Молекулярная биология, 2022, T. 56, № 3, стр. 428-438

Выбор донорной молекулы в экспериментах по геномному редактированию в клетках животных

О. В. Володина a, С. А. Смирнихина a*

a Медико-генетический научный центр имени академика Н.П. Бочкова
115522 Москва, Россия

* E-mail: smirnikhinas@gmail.com

Поступила в редакцию 15.07.2021
После доработки 08.10.2021
Принята к публикации 12.11.2021

Аннотация

Редактирование генома стало мощным инструментом изучения свойств генов или изменения нуклеотидной последовательности. За последние несколько десятилетий разработаны программируемые нуклеазы, которые могут вносить двухцепочечный разрыв в интересующий участок молекулы ДНК. Репарация ДНК после инициации двухцепочечного разрыва может пойти по пути негомологичного соединения концов (NHEJ), которое приводит к различным ошибкам и нокауту гена. Другие варианты репарации – направленная гомологичная репарация (HDR) или репарация с помощью одноцепочечной матрицы (SSTR) – позволяют вносить желаемые изменения в ген. В природе HDR происходит в присутствии донорной матрицы – сестринской хроматиды. При редактировании генома животных клеток эффективность HDR и SSTR значительно ниже, чем NHEJ. Чтобы искусственно повысить их эффективность, а также ввести донорную молекулу для нужного изменения геномной ДНК используют двухцепочечные ДНК, одноцепочечные олигодезоксинуклеотиды и длинные одноцепочечные ДНК. В данном обзоре рассмотрены донорные молекулы, которые используют для репарации двухцепочечных разрывов с помощью HDR или SSTR при редактировании генома, их применение и модификации, повышающие эффективность HDR и SSTR.

Ключевые слова: геномное редактирование, донорные молекулы, дцДНК, длинные дцДНК, олигодезоксирибонуклеотиды

Список литературы

  1. Durai S., Mani M., Kandavelou K., Wu J., Porteus M.H., Chandrasegaran S. (2005) Zinc finger nucleases: custom-designed molecular scissors for genome engineering of plant and mammalian cells. Nucl. Acids Res. 33(18), 3978–5990. https://doi.org/10.1093/nar/gki912

  2. Silva G., Poirot L., Galetto R., Smith J., Montoya G., Duchateau Ph., Pâques F. (2011) Meganucleases and other tools for targeted genome engineering: perspectives and challenges for gene therapy. Curr. Gene Therapy11(1), 11–27. https://doi.org/10.2174/156652311794520111

  3. Cermak T., Doyle E. L., Christian M., Wang L., Zhang Y., Schmidt C., Baller J.A., Somia N.V., Bogdanove A.J., Voytas D.F. (2011) Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucl. Acids Res. 39(12), e82. https://doi.org/10.1093/nar/gkr218

  4. Jinek M., Chylinski K., Fonfara I., Hauer M., Dou-dna J.A., Charpentier E. (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 337(6096), 816–821. https://doi.org/10.1126/science.1225829

  5. Guha T.K., Wai A., Hausner G. (2017) Programmable genome editing tools and their regulation for efficient genome engineering. Comp. Struct. Biotechnol. J. 15, 146–160. https://doi.org/10.1016/j.csbj.2016.12.006

  6. Symington L.S., Gautier J. (2011) Double-strand break end resection and repair pathway choice. Annu. Rev. Genet. 45, 247–271. https://doi.org/10.1146/annurev-genet-110410-132435

  7. Chang H., Pannunzio N.R., Adachi N., Lieber M.R. (2017) Non-homologous DNA end joining and alternative pathways to double-strand break repair. Nat. Rev. Mol. Cell Biol. 18(8), 495–506. https://doi.org/10.1038/nrm.2017.48

  8. Li T., Huang S., Zhao X., Wright D.A., Carpenter S., Spalding M.H., Weeks D.P., Yang B. (2011) Modularly assembled designer TAL effector nucleases for targeted gene knockout and gene replacement in eukaryotes. Nucl. Acids Res. 39(14), 6315–6325. https://doi.org/10.1093/nar/gkr188

