Молекулярная биология, 2022, T. 56, № 3, стр. 439-450

HEMK-подобные метилтрансферазы в регуляции клеточных процессов

Н. С. Бизяев a, А. В. Шувалов ab, Е. З. Алкалаева ab*

a Институт молекулярной биологии им. В.А. Энгельгардта Российской академии наук
119991 Москва, Россия

b Центр высокоточного редактирования и генетических технологий для биомедицины
119991 Москва, Россия

* E-mail: alkalaeva@eimb.ru

Поступила в редакцию 26.11.2021
После доработки 26.11.2021
Принята к публикации 02.12.2021

Аннотация

Трансляционная метилтрансфераза (метилаза) HEMK2 человека, ортологи которой обнаружены у множества прокариот и эукариот, метилирует такие разнообразные субстраты, как остатки глутамина и лизина в составе белков, дезоксиаденозин в ДНК, а также соединения мышьяка. Важным субстратом метилазы HEMK2 является остаток глутамина в инвариантном GGQ-мотиве эукариотического фактора терминации трансляции 1 (eRF1). Метилирование этого остатка ортологами HEMK2 консервативно у эукариот, архей и бактерий, хотя факторы терминации бактерий имеют другие аминокислотные последовательности и структуру. В данном обзоре рассмотрены особенности функционирования метилазы HEMK2 человека и ее ортологов как многофункциональных ферментов, регулирующих клеточные процессы, в частности, биосинтез белка.

Ключевые слова: HEMK2, N6AMT1, eRF1, регуляция трансляции, метилирование, посттрансляционные модификации

Список литературы

  1. Figaro S., Scrima N., Buckingham R.H., Heurgué-Hamard V. (2008) HemK2 protein, encoded on human chromosome 21, methylates translation termination factor eRF1. FEBS Lett. 582, 2352–2356.

  2. Metzger E., Wang S., Urban S., Willmann D., Schmidt A., Offermann A., Allen A., Sum M., Obier N., Cottard F., Ulferts S., Preca B.-T., Hermann B., Maurer J., Greschik H., Hornung V., Einsle O., Perner S., Imhof A., Jung M., Schüle R. (2019) KMT9 monomethylates histone H4 lysine 12 and controls proliferation of prostate cancer cells. Nat. Struct. Mol. Biol. 26, 361–371.

  3. van Tran N., Muller L., Ross R.L., Lestini R., Létoquart J., Ulryck N., Limbach P.A., de Crécy-Lagard V., Cianférani S., Graille M. (2018) Evolutionary insights into Trm112-methyltransferase holoenzymes involved in translation between archaea and eukaryotes. Nucl. Acids Res. 46, 8483–8499.

  4. Polevoda B., Span L., Sherman F. (2006) The yeast translation release factors Mrf1p and Sup45p (eRF1) are methylated, respectively, by the methyltransferases Mtq1p and Mtq2p. J. Biol. Chem. 281, 2562–2571.

  5. Polevoda B., Sherman F. (2007) Methylation of proteins involved in translation. Mol. Microbiol. 65, 590–606.

  6. Heurgué-Hamard V., Champ S., Mora L., Merkoulova-Rainon T., Kisselev L.L., Buckingham R.H. (2005) The glutamine residue of the conserved GGQ motif in Saccharomyces cerevisiae release factor eRF1 is methylated by the product of the YDR140w gene. J. Biol. Chem. 280, 2439–2445.

  7. Woodcock C.B., Yu D., Zhang X., Cheng X. (2019) Human HemK2/KMT9/N6AMT1 is an active protein methyltransferase, but does not act on DNA in vitro, in the presence of Trm112. Cell Discov. 5, 50.

  8. Ren X., Aleshin M., Jo W.J., Dills R., Kalman D.A., Vulpe C.D., Smith M.T., Zhang L. (2011) Involvement of N-6 adenine-specific DNA methyltransferase 1 (N6AMT1) in arsenic biomethylation and its role in arsenic-induced toxicity. Environ. Hlth Perspect. 119, 771–777.

