I.D., Isaac P.G., Leaver C.J. (1987) Stoichiometric differences in DNA molecules containing the atpA gene suggest mechanisms for the generation of mitochondrial diversity in maize. EMBO J. 6, 865‒869. https://doi.org/10.1002/j.1460-2075.1987.tb04832.x

  30. Birky C.W. (2001) The inheritance of genes in mitochondria and chloroplasts: laws, mechanisms, and models. Annu. Rev. Genet. 35, 125–148. https://doi.org/ 10.1146/annurev.genet.35.102401.090231

  31. Aryaman J., Johnston I.G. Jones N.S. (2018) Mitochondrial heterogeneity. Front. Genet. 9, 718. https://doi.org/10.3389/fgene.2018.00718

  32. Nishimura M., Douce R., Akazawa T. (1982) Isolation and characterization of metabolically competent mitochondria from spinach leaf protoplasts. Plant Physiol. 69, 916‒920. https://doi.org/10.1104/pp.69.4.916

  33. Collins T.J., Berridge M.J., Lipp P., Bootman M.D. (2002) Mitochondria are morphologically and functionally heterogeneous within cells. EMBO J. 21, 1616–1627. https://doi.org/10.1093/emboj/21.7.1616

  34. Simeonova E., Garstka M., Koziol-Lipi’nska J., Mostowska A. (2004) Monitoring the mitochondrial transmembrane potential with the JC-1 fluorochrome in programmed cell death during mesophyll leaf senescence. Protoplasma. 223, 143‒153. https://doi.org/10.1007/s00709-004-0039-5

  35. Battersby B.J., Shoubridge E.A. (2001) Selection of a mtDNA sequence variant in hepatocytes of heteroplasmic mice is not due to differences in respiratory chain function or efficiency of replication. Hum. Mol. Genet. 10, 2469–2479. https://doi.org/10.1093/hmg/10.22.2469

  36. Staehelin L.A. (1997) The plant ER: a dynamic orga-nelle composed of a large number of discrete functional domains. Plant J. 11, 1151‒1165. https://doi.org/10.1046/j.1365-313x.1997.11061151.x

  37. Köhler R.H., Cao J., Zipfel W.R., Webb W.W., Hanson M.R. (1997) Exchange of protein molecules through connections between higher plant plastids. Science. 276, 2039‒2042. https://doi.org/10.1126/science.276.5321.2039

  38. Smart C.J., Monéger F., Leaver C.J. (1994) Cell-specific regulation of gene expression in mitochondria during anther development in sunflower. Plant Cell. 6, 811–825. https://doi.org/10.1105/tpc.6.6.811

  39. Southworth D., Strout G., Russell S.D. (1997) Freeze-fracture of sperm of Plumbago zeylanica L. in pollen and in vitro. Sex. Plant Reprod. 10, 217–226. https://doi.org/10.1007/s004970050090

  40. Ehrenshaft M., Brambl R. (1990) Respiration and mitochondrial biogenesis in germinating embryos of maize. Plant Physiol. 93, 295–304. https://doi.org/10.1104/pp.93.1.295

  41. Botha F.C., Potgieter G.P., Botha A.M. (1992) Respiratory metabolism and gene expression during seed germination. Plant Growth Reg. 11, 211‒224. https://doi.org/10.1007/BF00024560

  42. Bewley J.D. (1997) Seed germination and dormancy. Plant Cell. 9, 1055‒1066. https://doi.org/10.1105/tpc.9.7.1055

  43. Bain M.J., Mercer F.V. (1964) Organization resistance and respiration climacteric. Aust. J. Biol. Sci. 17, 78–85. https://doi.org/10.1071/BI9640078

  44. Malhotra S.S., Spencer M. (1973) Structural development during germination of different populations of mitochondria from pea cotyledons. Plant Physiol. 52, 575–579. https://doi.org/10.1104/pp.52.6.575

  45. Falk K.L., Behal R.H., Xiang C.B., Oliver D.J. (1998) Metabolic bypass of the tricarboxylic acid cycle during lipid mobilization in germinating oilseeds: regulation of NAD+-dependent isocitrate dehydrogenase versus fumarase. Plant Physiol. 117, 473–481. https://doi.org/10.1104/pp.117.2.473

  46. Daley D.O., Considine M.J., Howell K.A., Millar A.H., Day D.A., Whelan J. (2003) Respiratory gene expression in soybean cotyledons during post-germinative development. Plant Mol. Biol. 51, 745–755. https://doi.org/10.1023/a:1022502501373

  47. Nunnari J., Marshall W.F., Straight A., Murray A., Sedat J.W., Walter P. (1997) Mitochondrial transmission during mating in Saccharomyces cerevisiae is determined by mitochondrial fusion and fission and the intramitochondrial segregation of mitochondrial DNA. Mol. Biol. Cell. 8, 1233-1242. https://doi.org/10.1091/mbc.8.7.1233

  48. Okamoto K., Shaw J.M. (2005) Mitochondrial morphology and dynamics in yeast and multicellular eukaryotes. Annu. Rev. Genet. 39, 503–536. https://doi.org/10.1146/annurev.genet.38.072902.093019

  49. Arimura S., Tsutsumi N. (2002) A dynamin-like protein (ADL2b), rather than FtsZ, is involved in Arabidopsis mitochondrial division. Proc. Natl. Acad. Sci. USA. 99, 5727‒5731. https://doi.org/10.1073/pnas.082663299

  50. Bereiter-Hahn J. (1990) Behavior of mitochondria in the living cell. Int. Rev. Cytol. 122, 1‒63. https://doi.org/10.1016/s0074-7696(08)61205-x

  51. Rizzuto R., Pinton P., Carrington W., Fay F.S., Fogarty K.E., Lifshitz L.M., Tuft R.A., Pozzan T. (1998) Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. Science. 280, 1763–1766. https://doi.org/10.1126/science.280.5370.1763

  52. Aryaman J., Bowles C., Jones N.S., Johnston I.G. (2019) Mitochondrial network state scales mtDNA genetic dynamics. Genetics. 212, 1429–1443. https://doi.org/10.1534/genetics.119.302423

  53. Xie L.-L., Shi F., Tan Z., Li Y., Bode A.M., Cao Y. (2018) Mitochondrial network structure homeostasis and cell death. Cancer Sci. 109, 3686–3694. https://doi.org/10.1111/cas.13830

  54. Rafelski S.M. (2013) Mitochondrial network morphology: building an integrative, geometrical view. BMC Biology. 11, 71. https://doi.org/10.1186/1741-7007-11-71

