Молекулярная биология, 2022, T. 56, № 4, стр. 531-545

Секвенирование геномов растений: современные технологии и новые возможности для селекции

А. А. Дмитриев a, Е. Н. Пушкова a, Н. В. Мельникова a*

a Институт молекулярной биологии им. В.А. Энгельгардта Российской академии наук
119991 Москва, Россия

* E-mail: mnv-4529264@yandex.ru

Поступила в редакцию 17.07.2021
После доработки 24.08.2021
Принята к публикации 24.08.2021

Аннотация

Изучение геномов растений имеет огромное значение для фундаментальных изысканий и практической селекции. В 1977 году Ф. Сэнгером предложен метод секвенирования ДНК, позволивший установить полные нуклеотидные последовательности ряда геномов. Затем появились высокопроизводительные и экономически эффективные методы секвенирования нового/второго поколения, генерирующие до миллиардов коротких прочтений, что сделало возможным секвенирование геномов значительного числа видов и обеспечило прорыв в генетических исследованиях растений. Наконец, были разработаны технологии секвенирования третьего поколения, определяющие последовательности единичных молекул длиной до миллиона нуклеотидов, что имеет ключевое значение для получения высококачественных сборок геномов. Актуальной задачей является создание пангенома, включающего всю совокупность нуклеотидных последовательностей, представленных в различных генотипах одного вида. Секвенирование геномов растений позволило оценить внутривидовой полиморфизм, идентифицировать ключевые гены, влияющие на формирование значимых свойств, разработать молекулярные маркеры хозяйственно ценных признаков и стало основой для развития маркер-ориентированной и геномной селекции. В данном обзоре представлена информация о последних достижениях в области технологий секвенирования и сборки геномов растений, а также возможностей, которые они открывают для фундаментальных и прикладных работ.

Ключевые слова: растения, геном, пангеном, секвенирование, селекция

Список литературы

  1. Schaal B. (2019) Plants and people: our shared history and future. Plants, People, Planet. 1, 14‒19.

  2. Corlett R.T. (2016) Plant diversity in a changing world: status, trends, and conservation needs. Plant Diversity. 38, 10‒16.

  3. Jimenez-Alfaro B., Frischie S., Stolz J., Galvez-Ramirez C. (2020) Native plants for greening Mediterranean agroecosystems. Nat. Plants. 6, 209‒214.

  4. Zenda T., Liu S., Dong A., Duan H. (2021) Advances in cereal crop genomics for resilience under climate change. Life. 11, 502.

  5. Pourkheirandish M., Golicz A.A., Bhalla P.L., Singh M.B. (2020) Global role of crop genomics in the face of climate change. Front. Plant Sci. 11, 922.

  6. Razzaq A., Kaur P., Akhter N., Wani S.H., Saleem F. (2021) Next-generation breeding strategies for climate-ready crops. Front. Plant Sci. 12, 620420.

  7. The Arabidopsis Genome Initiative. (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature. 408, 796‒815.

  8. International Rice Genome Sequencing Project & Takuji Sasaki. (2005) The map-based sequence of the rice genome. Nature. 436, 793‒800.

  9. Schnable P.S., Ware D., Fulton R.S., Stein J.C., Wei F., Pasternak S., Liang C., Zhang J., Fulton L., Graves T.A., Minx P., Reily A.D., Courtney L., Kruchowski S.S., Tomlinson C., Strong C., Delehaunty K., Fronick C., Courtney B., Rock S.M., Belter E., Du F., Kim K., Abbott R.M., Cotton M., Levy A., Marchetto P., Ochoa K., Jackson S.M., Gillam B., Chen W., Yan L., Higginbotham J., Cardenas M., Waligorski J., Applebaum E., Phelps L., Falcone J., Kanchi K., Thane T., Scimone A., Thane N., Henke J., Wang T., Ruppert J., Shah N., Rotter K., Hodges J., Ingenthron E., Cor-des M., Kohlberg S., Sgro J., Delgado B., Mead K., Chinwalla A., Leonard S., Crouse K., Collura K., Kudrna D., Currie J., He R., Angelova A., Rajasekar S., Mueller T., Lomeli R., Scara G., Ko A., Delaney K., Wissotski M., Lopez G., Campos D., Braidotti M., Ashley E., Golser W., Kim H., Lee S., Lin J., Dujmic Z., Kim W., Talag J., Zuccolo A., Fan C., Sebastian A., Kramer M., Spiegel L., Nascimento L., Zutavern T., Miller B., Ambroise C., Muller S., Spooner W., Narechania A., Ren L., Wei S., Kumari S., Faga B., Levy M.J., McMahan L., Van Buren P., Vaughn M.W., Ying K., Yeh C.T., Emrich S.J., Jia Y., Kalyanaraman A., Hsia A.P., Barbazuk W.B., Baucom R.S., Brutnell T.P., Carpita N.C., Chaparro C., Chia J.M., Deragon J.M., Estill J.C., Fu Y., Jeddeloh J.A., Han Y., Lee H., Li P., Lisch D.R., Liu S., Liu Z., Nagel D.H., McCann M.C., SanMiguel P., Myers A.M., Nettleton D., Nguyen J., Penning B.W., Ponnala L., Schneider K.L., Schwartz D.C., Sharma A., Soderlund C., Springer N.M., Sun Q., Wang H., Waterman M., Westerman R., Wolfgruber T.K., Yang L., Yu Y., Zhang L., Zhou S., Zhu Q., Bennetzen J.L., Dawe R.K., Jiang J., Jiang N., Presting G.G., Wessler S.R., Aluru S., Martienssen R.A., Clifton S.W., McCombie W.R., Wing R.A., Wilson R.K. (2009) The B73 maize genome: complexity, diversity, and dynamics. Science. 326, 1112‒1115.