  9. Devkota S. (2018) The road less traveled: strategies to enhance the frequency of homology-directed repair (HDR) for increased efficiency of CRISPR/Casmediated transgenesis. BMB Rep. 51(19), 437–443. https://doi.org/10.5483/BMBRep.2018.51.9.187

  10. Richardson C.D., Kazane K.R., Feng S.J., Zelin E., Bray N.L., Schäfer A.J., Floor S.N., Corn J.E. (2018) CRISPR-Cas9 genome editing in human cells occurs via the Fanconi anemia pathway. Nat. Genet. 50(8), 1132–1139. https://doi.org/10.1038/s41588-018-0174-0

  11. Hockemeyer D., Soldner F., Beard C., Gao Q., Mitalipova M., DeKelver R.C., Katibah G.E., Amora R., Boydston E.A., Zeitler B., Meng X., Miller J.C., Zhang L., Rebar E.J., Gregory Ph.D., Urnov F.D., Jaenisch R. (2009) Efficient targeting of expressed and silent genes in human ESCs and iPSCs using zinc-finger nucleases. Nat. Biotechnol. 27, 851–857. https://doi.org/10.1038/nbt.1562

  12. Hockemeyer D., Wang H., Kiani S., Lai C.S., Gao Q., Cassady J.P., Cost G.J., Zhang L., Santiago Y., Miller J.C., Zeitler B., Cherone J.M., Meng X., Hinkley S.J., Rebar E.J., Gregory Ph.D., Urnov F.D., Jaenisch R. (2011) Genetic engineering of human pluripotent cells using TALE nucleases. Nat. Biotechnol. 29, 731–734. https://doi.org/10.1038/nbt.1927

  13. Sommer D., Peters A., Wirtz T., Mai M., Ackermann J., Thabet Y., Schmidt J., Weighardt H., Wunderlich F.T., Degen J., Schultze J.L., Beyer M. (2014) Efficient genome engineering by targeted homologous recombination in mouse embryos using transcription activator-like effector nucleases. Nat. Commun. 5, 3045. https://doi.org/10.1038/ncomms4045

  14. Heyer W.D., Ehmsen K.T., Liu J. (2010) Regulation of homologous recombination in eukaryotes. Annu. Rev. Genet. 44, 113–139. https://doi.org/10.1146/annurev-genet-051710-150955

  15. Yanik M., Ponnam S., Wimmer T., Trimborn L., Mül-ler C., Gambert I., Ginsberg J., Janise A., Domicke J., Wende W., Lorenz B., Stieger K. (2018) Development of a reporter system to explore MMEJ in the context of replacing large genomic fragments. Mol. Therapy. Nucl. Acids. 11, 407–415. https://doi.org/10.1016/j.omtn.2018.03.010

  16. Smirnikhina S.A., Anuchina A.A., Lavrov A.V. (2019) Ways of improving precise knock-in by genome-editing technologies. Hum. Genet. 138(1), 1–19. https://doi.org/10.1007/s00439-018-1953-5

  17. Lin S., Staahl B.T., Alla R.K., Doudna J.A. (2014) Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery. eLife. 3, e04766. https://doi.org/10.7554/eLife.04766

  18. Seol J.H., Shim E.Y., Lee S.E. (2018) Microhomology-mediated end joining: good, bad and ugly. Mutat. Res. 809, 81–87.

  19. González-Marín C., Gosálvez J., Roy R. (2012) Types, causes, detection and repair of DNA fragmentation in animal and human sperm cells. Internat. J. Mol. Sci. 13(11), 14026–14052. https://doi.org/10.3390/ijms131114026

  20. Liu M., Rehman S., Tang X., Fan Q., Chen D., Ma W. (2019) Methodologies for improving HDR efficiency. Front. Genet. 9(691). https://doi.org/10.3389/fgene.2018.00691

  21. Zhu Z., Chung W.H., Shim E.Y., Lee S.E., Ira G. (2008) Sgs1 helicase and two nucleases Dna2 and Exo1 resect DNA double-strand break ends. Cell. 34(6), 981‒994. https://doi.org/10.1016/j.cell.2008.08.037