  9. Xiao C.-L., Zhu S., He M., Chen D., Zhang Q., Chen Y., Yu G., Liu J., Xie S.-Q., Luo F., Liang Z., Wang D.-P., Bo X.-C., Gu X.-F., Wang K., Yan G.-R. (2018) N6-methyladenine DNA modification in the human genome. Mol. Cell. 71, 306–318.e7.

  10. Heurgue-Hamard V. (2002) The hemK gene in Escherichia coli encodes the N5-glutamine methyltransferase that modifies peptide release factors. EMBO J. 21, 769–778.

  11. Ishizawa T., Nozaki Y., Ueda T., Takeuchi N. (2008) The human mitochondrial translation release factor HMRF1L is methylated in the GGQ motif by the methyltransferase HMPrmC. Biochem. Biophys. Res. Commun. 373, 99–103.

  12. Nakahigashi K., Kubo N., Narita S., Shimaoka T., Goto S., Oshima T., Mori H., Maeda M., Wada C., Inokuchi H. (2002) HemK, a class of protein methyl transferase with similarity to DNA methyl transferases, methylates polypeptide chain release factors, and hemK knockout induces defects in translational termination. Proc. Natl. Acad. Sci. 99, 1473–1478.

  13. Fang Q., Kimura Y. (2021) Mammalian HEMK1 methylates glutamine residue of the GGQ motif of mitochondrial release factors. Research Square. 1–21. https://doi.org/10.21203/rs.3.rs-1049003/v1

  14. Nakayashiki T., Nishimura K., Inokuchi H. (1995) Cloning and sequencing of a previously unidentified gene that is involved in the biosynthesis of heme in Escherichia coli. Gene. 153, 67–70.

  15. Sergiev P.V., Aleksashin N.A., Chugunova A.A., Polikanov Y.S., Dontsova O.A. (2018) Structural and evolutionary insights into ribosomal RNA methylation. Nat. Chem. Biol., 14, 226–235.

  16. Schubert H.L., Phillips J.D., Hill C.P. (2003) Structures along the catalytic pathway of PrmC/HemK, an N5-glutamine AdoMet-dependent methyltransferase. Biochemistry. 42, 5592–5599.

  17. Liger D., Mora L., Lazar N., Figaro S., Henri J., Scrima N., Buckingham R.H., van Tilbeurgh H., Heurgué-Hamard V., Graille M. (2011) Mechanism of activation of methyltransferases involved in translation by the Trm112 ‘hub’ protein. Nucl. Acids Res. 39, 6249–6259.

  18. Martin J.L., McMillan F.M. (2002) SAM (dependent) I AM: the S-adenosylmethionine-dependent methyltransferase fold. Curr. Opin. Struct. Biol. 12, 783–793.

  19. Schubert H.L., Blumenthal R.M., Cheng X. (2003) Many paths to methyltransfer: a chronicle of convergence. Trends Biochem. Sci. 28, 329–335.

  20. Gao J., Wang B., Yu H., Wu G., Wan C., Liu W., Liao S., Cheng L., Zhu Z. (2020) Structural insight into HEMK2–TRMT112-mediated glutamine methylation. Biochem. J. 477, 3833–3838.

  21. Lacoux C., Wacheul L., Saraf K., Pythoud N., Huvelle E., Figaro S., Graille M., Carapito C., Lafontaine D.L.J., Heurgué-Hamard V. (2020) The catalytic activity of the translation termination factor methyltransferase Mtq2-Trm112 complex is required for large ribosomal subunit biogenesis. Nucl. Acids Res. 48, 12310–12325.

  22. Yang Z., Shipman L., Zhang M., Anton B.P., Roberts R.J., Cheng X. (2004) Structural characterization and comparative phylogenetic analysis of Escherichia coli HemK, a protein (N5)-glutamine methyltransferase. J. Mol. Biol. 340, 695–706.

  23. Holtkamp W., Kokic G., Jager M., Mittelstaet J., Komar A.A., Rodnina M.V. (2015) Cotranslational protein folding on the ribosome monitored in real time. Science. 350, 1104–1107.

  24. Mercier E., Rodnina M.V. (2018) Co-translational folding trajectory of the HemK helical domain. Biochemistry. 57, 3460–3464.