  10. Schmutz J., Cannon S.B., Schlueter J., Ma J., Mitros T., Nelson W., Hyten D.L., Song Q., Thelen J.J., Cheng J., Xu D., Hellsten U., May G.D., Yu Y., Sakurai T., Umezawa T., Bhattacharyya M.K., Sandhu D., Valliyodan B., Lindquist E., Peto M., Grant D., Shu S., Goodstein D., Barry K., Futrell-Griggs M., Abernathy B., Du J., Tian Z., Zhu L., Gill N., Joshi T., Libault M., Sethuraman A., Zhang X.C., Shinozaki K., Nguyen H.T., Wing R.A., Cregan P., Specht J., Grimwood J., Rokhsar D., Stacey G., Shoemaker R.C., Jackson S.A. (2010) Genome sequence of the palaeopolyploid soybean. Nature. 463, 178‒183.

  11. Reuter J.A., Spacek D.V., Snyder M.P. (2015) High-throughput sequencing technologies. Mol. Cell. 58, 586‒597.

  12. Goodwin S., McPherson J.D., McCombie W.R. (2016) Coming of age: ten years of next-generation sequencing technologies. Nat. Rev. Genet. 17, 333‒351.

  13. Li C., Lin F., An D., Wang W., Huang R. (2017) Genome sequencing and assembly by long reads in plants. Genes. 9, 6.

  14. Jiao W.B., Schneeberger K. (2017) The impact of third generation genomic technologies on plant genome assembly. Curr. Opin. Plant Biol. 36, 64‒70.

  15. Jiao Y., Peluso P., Shi J., Liang T., Stitzer M.C., Wang B., Campbell M.S., Stein J.C., Wei X., Chin C.S., Guill K., Regulski M., Kumari S., Olson A., Gent J., Schneider K.L., Wolfgruber T.K., May M.R., Springer N.M., Antoniou E., McCombie W.R., Presting G.G., McMullen M., Ross-Ibarra J., Dawe R.K., Hastie A., Rank D.R., Ware D. (2017) Improved maize reference genome with single-molecule technologies. Nature. 546, 524‒527.

  16. Li F.W., Harkess A. (2018) A guide to sequence your favorite plant genomes. Appl. Plant Sci. 6, e1030.

  17. Wenger A.M., Peluso P., Rowell W.J., Chang P.C., Hall R.J., Concepcion G.T., Ebler J., Fungtammasan A., Kolesnikov A., Olson N.D., Topfer A., Alon-ge M., Mahmoud M., Qian Y., Chin C.S., Phillippy A.M., Schatz M.C., Myers G., DePristo M.A., Ruan J., Marschall T., Sedlazeck F.J., Zook J.M., Li H., Koren S., Carroll A., Rank D.R., Hunkapiller M.W. (2019) Accurate circular consensus long-read sequencing improves variant detection and assembly of a human genome. Nat. Biotechnol. 37, 1155‒1162.

  18. Sereika M., Kirkegaard R.H., Karst S.M., Michaelsen T.Y., Sørensen E.A., Wollenberg R.D., Albertsen M. (2021) Oxford Nanopore R10.4 long-read sequencing enables near-perfect bacterial genomes from pure cultures and metagenomes without short-read or reference polishing. bioRxiv. 2021.10.27.466057.

  19. Брагина М.К., Афонников Д.А., Салина Е.А. (2019) Прогресс в секвенировании геномов растений – направления исследований. Вавиловский журн. генет. селекции. 23, 38‒48.

  20. Chen F., Dong W., Zhang J., Guo X., Chen J., Wang Z., Lin Z., Tang H., Zhang L. (2018) The sequenced angiosperm genomes and genome databases. Front. Plant Sci. 9, 418.