  22. Falck J., Coates J., Jackson S.P. (2005) Conserved modes of recruitment of ATM, ATR and DNA-PKcs to sites of DNA damage. Nature. 434(7033), 605‒611. https://doi.org/10.1038/nature03442

  23. Dupré A., Boyer-Chatenet L., Gautier J. (2006) Two-step activation of ATM by DNA and the Mre11-Rad50-Nbs1 complex. Nat. Struct. Mol. Biol. 13(5), 451–457. https://doi.org/10.1038/nsmb1090

  24. Helleday T., Lo J., van Gent D.C., Engelward B.P. (2007) DNA double-strand break repair: from mechanistic understanding to cancer treatment. DNA Repair. 6(7), 923–935. https://doi.org/10.1016/j.dnarep.2007.02.006

  25. Liu J., Ede C., Wright W. D., Gore S.K., Jenkins S.S., Freudenthal B.D., Washington M.T., Veaute X., Heyer W.-D. (2017) Srs2 promotes synthesis-dependent strand annealing by disrupting DNA polymerase δ-extending D-loops. eLife. 6, e22195. https://doi.org/10.7554/eLife.22195

  26. McMahill M.S., Sham C.W., Bishop D.K. (2007) Synthesis-dependent strand annealing in meiosis. PLoS Biol. 5(11), e299. https://doi.org/10.1371/journal.pbio.0050299

  27. Agmon N., Yovel M., Harari Y., Liefshitz B., Kupiec M. (2011) The role of Holliday junction resolvases in the repair of spontaneous and induced DNA damage. Nucl. Acids Res. 39(16), 7009–7019. https://doi.org/10.1093/nar/gkr277

  28. Davis L., Zhang Y., Maizels N. (2018) Assaying repair at DNA nicks. Methods Enzymol. 601, 71–89. https://doi.org/10.1016/bs.mie.2017.12.001

  29. Gallagher D.N., Pham N., Tsai A.M., Janto A.N., Choi J., Ira G., Haber J.E. (2020) A Rad51-independent pathway promotes single-strand template repair in gene editing. PLoS Genet. 16(10), e1008689. https://doi.org/10.1371/journal.pgen.1008689

  30. Gallagher D.N., Haber J.E. (2021) Single-strand template repair: key insights to increase the efficiency of gene editing. Curr. Genet. 67, 747–753. https://doi.org/10.1007/s00294-021-01186-z

  31. Hu Z., Zhou M., Wu Y., Li Z., Liu X., Wu L., Liang D. (2019) ssODN-mediated in-frame deletion with CRISPR/Cas9 restores FVIII function in hemophilia A-patient-derived iPSCs and ECs. Mol. Therapy. Nucl. Acids. 17, 198–209. https://doi.org/10.1016/j.omtn.2019.05.019

  32. Bennett H., Aguilar-Martinez E., Adamson A.D. (2021) CRISPR-mediated knock-in in the mouse embryo using long single stranded DNA donors synthesised by biotinylated PCR. Methods (San Diego, Calif.). 191, 3–14. https://doi.org/10.1016/j.ymeth.2020.10.012

  33. Cristea S., Freyvert Y., Santiago Y. (2013) In vivo cleavage of transgene donors promotes nuclease-mediated targeted integration. Biotechnol. Bioengin. 110(3), 871–880. https://doi.org/10.1002/bit.24733

  34. Fueller J., Herbst K., Meurer M., Gubicza K., Kurtulmus B., Knopf J.D., Kirrmaier D., Buchmuller B.C., Pereira G., Lemberg M.K., Knop M. (2020) CRISPR-Cas12a-assisted PCR tagging of mammalian genes. J. Cell Biol. 219(6), e201910210. https://doi.org/10.1083/jcb.201910210

  35. Chen F., Pruett-Miller S.M., Davis G.D. (2015) Gene editing using ssODNs with engineered endonucleases. Methods Mol. Biol. 1239, 251–265. https://doi.org/10.1007/978-1-4939-1862-1_14

  36. Мягкая Н.О., Марочкин Н.А., Норбобаева М.Б., Серба Т.В., Стародуб М.А., Курбединов Р.А., Костенко С.А., Заяц И.В. (2020) Обзор метода CRISPR/Cas9 для редактирования генома. Молодой ученый. 12(302), 81–85.