  55. Youle R.J., van der Bliek A.M. (2012) Mitochondrial fission, fusion, and stress. Science. 337, 1062–1065. https://doi.org/10.1126/science.1219855

  56. Jaipargas E.-A., Barton K. A., Mathur N., Mathur J. (2015) Mitochondrial pleomorphy in plant cells is driven by contiguous ER dynamics. Front. Plant Sci. 6, 783. https://doi.org/10.3389/fpls.2015.00783

  57. Chen H., Chan D.C. (2005) Emerging functions of mammalian mitochondrial fusion and fission. Hum. Mol. Genet. 14, R283–R289. https://doi.org/10.1093/hmg/ddi270

  58. Fuchs P., Rugen N., Carrie C., Elsässer M., Finkemeier I., Giese J., Hildebrandt T.M., Kühn K., Maurino V.G., Ruberti C., Schallenberg-Rüdinger M., Steinbeck J., Braun H.-P., Eubel H., Meyer E.H., Müller-Schüssele S.J., Schwarzländer M. (2020) Single organelle function and organization as estimated from Arabidopsis mitochondrial proteomics. Plant J. 101, 420–441. https://doi.org/10.1111/tpj.14534

  59. Sheahan M.B., Rose R.J., McCurdy D.W. (2004) Organelle inheritance in plant cell division: the actin cytoskeleton is required for unbiased inheritance of chloroplasts, mitochondria and endoplasmic reticulum in dividing protoplasts. Plant J. 37, 379–390. https://doi.org/10.1046/j.1365-313X.2003.01967.x

  60. Preuten T., Cincu E., Fuchs J., Zoschke R., Liere K., Borner T. (2010) Fewer genes than organelles: extremely low and variable gene copy numbers in mitochondria of somatic plant cells. Plant J. 64, 948–959. https://doi.org/10.1111/j.1365-313X.2010.04389.x

  61. Arimura S., Aida G.P., Fujimoto M., Nakazono M., Tsutsumi N. (2004b) Arabidopsis dynamin-like protein 2a(ADL2a), likeADL2b, is involved in plant mitochondrial division. Plant Cell Physiol. 45, 236–242. https://doi.org/10.1093/pcp/pch024

  62. Logan D.C. (2010) Mitochondrial fusion, division and positioning in plants. Biochem. Soc. Trans. 38, 789–795. https://doi.org/10.1042/BST0380789

  63. Seguí-Simarro J.M., Coronado M.J., Staehelin L.A. (2008) The mitochondrial cycle of Arabidopsis shoot apical meristem and leaf primordium meristematic cells is defined by a perinuclear tentaculate/cage-like mitochondrion. Plant Physiol. 148, 1380–1393. https://doi.org/10.1104/pp.108.126953

  64. Kianian P.M.A., Kianian S.F. (2014) Mitochondrial dynamics and the cell cycle. Front. Plant Sci. 5, 222. https://doi.org/10.3389/fpls.2014.00222

  65. Christiansen E.G. (1949) Orientation of the mitochondria during mitosis. Nature. 163, 361.

  66. Taguchi N., Ishihara N., Jofuku A., Oka T., Mihara K. (2007) Mitotic phosphorylation of dynamin-related GTPase Drp1 participates in mitochondrial fission. J. Biol. Chem. 282, 11521‒11529. https://doi.org/10.1074/jbc.M607279200

  67. Kanfer G., Courthéoux T., Peterka M., Meier S., Soste M., Melnik A., Reis K., Aspenstrom P., Peter M., Picotti P., Kornmann B. (2015) Mitotic redistribution of the mitochondrial network by Miro and Cenp-F. Nat. Commun. 6, 8015. https://doi.org/10.1038/ncomms9015

  68. Seguí-Simarro J.M., Staehelin L.A. (2009) Mitochondrial reticulation in shoot apical meristem cells of Arabidopsis provides a mechanism for homogenization of mtDNA prior to gamete formation. Plant Signal. Behav. 4, 168–171. https://doi.org/10.4161/psb.4.3.7755

  69. Sheahan M.B., McCurdy D.W., Rose R.J. (2005) Mitochondria as a connected population: ensuring continuity of the mitochondrial genome during plant cell dedifferentiation through massive mitochondrial fusion. Plant J. 44,744–755. https://doi.org/10.1111/j.1365-313X.2005.02561.x

  70. Katajisto P., Döhla J., Chaffer C.L., Pentinmikko N., Marjanovic N., Iqbal S., Zoncu R., Chen W., Weinberg R.A., Sabatini D.M. (2015) Stem cells. Asymmetric apportioning of aged mitochondria between daughter cells is required for stemness. Science. 348, 340–343. https://doi.org/10.1126/science.1260384

  71. Kanfer G., Kornmann B. (2016) Dynamics of the mitochondrial network during mitosis. Biochem. Soc. Trans. 44, 510–516. https://doi.org/10.1042/BST20150274

  72. Bird J., Porter E.K., Dickinson H.G. (1983). Events in the cytoplasm during male. J. Cell Sci. 42, 27–42

  73. Mogenson H.L., Rusche L. (1985) Quantitative ultrastructural analysis of barley sperm. I. Occurrence and mechanism of cytoplasm and organelle reduction and the question of sperm dimorphism. Protoplasma. 13, 1–13.https://doi.org/10.1007/BF01273229

  74. McConchie C.A., Hough T., Knox R.B. (1987) Ultrastructural analysis of the sperm cells of mature pollen of maize, Zea mays. Protoplasma. 139, 9–19. https://doi.org/10.1007/BF01417530

  75. Wagner V.T., Dumas C., Mogensen H.L. (1988) Morphometric analysis of isolated Zea mays sperm. J. Cell Sci. 93, 179–184. https://doi.org/10.1242/jcs.93.1.179

  76. Mogensen H.L., Wagner V.T., Dumas C. (1990) Quantitative, three-dimensional ultrastructure of isolated corn (Zea mays) sperm cells. Protoplasma. 153, 136–140. https://doi.org/10.1007/BF01353997

  77. Mahrous E., Yang Q., Clarke H.J. (2012) Regulation of mitochondrial DNA accumulation during oocyte growth and meiotic maturation in the mouse. Reproduction. 144, 177–185. https://doi.org/10.1530/REP-12-0113

  78. Dalton C.M., Carroll J. (2013) Biased inheritance of mitochondria during asymmetric cell division in the mouse oocyte. J. Cell Sci. 126, 2955–2964. https://doi.org/10.1242/jcs.128744