  21. Kersey P.J. (2019) Plant genome sequences: past, present, future. Curr. Opin. Plant Biology. 48, 1‒8.

  22. Lewin H.A., Graves J.A.M., Ryder O.A., Graphodatsky A.S., O’Brien S.J. (2019) Precision nomenclature for the new genomics. GigaScience. 8, giz086.

  23. Nurk S., Koren S., Rhie A., Rautiainen M., Bzi-kadze A.V., Mikheenko A., Vollger M.R., Altemose N., Uralsky L., Gershman A., Aganezov S., Hoyt S.J., Diekhans M., Logsdon G.A., Alonge M., Antonarakis S.E., Borchers M., Bouffard G.G., Bro-oks S.Y., Caldas G.V., Cheng H., Chin C.-S., Chow W., de Lima L.G., Dishuck P.C., Durbin R., Dvorkina T., Fiddes I.T., Formenti G., Fulton R.S., Fungtammasan A., Garrison E., Grady P.G.S., Graves-Lindsay T.A., Hall I.M., Hansen N.F., Hartley G.A., Haukness M., Howe K., Hunkapiller M.W., Jain C., Jain M., Jarvis E.D., Kerpedjiev P., Kirsche M., Kolmogorov M., Korlach J., Kremitzki M., Li H., Maduro V.V., Marschall T., McCartney A.M., McDaniel J., Miller D.E., Mullikin J.C., Myers E.W., Olson N.D., Paten B., Peluso P., Pevzner P.A., Porubsky D., Potapova T., Rogaev E.I., Rosenfeld J.A., Salzberg S.L., Schneider V.A., Sedlazeck F.J., Shafin K., Shew C.J., Shumate A., Sims Y., Smit A.F.A., Soto D.C., Sović I., Storer J.M., Streets A., Sullivan B.A., Thibaud-Nissen F., Torrance J., Wagner J., Walenz B.P., Wenger A., Wood J.M.D., Xiao C., Yan S.M., Young A.C., Zarate S., Surti U., McCoy R.C., Dennis M.Y., Alexandrov I.A., Gerton J.L., O’Neill R.J., Timp W., Zook J.M., Schatz M.C., Eichler E.E., Miga K.H., Phillippy A.M. (2021) The complete sequence of a human genome. bioRxiv. 2021.05.26.445798.

  24. Zwyrtkova J., Simkova H., Dolezel J. (2021) Chromosome genomics uncovers plant genome organization and function. Biotechnol. Adv. 46, 107659.

  25. Sun Y., Shang L., Zhu Q.H., Fan L., Guo L. (2021) Twenty years of plant genome sequencing: achievements and challenges. Trends Plant Sci. S1360-1385(21)00281-8.

  26. Fleischmann A., Michael T.P., Rivadavia F., Sousa A., Wang W., Temsch E.M., Greilhuber J., Muller K.F., Heubl G. (2014) Evolution of genome size and chromosome number in the carnivorous plant genus Genlisea (Lentibulariaceae), with a new estimate of the minimum genome size in angiosperms. Ann. Botany. 114, 1651‒1663.

  27. Hidalgo O., Pellicer J., Christenhusz M., Schneider H., Leitch A.R., Leitch I.J. (2017) Is there an upper limit to genome size? Trends Plant Sci. 22, 567‒573.

  28. Adams K.L., Wendel J.F. (2005) Polyploidy and genome evolution in plants. Curr. Opin. Plant Biol. 8, 135‒141.

  29. Jung H., Winefield C., Bombarely A., Prentis P., Waterhouse P. (2019) Tools and strategies for long-read sequencing and de novo assembly of plant genomes. Trends Plant Sci. 24, 700‒724.

  30. Thudi M., Khan A.W., Kumar V., Gaur P.M., Katta K., Garg V., Roorkiwal M., Samineni S., Varshney R.K. (2016) Whole genome re-sequencing reveals genome-wide variations among parental lines of 16 mapping populations in chickpea (Cicer arietinum L.). BMC Plant Biol. 16 Suppl. 1, 10.

  31. Bayer P.E., Hurgobin B., Golicz A.A., Chan C.K., Yuan Y., Lee H., Renton M., Meng J., Li R., Long Y., Zou J., Bancroft I., Chalhoub B., King G.J., Batley J., Edwards D. (2017) Assembly and comparison of two closely related Brassica napus genomes. Plant Biotechnol. J. 15, 1602‒1610.

  32. Schatz M.C., Maron L.G., Stein J.C., Hernandez Wences A., Gurtowski J., Biggers E., Lee H., Kramer M., Antoniou E., Ghiban E., Wright M.H., Chia J.M., Ware D., McCouch S.R., McCombie W.R. (2014) Whole genome de novo assemblies of three divergent strains of rice, Oryza sativa, document novel gene space of aus and indica. Genome Biol. 15, 506.