  37. Designing Homologous Repair Templates. New England BioLabs Inc. https://international.neb.com/applications/genome-editing/designing-homologous-repair-templates

  38. Mao C.Z., Zheng L., Zhou Y.M., Wu H.-Y., Xia J.-B., Liang C.-Q., Guo X.-F., Peng W.-T., Zhao H., Cai W.-B., Kim S.-K., Park K.-S., Cai D.-Q., Qi X.-F. (2018) CRISPR/Cas9-mediated efficient and precise targeted integration of donor DNA harboring double cleavage sites in Xenopus tropicalis. FASEB J. fj201800093. Advance online publication. https://doi.org/10.1096/fj.201800093

  39. Pineault K.M., Novoa A., Lozovska A., Wellik D.M., Mallo M. (2019) Two CRISPR/Cas9-mediated methods for targeting complex insertions, deletions, or replacements in mouse. MethodsX. 6, 2088–2100. https://doi.org/10.1016/j.mex.2019.09.003

  40. Roth T.L., Puig-Saus C., Yu R., Shifrut E., Carnevale J., Li P. J., Hiatt J., Saco J., Krystofinski P., Li H., Tobin V., Nguyen D.N., Lee M.R., Putnam A.L., Ferris A.L., Chen J.W., Schickel J.-N., Pellerin L., Carmody D., Alkorta-Aranburu G., Del Gaudio D., Matsumoto H., Morell M., Mao Y., Cho M., Quadros R.M., Gurumurthy C.B., Smith B., Haugwitz M., Hughes S.H., Weissman J.S., Schumann K., Esensten J.H., May A.P., Ashworth A., Kupfer G.M., Greeley S.A.W., Bacchetta R., Meffre E., Roncarolo M.G., Romberg N., Herold K.C., Ribas A., Leonetti M.D., Marson A. (2018) Reprogramming human T cell function and specificity with non-viral genome targeting. Nature. 559(7714), 405–409. https://doi.org/10.1038/s41586-018-0326-5

  41. Quadros R.M., Miura H., Harms D.W., Akatsuka H., Sato T., Aida T., Redder R., Richardson G.P., Inagaki Y., Sakai D., Buckley S.M., Seshacharyulu P., Batra S.K., Behlke M.A., Zeiner S.A., Jacobi A.M., Izu Y., Thoreson W.B., Urness L.D., Mansour S.L., Ohtsuka M., Gurumurthy C.B. (2017) Easi-CRISPR: a robust method for one-step generation of mice carrying conditional and insertion alleles using long ssDNA donors and CRISPR ribonucleoproteins. Genome Biol. 18(1), 92. https://doi.org/10.1186/s13059-017-1220-4

  42. Miura H., Gurumurthy C.B., Sato T., Sato M., Ohtsuka M. (2015) CRISPR/Cas9-based generation of knockdown mice by intronic insertion of artificial microRNA using longer single-stranded DNA. Sci. Rep. 5, 12799. https://doi.org/10.1038/srep12799

  43. Leonetti M.D., Sekine S., Kamiyama D., Weissman J.S., Huang B. (2016) A scalable strategy for high-throughput GFP tagging of endogenous human proteins. Proc. Natl. Acad. Sci. USA. 113(25), E3501–E3508. https://doi.org/10.1073/pnas.1606731113

  44. Miura H., Quadros R.M., Gurumurthy C.B., Ohtsuka M. (2018) Easi-CRISPR for creating knock-in and conditional knockout mouse models using long ssDNA donors. Nat. Protocols. 13(1), 195–215. https://doi.org/10.1038/nprot.2017.153

  45. Harrison G.P., Mayo M.S., Hunter E., Lever A.M. (1998) Pausing of reverse transcriptase on retroviral RNA templates is influenced by secondary structures both 5' and 3' of the catalytic site. Nucl. Acids Res. 26(14), 3433–3442. https://doi.org/10.1093/nar/26.14.3433