  79. Faure J., Mogensen H.L., Kranz E., Digonnet C., Dumas C. (1992) Ultrastructural characterization and three-dimensional reconstruction of isolated maize (Zea mays L.) egg cell protoplasts. Protoplasma. 171, 97–103. https://doi.org/10.1007/BF01403723

  80. Schulz P., Jensen W.A. (1973) Capsella embryogenesis: the central cell. J. Cell Sci. 12, 741–763.

  81. Kuroiwa H., Ohta T., Kuroiwa T. (1996) Studies on the development and three-dimensional reconstruction of giant. Protoplasma. 192, 235–244. https://doi.org/10.1007/BF01273895

  82. Yamaoka S., Nakajima M., Fujimoto M., Tsutsumi N. (2011) MIRO1 influences the morphology and intracellular distribution of mitochondria during embryo-nic cell division in Arabidopsis. Plant Cell Rep. 30, 239–244. https://doi.org/10.1007/s00299-010-0926-5

  83. Kimata Y., Higaki T., Kurihara D., Ando N., Matsumoto H., Higashiyama T., Ueda M. (2020) Mitochondrial dynamics and segregation during the asymmetric division of Arabidopsis zygotes. Quant. Plant Biol. 1, e3. https://doi.org/10.1017/qpb.2020.4

  84. Gooh K., Ueda M., Aruga K., Park J., Arata H., Higashiyama T., Kurihara D. (2015) Live-cell imaging and optical manipulation of Arabidopsis early embryogenesis. Dev. Cell. 34, 242–251. https://doi.org/10.1016/j.devcel.2015.06.008

  85. Paszkiewicz G., Gualberto J.M., Benamar A., Macherel D., Logan D.C. (2017) Arabidopsis seed mitochondria are bioenergetically active immediately upon imbibition and specialize via biogenesis in preparation for autotrophic growth. Plant Cell. 29, 109–128. https://doi.org/10.1105/tpc.16.00700

  86. Quintana A., Hoth M. (2012) Mitochondrial dyna-mics and their impact on T cell function. Cell Calcium. 52, 57–63. https://doi.org/10.1016/j.ceca.2012.02.005

  87. Wurm C.A., Neumann D., Lauterbach M.A., Harke B., Egner A., Hell S.W., Jakobs S. (2011) Nanoscale distribution of mitochondrial import receptor Tom20 is adjusted to cellular conditions and exhibits an inner-cellular gradient. Proc. Natl. Acad. Sci. USA. 108, 13546–13551. https://doi.org/10.1073/pnas.1107553108

  88. Smirnova E., Griparic L., Shurland D.L., van der Bliek A.M. (2001) Dynamin-related protein Drp1 is required for mitochondrial division in mammalian cells. Mol. Biol. Cell. 12, 2245‒2256. https://doi.org/10.1091/mbc.12.8.2245

  89. van der Bliek A.M., Shen Q., Kawajiri S. (2013) Mechanisms of mitochondrial fission and fusion. Cold Spring Harb. Perspect. Biol. 5, a011072. https://doi.org/10.1101/cshperspect.a011072

  90. Chang C.R., Blackstone C. (2010) Dynamic regulation of mitochondrial fission through modification of the dynamin-related protein Drp1. Ann. NY Acad. Sci. 1201, 34‒39. https://doi.org/10.1111/j.1749-6632.2010.05629.x

  91. Park Y.-Y., Cho H. (2012) Mitofusin 1 is degraded at G2/M phase through ubiquitylation by MARCH5. Cell Div. 7, 25. https://doi.org/10.1186/1747-1028-7-25

  92. Chen H., Chomyn A., Chan D.C. (2005) Disruption of fusion results in mitochondrial heterogeneity and dysfunction. J. Biol. Chem. 280, 26185–26192. https://doi.org/10.1074/jbc.M503062200

  93. Logan D.C., Scott I., Tobin A.K. (2003) The genetic control of plant mitochondrial morphology and dynamics. Plant J. 36, 500–509. https://doi.org/10.1046/j.1365-313x.2003.01894.x

  94. Arimura S., Fujimoto M., Doniwa Y., Kadoya N., Nakazono M., Sakamoto W. Tsutsumi N. (2008) Arabidopsis elongated mitochondria1 is required for loca-lization of dynamin-related protein3A to mitochondrial fission sites. Plant Cell. 20, 1555–1566. https://doi.org/10.1105/tpc.108.058578

  95. El Zawily A.M., Schwarzlander M., Finkemeier I., Johnston I.G., Benamar A., Cao Y., Gissot C., Meyer A.J., Wilson K., Datla R., Macherel D., Jones N.S., Logan D.C. (2014) Friendly regulates mitochondrial distribution, fusion, and quality control in Arabidopsis. Plant Physiol. 166, 808–828. https://doi.org/10.1104/pp.114.243824

  96. Hong. Z., Bednarek. S.Y., Blumwald. E., Hwang I., Jurgens G., Menzel D., Osteryoung K.W., Raikhel N.V., Shinozaki K., Tsutsumi N., Verma D.P. (2003) A unified nomenclature for Arabidopsis dynamin-related large GTPases based on homology and possible functions. Plant Mol. Biol. 53, 261–265. https://doi.org/10.1023/b:plan.0000007000.29697.81

  97. Arimura S.I., Yamamoto J., Paul Aida G., Nakazono M., Tsutsumi N. (2004a) Frequent fusion and fission of plant mitochondria with unequal nucleoid distribution. Proc. Natl. Acad. Sci. USA. 101, 7805–7808. https://doi.org/10.1073/pnas.0401077101

  98. Logan D.C., Scott I., Tobin A.K. (2004) ADL2a, like ADL2b, is involved in the control of higher plant mitochondrial morphology. J. Exp. Bot. 55, 783–785. https://doi.org/10.1093/jxb/erh073

  99. Aung K., Hu J. (2012) Differential roles of Arabidopsis dynamin-related proteins DRP3A, DRP3B, and DRP5B in organelle division. J. Integr. Plant Biol. 54, 921–931. https://doi.org/10.1111/j.1744-7909.2012.01174.x

  100. Scott I., Tobin A.K., Logan D.C. (2006) BIGYIN, an orthologue of human and yeast FIS1 genes functions in the control of mitochondrial size and number in Arabidopsis thaliana. J. Exp. Bot. 57, 1275–1280. https://doi.org/10.1093/jxb/erj096

  101. Arimura S.I. (2018) Fission and fusion of plant mitochondria, and genome maintenance. Plant Physiol. 176, 152–161. https://doi.org/10.1104/pp.17.01025