  25. Liutkute M., Maiti M., Samatova E., Enderlein J., Rodnina M.V. (2020) Gradual compaction of the nascent peptide during cotranslational folding on the ribosome. ELife. 9, e60895.

  26. Heurgué-Hamard V., Graille M., Scrima N., Ulryck N., Champ S., van Tilbeurgh H., Buckingham R.H. (2006) The zinc finger protein Ynr046w is plurifunctional and a component of the eRF1 methyltransferase in yeast. J. Biol. Chem. 281, 36140–36148.

  27. Lee J., Levin D.E. (2018) Intracellular mechanism by which arsenite activates the yeast stress MAPK Hog1. Mol. Biol. Cell. 29, 1904–1915.

  28. Bourgeois G., Létoquart J., van Tran N., Graille M. (2017) Trm112, a protein activator of methyltransferases modifying actors of the eukaryotic translational apparatus. Biomolecules. 7, 7.

  29. Leetsi L., Õunap K., Abroi A., Kurg R. (2019) The common partner of several methyltransferases TRMT112 regulates the expression of N6AMT1 isoforms in mammalian cells. Biomolecules. 9, 422.

  30. Sardana R., Johnson A.W. (2012) The methyltransferase adaptor protein Trm112 is involved in biogenesis of both ribosomal subunits. Mol. Biol. Cell. 23, 4313–4322.

  31. Ratel D., Ravanat J.-L., Charles M.-P., Platet N., Breuillaud L., Lunardi J., Berger F., Wion D. (2006) Undetectable levels of N6-methyl adenine in mouse DNA: cloning and analysis of PRED28, a gene coding for a putative mammalian DNA adenine methyltransferase. FEBS Lett. 580, 3179–3184.

  32. Kailasam S., Singh S., Liu M., Lin C., Yeh K. (2020) A HemK class glutamine-methyltransferase is involved in the termination of translation and essential for iron homeostasis in Arabidopsis. New Phytol. 226, 1361–1374.

  33. Mora L., Heurgué-Hamard V., de Zamaroczy M., Kervestin S., Buckingham R.H. (2007) Methylation of bacterial release factors RF1 and RF2 is required for normal translation termination in vivo. J. Biol. Chem. 282, 35638–35645.

  34. Kakkanat A., Phan M.-D., Lo A.W., Beatson S.A., Schembri M.A. (2017) Novel genes associated with enhanced motility of Escherichia coli ST131. PLoS One. 12, e0176290.

  35. Nordquist S.K., Smith S.R., Pierce J.T. (2018) Systematic functional characterization of human 21st chromosome orthologs in Caenorhabditis elegans. G3 Genes Genomes Genet. 8, 967–979.

  36. Obata F., Tsuda-Sakurai K., Yamazaki T., Nishio R., Nishimura K., Kimura M., Funakoshi M., Miura M. (2018) Nutritional control of stem cell division through S-adenosylmethionine in Drosophila intestine. Dev. Cell. 44, 741–751.e3.

  37. Fagerberg L., Hallström B.M., Oksvold P., Kampf C., Djureinovic D., Odeberg J., Habuka M., Tahmasebpoor S., Danielsson A., Edlund K., Asplund A., Sjöstedt E., Lundberg E., Szigyarto C.A.-K., Skogs M., Takanen J.O., Berling H., Tegel H., Mulder J., Nilsson P., Schwenk J., Lindskog C., Danielsson F., Mardinoglu A., Sivertsson A., von Feilitzen K., Forsberg M., Zwahlen M., Olsson I., Navani S., Huss M., Nielsen J., Ponten F., Uhlén M. (2014) Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Mol. Cell. Proteom. 13, 397–406.

  38. Arroyo J.D., Jourdain A.A., Calvo S.E., Ballarano C.A., Doench J.G., Root D.E., Mootha V.K. (2016) A genome-wide CRISPR death screen identifies genes essential for oxidative phosphorylation. Cell Metabolism. 24, 875–885.