  46. Bai H., Liu L., An K., X. Lu, Harrison M., Zhao Y., Yan R., Lu Z., Li S., Lin S., Liang F., Qin W. (2020) CRISPR/Cas9-mediated precise genome modification by a long ssDNA template in zebrafish. BMC Genomics. 21(1), 67. https://doi.org/10.1186/s12864-020-6493-4

  47. Hwang W.Y., Fu Y., Reyon D., Maeder M.L., Kaini P., Sander J.D., Joung J.K., Peterson R.T., Yeh J.-R.J. (2013) Heritable and precise zebrafish genome editing using a CRISPR-Cas system. PLoS One. 8(7). e68708 https://doi.org/10.1371/journal.pone.0068708

  48. Richardson C.D., Ray G.J., DeWitt M.A., Curie G.L., Corn J.E. (2016) Enhancing homology-directed genome editing by catalytically active and inactive CRISPR-Cas9 using asymmetric donor DNA. Nat. Biotechnol. 34(3), 339–344. https://doi.org/10.1038/nbt.3481

  49. O'Brien A.R., Wilson L., Burgio G., Bauer D.C. (2019) Unlocking HDR-mediated nucleotide editing by identifying high-efficiency target sites using machine learning. Sci. Rep. 9(1), 2788. https://doi.org/10.1038/s41598-019-39142-0

  50. Lim D., Sreekanth V., Cox K.J., Law B.K., Wagner B.K., Karp J.M., Choudhary A. (2020) Engineering designer beta cells with a CRISPR-Cas9 conjugation platform. Nat. Commun. 11(1), 4043. https://doi.org/10.1038/s41467-020-17725-0

  51. Harmsen T., Klaasen S., van de Vrugt H., Te Riele H. (2018) DNA mismatch repair and oligonucleotide end-protection promote base-pair substitution distal from a CRISPR/Cas9-induced DNA break. Nucl. Acids Res. 46(6), 2945–2955. https://doi.org/10.1093/nar/gky076

  52. Shao Y., Guan Y., Wang L., Qiu Z., Liu M., Chen Y., Wu L., Li Y., Ma X., Liu M., Li D. (2014) CRISPR/ Cas-mediated genome editing in the rat via direct injection of one-cell embryos. Nat. Protocols. 9(10), 2493–2512. https://doi.org/10.1038/nprot.2014.171

  53. Irion U., Krauss J., Nüsslein-Volhard C. (2014) Precise and efficient genome editing in zebrafish using the CRISPR/Cas9 system. Development. 141(24), 4827–4830. https://doi.org/10.1242/dev.115584

  54. Wang B., Karaçay B. Megamer single-stranded donor templates (ssDNA or ssODNs) for successful homology-directed repair (HDR) in genome editing applications. IDT. https://eu.idtdna.com/pages/education/ decoded/article/megamer-single-stranded-donor-templates-(ssdna-or-ssODNs)-for-successful-homology-directed-repair-(HDR)-in-genome-editing-applications

  55. Yoshimi K., Oka Y., Miyasaka Y., Kotani Y., Yasumura M., Uno Y., Hattori K., Tanigawa A., Sato M., Oya M., Nakamura K., Matsushita N., Kobayashi K., Mashimo T. (2021) Combi-CRISPR: combination of NHEJ and HDR provides efficient and precise plasmid-based knock-ins in mice and rats. Hum. Genetics. 140(2), 277–287. https://doi.org/10.1007/s00439-020-02198-4

  56. Highly specific gene knockins of long sequences using CRISPR/Cas9 and a single-stranded DNA donor template. Takara Bio USA, Inc. https://catalog.takara-bio.co.jp/PDFS/Highly-specific-gene-knockins-of-long-sequences-using-CRISPR_Cas9-and-a-single-stranded-DNA-donor-template.pdf

  57. Zhao Y., Zheng Z., Cohen C.J., Gattinoni L., Palmer D.C., Restifo N.P., Rosenberg S.A., Morgan R.A. (2006) High-efficiency transfection of primary human and mouse T lymphocytes using RNA electroporation. Mol. Therapy: J. Am. Soc. Gene Therapy. 13(1), 151–159. https://doi.org/10.1016/j.ymthe.2005.07.688

  58. Mello C.C., Kramer J.M., Stinchcomb D., Ambros V. (1991) Efficient gene transfer in C. elegans: extrachromosomal maintenance and integration of transforming sequences. EMBO J. 10(12), 3959–3970.