  102. Pan R., Hu J. (2015) Plant mitochondrial dynamics and the role of membrane lipids. Plant Signal. Behav. 10, e1050573. https://doi.org/10.1080/15592324.2015.1050573

  103. Zhang X.C., Hu J.P. (2008) FISSION1A and FISSION1B proteins mediate the fission of peroxisomes and mitochondria in Arabidopsis. Mol. Plant. 1, 1036–1047. https://doi.org/10.1093/mp/ssn056

  104. Aung K., Hu J. (2011) The Arabidopsis tail-anchored protein peroxisomal and mitochondrial division factor1 is involved in the morphogenesis and proliferation of peroxisomes and mitochondria. Plant Cell. 23, 4446–4461. https://doi.org/10.1105/tpc.111.090142

  105. Rose R.J. (2021) Contribution of massive mitochondrial fusion and subsequent fission in the plant life cycle to the integrity of the mitochondrion and its genome. Int. J. Mol. Sci. 22, 5429. https://doi.org/10.3390/ijms22115429

  106. White R.R., Lin C., Leaves I., Castro I.G., Metz J., Bateman B.C., Botchway S.W., Ward A.D., Ashwin P., Sparkes I. (2020) Miro2 tethers the ER to mitochondria to promote mitochondrial fusion in tobacco leaf epidermal cells. Commun. Biol. 3, 161. https://doi.org/10.1038/s42003-020-0872-x

  107. Altmann K., Frank M., Neumann D., Jakobs S. Westermann B. (2008) The class V myosin motor protein, Myo2, plays a major role in mitochondrial motility in Saccharomyces cerevisiae. J. Cell Biol. 181, 119–130. https://doi.org/10.1083/jcb.200709099

  108. Varadi A., Johnson-Cadwell L.I., Cirulli V., Yoon Y., Allan V.J. Rutter G.A. (2004) Cytoplasmic dynein regulates the subcellular distribution of mitochondria by controlling the recruitment of the fission factor dynamin-related protein-1. J. Cell Sci. 117, 4389–4400. https://doi.org/10.1242/jcs.01299

  109. Rattner J.B., Rao A., Fritzle, M.J., Valencia D.W., Yen T.J. (1993) CENP-F is a ca 400 kDa kinetochore protein that exhibits a cell-cycle dependent localization. Cell Motil. Cytoskeleton. 26, 214–226. https://doi.org/10.1002/cm.970260305

  110. Lackner L.L., Ping H., Graef M., Murley A., Nunnari J. (2013) Endoplasmic reticulum-associated mitochondria-cortex tether functions in the distribution and inheritance of mitochondria. Proc. Natl. Acad. Sci. USA. 110, E458–E467. https://doi.org/10.1073/pnas.1215232110

  111. Rizzuto R., Brini M., Murgia M., Pozzan T. (1993) Microdomains with high Ca2+ close to IP3-sensitive channels that are sensed by neighboring mitochondria. Science. 262, 744–747. https://doi.org/10.1126/science.8235595

  112. Achleitner G., Gaigg B., Krasser A., Kainersdorfer E., Kohlwein S.D., Perktold A., Zellnig G., Daum G. (1999) Association between the endoplasmic reticulum and mitochondria of yeast facilitates interorga-nelle transport of phospholipids through membrane contact. Eur. J. Biochem. 264, 545–553. https://doi.org/10.1046/j.1432-1327.1999.00658.x

  113. Friedman J.R., Lackner L.L., West M., DiBenedetto J.R., Nunnari J., Voeltz G.K. (2011) ER tubules mark sites of mitochondrial division. Science. 334, 358–362. https://doi.org/10.1126/science.1207385

  114. Mootha V.K., Bunkenborg J., Olsen J.V., Hjerrild M., Wisniewski J.R., Stahl E., Bolouri M.S., Ray H.N., Sihag S., Kamal M., Patterson N., Lander E.S., Mann M. (2003) Integrated analysis of protein composition, tissue diversity, and gene regulation in mouse mitochondria. Cell. 115, 629–640. https://doi.org/10.1016/s0092-8674(03)00926-7

  115. Robertson E.J., Williams M., Harwood J.L., Lindsay J.G., Leaver C.J., Leech R.M. (1995) Mitochondria increase three-fold and mitochondrial proteins and lipid change dramatically in postmeristematic cells in young wheat leaves grown in elevated CO2. Plant Physiol. 108, 469-474. https://doi.org/10.1104/pp.108.2.469

  116. Sakamoto W., Takami T. (2018) Chloroplast DNA dynamics: copy number, quality control and degradation. Plant Cell Physiol. 59, 1120–1127. https://doi.org/10.1093/pcp/pcy084

  117. Kmiec B., Woloszynska M., Janska H. (2006) Heteroplasmy as a common state of mitochondrial genetic information in plants and animals. Curr. Genet. 50, 149-159. https://doi.org/10.1007/s00294-006-0082-1

  118. Levsen N., Bergero R., Charlesworth D., Wolff K. (2016) Frequent, geographically structured heteroplasmy in the mitochondria of a flowering plant, ribwort plantain (Plantago lanceolata). Heredity. 117, 1–7. https://doi.org/10.1038/hdy.2016.15

  119. Twig G., Elorza A., Molina A.J.A., Mohamed H., Wikstrom J.D., Walzer G., Stiles L., Haigh S.E., Katz S., Las G., Alroy J., Wu M., Py B.F., Yuan J., Deeney J.T., Corkey B.E., Shirihai O.S. (2008) Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J. 27, 433–446. https://doi.org/10.1038/sj.emboj.7601963

  120. Wikstrom J.D., Twig G., Shirihai O.S. (2009) What can mitochondrial heterogeneity tell us about mitochondrial dynamics and autophagy? Int. J. Biochem. Cell Biol. 41, 1914–1927. https://doi.org/10.1016/j.biocel.2009.06.006

  121. Sukhorukov V.M., Dikov D., Busch K., Strecker V., Wittig I., Bereiter-Hahn J. (2010) Determination of protein mobility in mitochondrial membranes of living cells. Biochim. Biophys. Acta. 1798, 2022–2032. https://doi.org/10.1016/j.bbamem.2010.07.016

  122. Wallace D.C. (2007) Why do we still have a maternally inherited mitochondrial DNA? Insights from evolutionary medicine. Annu. Rev. Biochem. 76, 781‒821. https://doi.org/10.1146/annurev.biochem.76.081205.150955