  39. Liu P., Nie S., Li B., Yang Z.-Q., Xu Z.-M., Fei J., Lin C., Zeng R., Xu G.-L. (2010) Deficiency in a glutamine-specific methyltransferase for release factor causes mouse embryonic lethality. Mol. Cell. Biol. 30, 4245–4253.

  40. Liang B., Shao Y., Long F., Jiang S.-J. (2016) Predicting diagnostic gene biomarkers for non-small-cell lung cancer. BioMed Res. Internat. 2016, 1–8.

  41. Spitali P., Hettne K., Tsonaka R., Charrout M., van den Bergen J., Koeks Z., Kan H.E., Hooijmans M.T., Roos A., Straub V., Muntoni F., Al-Khalili-Szigyarto C., Koel-Simmelink M.J.A., Teunissen C.E., Lochmül-ler H., Niks E.H., Aartsma-Rus A. (2018) Tracking disease progression non-invasively in Duchenne and Becker muscular dystrophies. J. Cachexia, Sarcopenia Muscle. 9, 715–726.

  42. Wagner P., Yin T., Brügemann K., Engel P., Weimann C., Schlez K., König S. (2021) Genome-wide associations for microscopic differential somatic cell count and specific mastitis pathogens in Holstein cows in compost-bedded pack and cubicle farming systems. Animals. 11, 1839.

  43. Dincbas-Renqvist V. (2000) A post-translational modification in the GGQ motif of RF2 from Escherichia coli stimulates termination of translation. EMBO J. 19, 6900–6907.

  44. Desai N., Yang H., Chandrasekaran V., Kazi R., Min-czuk M., Ramakrishnan V. (2020) Elongational stalling activates mitoribosome-associated quality control. Science. 370, 1105–1110.

  45. Kusevic D., Kudithipudi S., Jeltsch A. (2016) Substrate specificity of the HEMK2 protein glutamine methyltransferase and identification of novel substrates. J. Biol. Chem. 291, 6124–6133.

  46. Schubert H.L. (2006) 14 modification of glutamine residues in proteins involved in translation. Enzymes. 24, 437–453.

  47. Pierson W.E., Hoffer E.D., Keedy H.E., Simms C.L., Dunham C.M., Zaher H.S. (2016) Uniformity of peptide release is maintained by methylation of release factors. Cell Rep. 17, 11–18.

  48. Zeng F., Jin H. (2016) Peptide release promoted by methylated RF2 and ArfA in nonstop translation is achieved by an induced-fit mechanism. RNA. 22, 49–60.

  49. Zeng F., Jin H. (2018) Conformation of methylated GGQ in the peptidyl transferase center during translation termination. Sci. Rep. 8, 2349.

  50. Indrisiunaite G., Pavlov M.Y., Heurgué-Hamard V., Ehrenberg M. (2015) On the pH dependence of class-1 RF-dependent termination of mRNA translation. J. Mol. Biol. 427, 1848–1860.

  51. Li W., Chang S.T.-L., Ward F.R., Cate J.H.D. (2020) Selective inhibition of human translation termination by a drug-like compound. Nat. Commun. 11, 4941.

  52. Trobro S., Åqvist J. (2007) A model for how ribosomal release factors induce peptidyl-tRNA cleavage in termination of protein synthesis. Mol. Cell. 27, 758–766.

  53. Andér M., Åqvist J. (2009) Does glutamine methylation affect the intrinsic conformation of the universally conserved GGQ motif in ribosomal release factors? Biochemistry. 48, 3483–3489.

  54. Thomas D.J., Li J., Waters S.B., Xing W., Adair B.M., Drobna Z., Devesa V., Styblo M. (2007) Arsenic (+3 oxidation state) methyltransferase and the methylation of arsenicals. Exp. Biol. Med. 232, 3–13.

  55. Kapaj S., Peterson H., Liber K., Bhattacharya P. (2006) Human health effects from chronic arsenic poisoning – a review. J. Env. Sci. Hlth. Part A. 41, 2399–2428.

  56. Harari F., Engström K., Concha G., Colque G., Vah-ter M., Broberg K. (2013) N6-adenine-specific DNA methyltransferase 1 (N6AMT1) polymorphisms and arsenic methylation in Andean women. Environ. Health Perspect. 121, 797–803.