  59. Forbes D.J., Kirschner M.W., Newport J.W. (1983) Spontaneous formation of nucleus-like structures around bacteriophage DNA microinjected into Xenopus eggs. Cell. 34(1), 13–23. https://doi.org/10.1016/0092-8674(83)90132-0

  60. Stinchcomb D.T., Shaw J.E., Carr S.H., Hirsh D. (1985) Extrachromosomal DNA transformation of Caenorhabditis elegans. Mol. Cell. Biol. 5(12), 3484–3496. https://doi.org/10.1128/mcb.5.12.3484-3496.1985

  61. Ghanta K.S., Mello C.C. (2020) Melting dsDNA donor molecules greatly improves precision genome editing in Caenorhabditis elegans. Genetics. 216(3), 643–650. https://doi.org/10.1534/genetics.120.303564

  62. Levi T., Sloutskin A., Kalifa R., Juven-Gershon T., Gerlitz O. (2020) Efficient in vivo introduction of point mutations using ssODN and a Co-CRISPR approach. Biol. Proc. Online. 22, 14. https://doi.org/10.1186/s12575-020-00123-7

  63. Boel A., De Saffel H., Steyaert W., Callewaert B., De Paepe A., Coucke P.J., Willaert A. (2018) CRISPR/ Cas9-mediated homology-directed repair by ssODNs in zebrafish induces complex mutational patterns resulting from genomic integration of repair-template fragments. Dis. Models Mech. 11(10), dmm035352. https://doi.org/10.1242/dmm.035352

  64. Gratz S.J., Cummings A.M., Nguyen J.N., Hamm D.C., Donohue L.K., Harrison M.M., Wildonger J., O’Connor-Giles K.M. (2013) Genome engineering of Drosophila with the CRISPR RNA-guided Cas9 nuclease. Genetics. 194(4), 1029–1035. https://doi.org/10.1534/genetics.113.152710

  65. Wang H., Yang H., Shivalila C.S., Dawlaty M.M., Cheng A.W., Zhang F., Jaenisch R. (2013) One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell. 153(4), 910–918. https://doi.org/10.1016/j.cell.2013.04.025

  66. Guide-it long ssDNA production system v2. Takara Bio USA, Inc. https://www.takarabio.com/products/gene-function/gene-editing/crispr-cas9/long-ssdna-for-knockins

  67. Bassett A.R., Tibbit C., Ponting C.P., Liu J.L. (2013) Highly efficient targeted mutagenesis of Drosophila with the CRISPR/Cas9 system. Cell Rep. 4(1), 220–228. https://doi.org/10.1016/j.celrep.2013.06.020

  68. Codner G.F., Mianné J., Caulder A., Loeffler J., Fell R., King R., Allan A.J., Mackenzie M., Pike F.J., McCabe C.V., Christou S., Joynson S., Hutchison M., Stewart M.E., Kumar S, Simon M.M., Agius L., Anstee Q.M., Volynski K.E., Kullmann D.M., Wells S., Teboul L. (2018) Application of long single-stranded DNA donors in genome editing: generation and validation of mouse mutants. BMC Biol. 16(1), 70. https://doi.org/10.1186/s12915-018-0530-7

  69. Yoshimi K., Kunihiro Y., Kaneko T. (2016) ssODN-mediated knock-in with CRISPR-Cas for large genomic regions in zygotes. Nat. Commun. 7, 10431. https://doi.org/10.1038/ncomms10431

  70. Ranawakage D.C., Okada K., Sugio K., Kawaguchi Y., Kuninobu-Bonkohara Y., Takada T., Kamachi Y. (2021) Efficient CRISPR-Cas9-mediated knock-in of composite tags in zebrafish using long ssDNA as a donor. Front. Cell Dev. Biol. 8, 598634. https://doi.org/10.3389/fcell.2020.598634

Дополнительные материалы отсутствуют.