  123. Jakobs S., Stoldt S., Neumann D. (2011) Light microscopic analysis of mitochondria heterogeneity in cell population and within single cells. Adv. Biochem. Eng. Biotechnol. 123, 1–19. https://doi.org/10.1007/10_2010_81

  124. Morley S.A., Nielsen B.L. (2017) Plant mitochondrial DNA. Front. Biosci. 22, 1023‒1032. https://doi.org/10.2741/4531

  125. Szczepanowska J., Malinska D., Wieckowski M.R., Duszynski J. (2012) Effect of mtDNA point mutations on cellular bioenergetics. Biochim. Biophys. Acta. 1817, 1740‒1746. https://doi.org/10.1016/j.bbabio.2012.02.028

  126. Wallace D.C., Fan W. (2009) The pathophysiology of mitochondrial disease as modeled in the mouse. Genes Dev. 23, 1714‒1736. https://doi.org/10.1101/gad.1784909

  127. Lee S., Kim S., Sun X., Lee J.H., Cho H. (2007) Cell cycle-dependent mitochondrial biogenesis and dynamics in mammalian cells. Biochem. Biophys. Res. Commun. 357, 111–117. https://doi.org/10.1016/j.bbrc.2007.03.091

  128. Parone P.A., Da Cruz S., Tondera D., Mattenberger Y., James D.I., Maechler P., Barja F., Martinou J.-C. (2008) Preventing mitochondrial fission impairs mitochondrial function and leads to loss of mitochondrial DNA. PLoS One. 3, e3257. https://doi.org/10.1371/journal.pone.0003257

  129. Yoon Y.S., Yoon D.S., Lim I.K., Yoon S.H., Chung H.Y., Rojo M., Malka F., Jou M.J., Martinou J.C., Yoon G. (2006) Formation of elongated giant mitochondria in DFO-induced cellular senescence: involvement of enhanced fusion process through modulation of Fis1. J. Cell Physiol. 209, 468–480. https://doi.org/10.1002/jcp.20753

  130. Tateda C., Watanabe K., Kusano T., Takahashi Y. (2011) Molecular and genetic characterization of the gene family encoding the voltage-dependent anion channel in Arabidopsis. J. Exp. Bot. 62, 4773–4785. https://doi.org/10.1093/jxb/err113

  131. Rice D.W., Alverson A.J., Richardson A.O., Young G.J., Sanchez-Puerta M.V., Munzinger J., Barry K., Boo-re J.L., Yan Zhang Y., De Pamphilis C.W., Knox E.B., Palmer J.D. (2013) Horizontal transfer of entire genomesvia mitochondrial fusion in the angiosperm Amborella. Science. 342, 1468–1473. https://doi.org/10.1126/science.1246275

  132. Mower J.P., Sloan D.B., Alverson A.J. (2012) Plant mitochondrial genome diversity: the genomics revolution. Plant Gen. Div. 1, 123–144. https://doi.org/10.1007/978-3-7091-1130-7_9

  133. Lonsdale D.M., Brears T., Hodge T.P., Melville S.E., Rottmann W.H. (1988) The plant mitochondrial genome: homologous recombination as mechanism for generating heterogeneity. Philos. Trans. 319, 149–163. https://doi.org/10.1098/rstb.1988.0039

  134. Legros F., Malka F., Frachon P., Lombès A., Rojo M. (2004) Organization and dynamics of human mitochondrial DNA. J. Cell Sci. 117, 2653–2662. https://doi.org/10.1242/jcs.01134

  135. Arciuch V.G.A., Elguero M.E., Poderoso J.J., Carreras M.C. (2012) Mitochondrial regulation of cell cycle and proliferation. Antioxid. Redox Signal. 16, 1150–1180. https://doi.org/10.1089/ars.2011.4085

  136. Gualberto J.M., Mileshina D., Wallet C., Niazi A.K., Weber-Lotfi F., Dietrich A. (2014) The plant mitochondrial genome: dynamics and maintenance. Biochimie. 100, 107–120. https://doi.org/10.1016/j.biochi.2013.09.016

  137. Woloszynska M. (2010) Heteroplasmy and stoichiometric complexity of plant mitochondrial genomes—though this be madness, yet there’s method in’t. J. Exp. Bot. 61, 657–671, https://doi.org/10.1093/jxb/erp361

  138. Abdelnoor R.V., Yule R., Elo, A., Christensen A.C., Meyer-Gauen G., Mackenzie S.A. (2003) Substoichiometric shifting in the plant mitochondrial genome is influenced by a gene homologous to MutS. Proc. Natl. Acad. Sci. USA. 100, 5968–5973. https://doi.org/10.1073/pnas.1037651100

  139. Chevigny N., Schatz-Daas D., Lotfi F., Gualberto J.M. (2020) DNA repair and the stability of the plant mitochondrial genome. Int. J. Mol. Sci. 21, 328. https://doi.org/10.3390/ijms21010328

  140. Woloszynska M., Trojanowski T. (2009) Counting mtDNA molecules in Phaseolus vulgaris: sublimons are constantly produced by recombination via short repeats and undergo rigorous selection during substoichiometric shifting. Plant Mol. Biol. 70, 511–521. https://doi.org/10.1007/s11103-009-9488-8

  141. Newton K.J., Gabay-Laughnan S., De Paepe R. (2004) Mitochondrial mutations in plants. In: Plant Mitochondria: From Genome to Function. Advances in Photosynthesis and Respiration. 17, 121–141. https://doi.org/10.1007/978-1-4020-2400-9_7

  142. Andersson S. (1999) Quantitative genetics of leaf morphology in Crepis tectorum ssp. pumila (Asteraceae). J. Heredity. 90, 556–561. https://doi.org/10.1093/jhered/90.5.556

  143. Kajander O.A., Rovio A.T., Majamaa K., Poulton J., Spelbrink J.N., Holt I.J., Karhunen P.J., Jacobs H.T. (2000) Human mtDNA sublimons resemble rearranged mitochondrial genomes found in pathological states. Hum. Mol. Genet. 22, 2821–2835. https://doi.org/10.1093/hmg/9.19.2821

  144. Knorre D.A., Popadin K.Y., Sokolov S.S., Severin F.F. (2013) Roles of mitochondrial dynamics under stressful and normal conditions in yeast cells. Oxid. Med. Cell Longev. 2013, 139491. https://doi.org/10.1155/2013/139491

  145. Christensen A.C. (2013) Plant mitochondrial genome evolution can be explained by DNA repair mechanisms. Genome Biol. Evol. 5, 1079–1086. https://doi.org/10.1093/gbe/evt069