  57. Parashar N.C., Parashar G., Nayyar H., Sandhir R. (2018) N6-adenine DNA methylation demystified in eukaryotic genome: from biology to pathology. Biochimie. 144, 56–62.

  58. Iyer L.M., Zhang D., Aravind L. (2016) Adenine methylation in eukaryotes: apprehending the complex evolutionary history and functional potential of an epigenetic modification. BioEssays. 38, 27–40.

  59. Ratel D., Ravanat J.-L., Berger F., Wion D. (2006) N6-methyladenine: the other methylated base of DNA. BioEssays. 28, 309–315.

  60. Sergiev P.V., Golovina A.Y., Osterman I.A., Nesterchuk M.V., Sergeeva O.V., Chugunova A.A., Evfratov S.A., Andreianova E.S., Pletnev P.I., Laptev I.G., Petriukov K.S., Navalayeu T.I., Koteliansky V.E., Bogdanov A.A., Dontsova O.A. (2016) N6-methylated adenosine in RNA: from bacteria to humans. J. Mol. Biol. 428, 2134–2145.

  61. Greer E.L., Blanco M.A., Gu L., Sendinc E., Liu J., Aristizábal-Corrales D., Hsu C.-H., Aravind L., He C., Shi Y. (2015) DNA methylation on N6-adenine in C. elegans. Cell. 161, 868–878.

  62. Bujnicki J.M., Radlinska M. (1999) Is the HemK family of putative S-adenosylmethionine-dependent methyltransferases a “missing” zeta subfamily of adenine methyltransferases? A hypothesis. Internat. Union Biochem. Mol. Biol. Life. 48, 247–249.

  63. Kirschner K., Bisswanger H. (1976) Multifunctional proteins. Annu. Rev. Biochem. 45, 143–166.

  64. Jeffery C.J. (1999) Moonlighting proteins. Trends Biochem. Sci. 24, 8–11.

  65. Copley S. (2003) Enzymes with extra talents: moonlighting functions and catalytic promiscuity. Curr. Opin. Chem. Biol. 7, 265–272.

  66. Moore B.D. (2004) Bifunctional and moonlighting enzymes: lighting the way to regulatory control. Trends Plant Sci. 9, 221–228.

  67. O’Brien P.J., Herschlag D. (1999) Catalytic promiscuity and the evolution of new enzymatic activities. Chem. Biol. 6, R91–R105.

  68. Hult K., Berglund P. (2007) Enzyme promiscuity: mechanism and applications. Trends Biotechnol. 25, 231–238.

  69. Seelig B. (2017) Multifunctional enzymes from reduced genomes – model proteins for simple primordial metabolism? Mol. Microbiol. 105, 505–507.

  70. Thomas B.A., McMahon L.P., Klotz A.V. (1995) N5-methylasparagine and energy-transfer efficiency in C‑phycocyanin. Biochemistry. 34, 3758–3770.

  71. Clarke S. (2002) The methylator meets the terminator. Proc. Natl. Acad. Sci. USA. 99, 1104–1106.

  72. Demma M., Warren V., Hock R., Dharmawardhane S., Condeelis J. (1990) Isolation of an abundant 50 000-dalton actin filament bundling protein from Dictyostelium amoebae. J. Biol. Chem. 265, 2286–2291.

  73. Edmonds B.T., Murray J., Condeelis J. (1995) pH regulation of the F-actin binding properties of Dictyostelium elongation factor 1α. J. Biol. Chem. 270, 15222–15230.

  74. Shiina N., Gotoh Y., Kubomura N., Iwamatsu A., Nishida E. (1994) Microtubule severing by elongation factor 1α. Science. 266, 282–285.

  75. Yang W., Burkhart W., Cavallius J., Merrick W.C., Boss W.F. (1993) Purification and characterization of a phosphatidylinositol 4-kinase activator in carrot cells. J. Biol. Chem. 268, 392–398.

  76. Inge-Vechtomov S., Zhouravleva G., Philippe M. (2003) Eukaryotic release factors (eRFs) history. Biol. Cell. 95, 195–209.

Дополнительные материалы отсутствуют.