  146. Boesch P., Weber-Lotfi F., Ibrahim N., Tarasenko V., Cosset A., Paulus F., Lightowlers R.N., Dietrich A. (2011) DNA repair in organelles: pathways, organization, regulation, relevance in disease and aging. Biochim. Biophys. Acta. 1813, 186–200. https://doi.org/10.1016/j.bbamcr.2010.10.002

  147. Cappadocia L., Maréchal A., Parent J.S, Lepage E., Sygusch J., Brisson N. (2010) Crystal structures of DNA-Whirly complexes and their role in Arabidopsis organelle genome repair. Plant Cell. 22, 1849–1867. https://doi.org/10.1105/tpc.109.071399

  148. Zaegel V., Guermann B., Le Ret M., Andres C., Meyer D., Erhardt M., Canaday J., Gualberto J.M., Imbault P. (2006) The plant-specific ssDNA binding protein OSB1 is involved in the stoichiometric transmission of mitochondrial DNA in Arabidopsis. Plant Cell. 18, 3548–3563. https://doi.org/10.1105/tpc.106.042028

  149. Shedge V., Arrieta-Montiel M., Christensen A.C., Mackenzie S.A. (2007) Plant mitochondrial recombination surveillance requires unusual RecA and MutS homologs. Plant Cell. 19, 1251–1264. https://doi.org/10.1105/tpc.106.048355

  150. Wu Z., Waneka G., Broz A.K., King C.R., Sloan D.B. (2020) MSH1 is required for maintenance of the low mutation rates in plant mitochondrial and plastid genomes. Proc. Natl. Acad. Sci. USA. 117, 16448–16455. https://doi.org/10.1073/pnas.2001998117

  151. Ladoukakis E.D., Zouros E. (2001) Direct evidence for homologous recombination in mussel (Mytilus galloprovincialis) mitochondrial DNA. Mol. Biol. Evol. 18, 1168‒1175. https://doi.org/10.1093/oxfordjournals.molbev.a003904

  152. Ramsey A.J., Mandel J.R. (2019) When one genome is not enough: organellar heteroplasmy in plants. Ann. Plant Rev. Online. 2(2). https://doi.org/10.1002/9781119312994.apr0616

  153. Aksyonova E., Sinyavskaya M., Danilenko N., Per-shina L., Nakamura C., Davydenko O. (2005) Heteroplasmy and paternally oriented shift of the organellar DNA composition in barley–wheat hybrids during backcrosses with wheat parents. Genome. 48, 761–769. https://doi.org/10.1139/g05-049

  154. Khrapko K., Coller H.A., André P.C., Li. X.C., Hanekamp J.S., Thilly W.G. (1997) Mitochondrial mutational spectra in human cells and tissues. Proc. Natl. Acad. Sci. USA. 94, 13798–13803. https://doi.org/10.1073/pnas.94.25.13798

  155. Garcia-Diaz A., Oya R., Sanchez A., Luque F. (2003) Effect of prolonged vegetative reproduction of olive tree cultivars (Olea europaea L.) in mitochondrial homoplasmy and heteroplasmy. Genome. 46, 377–381. https://doi.org/10.1139/g03-017

  156. Li X.Q., Chetrit P., Mathieu C., Vedel F., De Paepe R., Remy R., Ambard-Bretteville F. (1988) Regeneration of cytoplasmic male-sterile protoclones of Nicotiana sylvestris with mitochondrial variations. Curr. Genet. 13, 261–266. https://doi.org/10.1007/BF00387773

  157. Pla M., Mathieu C., De Paepe R., Chetrit P., Vedel F. (1995) Deletion of the last two exons of the mitochondrial nad7 gene results in lack of the NAD7 polypeptide in a Nicotiana sylvestris CMS mutant. Mol. Gen. Genet. 248, 79–88. https://doi.org/10.1007/BF02456616

  158. Guo Y., Li C., Sheng Q., Winther J.F., Cai Q., Boice J.D., Shyr Y. (2013) Very low-level heteroplasmy mtDNA variations are inherited in humans. J. Genet. Genomics. 40, 607–615. https://doi.org/10.1016/j.jgg.2013.10.003

  159. Stewart J.B. Chinnery P.F. (2015) The dynamics of mitochondrial DNA heteroplasmy: implications for human health and disease. Nat. Rev. Genet. 16, 530–542. https://doi.org/10.1038/nrg3966

  160. Zhang Y., Wang C., Jin Y., Yang Q., Meng Q., Liu Q., Dai Y., Cai L., Liu Z., Liu K., Sun H. (2018) Activa-ting the PGC-1 α/TERT pathway by Catalpol ameliorates atherosclerosis via modulating ROS production, DNA damage, and telomere function: implications on mitochondria and telomere link. Oxidat. Med. Cell. Longevity. 2018, 2876350. https://doi.org/10.1155/2018/2876350

  161. Sekiguchi K., Imaizumi K., Matsuda H., Mizuno N., Yoshida K., Senju H., Sato H., Kasai K. (2003) MtDNA sequence analysis using capillary electrophoresis and its application to the analysis of mtDNA in hair. Japanese Journal of Science and Technology for Identification. 7, 123–130. https://doi.org/10.3408/jasti.7.123

  162. Wilton P.R., Zaidi A., Makova K., Nielsen R. (2018) A population phylogenetic view of mitochondrial heteroplasmy. Genetics. 208, 1261–1274. https://doi.org/10.1534/genetics.118.300711

  163. Jenuth J.P., Peterson A.C., Fu K., Shoubridge E.A. (1996) Random genetic drift in the female germline explains the rapid segregation of mammalian mitochondrial DNA. Nat. Genet. 14, 146–151. https://doi.org/10.1038/ng1096-146

  164. Chinnery P.F. (2002) Modulating heteroplasmy. Trends Genet. 18, 173–176. https://doi.org/10.1016/s0168-9525(01)02636-1

  165. Johnston I.G. (2019b) Varied mechanisms and models for the varying mitochondrial bottleneck. Front. Cell Dev. Biol. 7, 294. https://doi.org/10.3389/fcell.2019.00294

  166. Johnston I.G., Jones N.S. (2016) Evolution of cell-to-cell variability in stochastic, controlled, heteroplasmic mtDNA populations. Am. J. Hum. Genet. 99, 1150–1162. https://doi.org/10.1016/j.ajhg.2016.09.016

  167. Galtier N. (2011) The intriguing evolutionary dyna-mics of plant mitochondrial DNA. BMC Biol. 9, 61. https://doi.org/10.1186/1741-7007-9-61

  168. Kuroiwa H., Kuroiwa T. (1992) Giant mitochondria in the mature egg cell of Pelargonium zonale. Protoplasma. 168, 184–188.https://doi.org/1007/BF01666264

  169. Kanazawa A., Tsutsumi N., Hirai A. (1994) Reversible changes in the composition of the population of mtDNAs during dedifferentiation and regeneration in tobacco. Genetics. 138, 865–870. https://doi.org/10.1093/genetics/138.3.865

  170. Arrieta-Montiel M., Lyznik A., Woloszynska M., Janska H., Tohme J., Mackenzie S. (2001) Tracing evolutionary and developmental implications of mitochondrial stoichiometric shifting in the common bean. Genetics. 158, 851–864. https://doi.org/10.1093/genetics/158.2.851

  171. Albert B., Lelandais C., Pla M., Leuret C., Vitart V., Mathieu C., Sihachakr D., Godelle B., de Paepe R. (2003) Amplification of Nicotiana sylvestris mitochondrial subgenomes is under nuclear control and is associated with phenotypic changes. Genetica. 117, 17–25. https://doi.org/10.1023/a:1022356330794

  172. Suzuki T., Kawano S., Sakai A., Hirai A., Kuroiwa T. (1996) Variability of mitochondrial subgenomic molecules in the meristematic cells of higher plants. Genes Genet. Syst. 71, 329–333. https://doi.org/10.1266/ggs.71.329

  173. Velappan Y., Signorelli S., Considine M.J. (2017) Cell cycle arrest in plants: what distinguishes quiescence, dormancy and differentiated G1? Ann. Bot. 120, 495–509. https://doi.org/10.1093/aob/mcx082

  174. Chinnery P.F., Turnbull D.M. (1999) Mitochondrial DNA and disease. Lancet. 354, S17–S21. https://doi.org/10.1016/s0140-6736(99)90244-1

  175. Taylor R.W. (2005) Gene therapy for the treatment of mitochondrial DNA disorder. Expert. Opin. Biol. Ther. 5, 183–194. https://doi.org/10.1517/14712598.5.2.183

  176. Trifunovic A., Larsso N.-G. (2008) Mitochondrial dysfunction as a cause of ageing. J. Intern. Med. 263, 167–178. https://doi.org/10.1111/j.1365-2796.2007.01905.x

  177. Wallace D.C. (2010) Mitochondrial DNA mutations in disease and aging. Environ. Mol. Mutagen. 51, 440–450. https://doi.org/10.1002/em.20586

  178. Li M., Schönberg A., Schaefer M., Schroeder R., Nasidze I., Stoneking M. (2010) Detecting heteroplasmy from high-throughput sequencing of complete human mitochondrial DNA genomes. Am. J. Hum. Genet. 87, 237–249. https://doi.org/10.1016/j.ajhg.2010.07.014

  179. Li M., Rothwell R., Vermaat M., Wachsmuth M., Schröder R., Laros J.F.J., van Oven M., de Bakker P.I.W., Bovenberg J.A., van Duijn C.M., van Ommen G.-J., Slagboom P.E., Swertz M.A., Wijmenga C., Kayser M., Boomsma D.I., Zöllner S., de Knijff P., Stoneking M. (2016) Transmission of human mtDNA heteroplasmy in the genome of the Netherlands families: support for a variable-size bottleneck. Genome Res. 26, 417–426. https://doi.org/10.1101/gr.203216.115

  180. Rebolledo-Jaramillo B., Su M.S.-W., Stoler N., McElhoe J.A., Dickins B., Blankenberg D., Korneliussen T.S., Chiaromonte F., Nielsen R., Holland M.M., Paul I.M., Nekrutenko A., Makova K.D. (2014) Maternal age effect and severe germ-line bottleneck in the inheritance of human mitochondrial DNA. Proc. Natl. Acad. Sci. USA. 111, 15474–15479. https://doi.org/10.1073/pnas.1409328111

  181. Gu J., Miles D., Newton K.J. (1993) Analysis of leaf sectors in the NCS6 mitochondrial mutant of maize. Plant Cell. 5, 963–971. https://doi.org/10.1105/tpc.5.8.963

  182. Sakamoto W., Kondo H., Murata M., Motoyoshi F. (1996) Altered mitochondrial gene expression in a maternal distorted leaf mutant of Arabidopsis induced by chloroplast mutator. Plant Cell. 8, 1377–1390. https://doi.org/10.1105/tpc.8.8.1377

  183. Bellaoui M., Martin-Canadell A., Pelletier G., Budar F. (1998) Lowcopy-number molecules are produced by recombination, actively maintained and can be ampliWed in the mitochondrial genome of Brassicaceae: relationship to reversion of the male sterile phenotype in some cybrids. Mol. Gen. Genet. 257, 177–185. https://doi.org/10.1007/s004380050637

  184. Vitart V., De Paepe R., Mathieu C., Chetrit P., Vedel F. (1992) Amplification of substoichiometric recombinant mitochondrial DNA sequences in a nuclear, male sterile mutant regenerated from protoplast culture in Nicotiana sylvestris. Mol. Gen. Genet. 233, 193–200. https://doi.org/10.1007/BF00587579

  185. Hartmann C., Recipon H., Jubier M.F., Valon C., Delcher-Besin E., Henry Y., De Buyser J., Lejeune B., Rode A. (1994) Mitochondrial DNA variability detected in a single wheat regenerant involves a rare recombination event across a short repeat. Curr. Genet. 25, 456–464. https://doi.org/10.1007/BF00351786

  186. Taylor D.R., Olson M.S., McCauley D.E. (2001) A quantitative genetic analysis of nuclear-cytoplasmic male sterility in structured populations of Silene vulgaris. Genetics. 158, 833–841. https://doi.org/10.1093/genetics/158.2.833

  187. Welch M.E., Darnell M.Z., McCauley D.E. (2006) Variable populations within variable populations: quantifying mitochondrial heteroplasmy in natural populations of the gynodioecious plant Silene vulgaris. Genetics. 174, 829–837. https://doi.org/10.1534/genetics.106.059246

  188. Frey J.E., Frey B., Forcioli D. (2005) Quantitative assessment of heteroplasmy levels in Senecio vulgaris chloroplast DNA. Genetica. 123, 255–261. https://doi.org/10.1007/s10709-004-3711-y

  189. Pearl S.A., Welch M.E., McCauley D.E. (2009) Mitochondrial heteroplasmy and paternal leakage in natural populations of Silene vulgaris, a gynodioecious plant. Mol. Biol. Evol. 26, 537–545. https://doi.org/10.1093/molbev/msn273

  190. Mandel J.R., McCauley D.E. (2015) Pervasive mitochondrial sequence heteroplasmy in natural populations of wild carrot, Daucus carota spp. carota L. PLoS One. 10, e0136303. https://doi.org/10.1371/journal.pone.0136303

  191. Mishra P., Chan D.C. (2016) Metabolic regulation of mitochondrial dynamics. J. Cell Biol. 212, 379–387. https://doi.org/10.1083/jcb.201511036

  192. Jakobs S., Martini N., Schauss A.C., Egner A., Westermann B., Hell S.W. (2003) Spatial and temporal dynamics of budding yeast mitochondria lacking the division component Fis1p. J. Cell Sci. 116, 2005–2014. https://doi.org/10.1242/jcs.00423

  193. Tondera D., Grandemange S., Jourdain A., Karbowski M., Mattenberger Y., Herzig S., Da Cruz S., Clerc P., Raschke I., Merkwirth C., Ehses S., Krause F., Chan D.C., Alexander C., Bauer C., Youle R., Langer T., Martinou J.-C. (2009) SLP-2 is required for stress-induced mitochondrial hyperfusion. EMBO J. 28, 1589–1600. https://doi.org/10.1038/emboj.2009.89

  194. Mitra K., Wunder C., Roysam B., Lin G., Lippincott-Schwartz J. (2009) A hyperfused mitochondrial state achieved at G1-S regulates cyclin E buildup and entry into S phase. Proc. Natl. Acad. Sci. USA. 106, 11960–11965. https://doi.org/10.1073/pnas.0904875106

  195. Yao C.-H., Wang R., Wang Y., Kung C.-P., Weber J.D., Patti G.J. (2019) Mitochondrial fusion supports increased oxidative phosphorylation during cell prolife-ration. Elife. 8, e41351. https://doi.org/10.7554/eLife.41351

  196. Ramonell K.M., Kuang A., Porterfield D.M., Crispi M.L., Xiao Y., McClure G., Musgrave M.E. (2001) Influence of atmospheric oxygen on leaf structure and starch deposition in Arabidopsis thaliana. Plant Cell Environ. 24, 419–428. https://doi.org/10.1046/j.1365-3040.2001.00691.x

  197. May A.I., Devenish R.J., Prescott M. (2012) The many faces of mitochondrial autophagy: making sense of contrasting observations in recent research. Int. J. Cell Biol. 2012, 431684. https://doi.org/10.1155/2012/431684

  198. Popkov V.A., Plotnikov E.Y., Lyamzaev K.G., Silachev D.N., Zorova L.D., Pevzner I.B., Jankauskas S.S., Zorov S.D., Babenko V.A., Zorov D.B. (2015) Mitodiversity. Biochemistry (Mosc.). 80, 532‒541. https://doi.org/10.1134/S000629791505003X

  199. Li F., Chung T., Vierstra R.D. (2014) Autophagy-related11 plays a critical role in general autophagy- and senescence-induced mitophagy in Arabidopsis. Plant Cell. 26, 788–807. https://doi.org/10.1105/tpc.113.120014

  200. Minibayeva F., Dmitrieva S., Ponomareva A., Ryabovol V. (2012) Oxidative stress-induced autophagy in plants: the role of mitochondria. Plant Physiol. Biochem. 59, 11–19. https://doi.org/10.1016/j.plaphy.2012.02.013

  201. Wikstrom J.D., Katzman S.M., Mohamed H., Twig G., Graf S.A., Heart E., Molina A.J.A., Corkey B.E., Moitoso de Vargas L., Danial N.N., Collins S., Shirihai O.S. (2007) beta-Cell mitochondria exhibit membrane potential heterogeneity that can be altered by stimulatory or toxic fuel levels. Diabetes. 56, 2569–2578. https://doi.org/10.2337/db06-0757

  202. Distelmaier F., Koopman W.J., Testa E.R., de Jong A.S., Swarts H.G., Mayatepe E., Smeitink J.A.M., Willems P.H.G. (2008) Life cell quantification of mitochondrial membrane potential at the single organelle level. Cytometry A. 73, 29–38. https://doi.org/10.1002/cyto.a.20503

  203. Law S.R., Narsai R., Taylor N.L., Delannoy E., Carrie C., Giraud E., Millar A.H., Small I., Whelan J. (2012) Nucleotide and RNA metabolism prime translational initiation in the earliest events of mitochondrial biogenesis during Arabidopsis germination. Plant Physiol. 158, 1610–1627. https://doi.org/10.1104/pp.111.192351

  204. Konstantinov Y.M., Dietrich A., Weber-Lotfi F., Ibrahim N., Klimenko E.S., Tarasenko V.I., Bolotova T.A., Koulintchenko M.V. (2016) DNA import into mitochondria. Biochemistry (Mosc.). 81, 1044–1056. https://doi.org/10.1134/S0006297916100035

  205. Armstrong A.F., Logan D.C., Tobin A.K., O’Toole P., Atkin O.K. (2006) Heterogeneity of plant mitochondrial responses underpinning respiratory acclimation to the cold in Arabidopsis thaliana leaves. Plant Cell Environ. 29, 940–949. https://doi.org/10.1111/j.1365-3040.2005.01475.x

  206. Tarasenko T.A., Klimenko E.S., Tarasenko V.I., Koulintchenko M.V., Dietrich A., Weber-Lotfi F., Konstantinov Y.M. (2021) Plant mitochondria import DNA via alternative membrane complexes involving various VDAC isoforms. Mitochondrion. 60, 43–58. https://doi.org/10.1016/j.mito.2021.07.006

  207. Wade M.J., McCauley D.E. (2005) Paternal leakage sustains the cytoplasmic polymorphism underlying gynodioecy but remains invasible by nuclear restorers. Am. Nat. 166, 592‒602. https://doi.org/10.1086/491660

  208. McCauley D.E. (2013) Paternal leakage, heteroplasmy, and the evolution of plant mitochondrial genomes. New Phytol. 200, 966‒977. https://doi.org/10.1111/nph.12431

  209. Christie J.R., Schaerf T.M., Beekman M. (2015) Selection against heteroplasmy explains the evolution of uniparental inheritance of mitochondria. PLoS Genet. 11, e1005112. https://doi.org/10.1371/journal.pgen.1005112

Дополнительные материалы отсутствуют.