  33. Minio A., Lin J., Gaut B.S., Cantu D. (2017) How single molecule real-time sequencing and haplotype phasing have enabled reference-grade diploid genome assembly of wine grapes. Front. Plant Sci. 8, 826.

  34. Deamer D., Akeson M., Branton D. (2016) Three decades of nanopore sequencing. Nat. Biotechnol. 34, 518‒524.

  35. Rhoads A., Au K.F. (2015) PacBio sequencing and its applications. Genomics, Proteomics & Bioinformatics. 13, 278‒289.

  36. van Dijk E.L., Jaszczyszyn Y., Naquin D., Thermes C. (2018) The third revolution in sequencing technology. Trends Genet. TIG. 34, 666‒681.

  37. Payne A., Holmes N., Rakyan V., Loose M. (2019) BulkVis: a graphical viewer for Oxford nanopore bulk FAST5 files. Bioinformatics. 35, 2193‒2198.

  38. De Coster W., Weissensteiner M.H., Sedlazeck F.J. (2021) Towards population-scale long-read sequencing. Nat. Rev. Genetics. 22, 572‒587.

  39. Gouil Q., Keniry A. (2019) Latest techniques to study DNA methylation. Essays Biochem. 63, 639‒648.

  40. Flusberg B.A., Webster D.R., Lee J.H., Travers K.J., Olivares E.C., Clark T.A., Korlach J., Turner S.W. (2010) Direct detection of DNA methylation during single-molecule, real-time sequencing. Nat. Meth. 7, 461‒465.

  41. Simpson J.T., Workman R.E., Zuzarte P.C., David M., Dursi L.J., Timp W. (2017) Detecting DNA cytosine methylation using nanopore sequencing. Nat. Meth. 14, 407‒410.

  42. Rand A.C., Jain M., Eizenga J.M., Musselman-Brown A., Olsen H.E., Akeson M., Paten B. (2017) Mapping DNA methylation with high-throughput nanopore sequencing. Nat. Meth. 14, 411‒413.

  43. Kumar S., Mohapatra T. (2021) Dynamics of DNA methylation and its functions in plant growth and development. Front. Plant Sci. 12, 596236.

  44. Ramos-Cruz D., Troyee A.N., Becker C. (2021) Epigenetics in plant organismic interactions. Curr. Opin. Plant Biol. 61, 102060.

  45. Akhter Z., Bi Z., Ali K., Sun C., Fiaz S., Haider F.U., Bai J. (2021) In response to abiotic stress, DNA methylation confers epigenetic changes in plants. Plants. 10, 1096.

  46. Vaillancourt B., Buell C.R. (2019) High molecular weight DNA isolation method from diverse plant species for use with Oxford nanopore sequencing. bioRxiv. 783159.

  47. Siadjeu C., Pucker B., Viehover P., Albach D.C., Weisshaar B. (2020) High contiguity de novo genome sequence assembly of trifoliate yam (Dioscorea dumetorum) using long read sequencing. Genes. 11, 274.

  48. Krasnov G.S., Pushkova E.N., Novakovskiy R.O., Kudryavtseva L.P., Povkhova T.A., Dvorianinova E.M., Povkhova L.V., Kudryavtseva A.V., Dmitriev A.A., Melnikova N.V. (2020) High-quality genome assembly of Fusarium oxysporum f. sp. lini. Front. Genet. 11, 959.

  49. Dmitriev A.A., Pushkova E.N., Novakovskiy R.O., Beniaminov A.D., Rozhmina T.A., Zhuchenko A.A., Bolsheva N.L., Muravenko O.V., Povkhova L.V., Dvorianinova E.M., Kezimana P., Snezhkina A.V., Kudryavtseva A.V., Krasnov G.S., Melnikova N.V. (2020) Genome sequencing of fiber flax cultivar atlant using Oxford nanopore and illumina platforms. Front Genet. 11, 590282.

  50. Müller N.A., Kersten B., Leite Montalvão A.P., Mähler N., Bernhardsson C., Bräutigam K., Carracedo Lorenzo Z., Hoenicka H., Kumar V., Mader M., Pakull B., Robinson K.M., Sabatti M., Vettori C., Ingvarsson P.K., Cronk Q., Street N.R., Fladung M. (2020) A single gene underlies the dynamic evolution of poplar sex determination. Nat. Plants. 6, 630‒637.

  51. Schalamun M., Nagar R., Kainer D., Beavan E., Eccles D., Rathjen J.P., Lanfear R., Schwessinger B. (2019) Harnessing the MinION: an example of how to establish long-read sequencing in a laboratory using challenging plant tissue from Eucalyptus pauciflora. Mol. Ecol. Resources. 19, 77‒89.

  52. Zhang M., Zhang Y., Scheuring C.F., Wu C.C., Dong J.J., Zhang H.B. (2012) Preparation of megabase-sized DNA from a variety of organisms using the nuclei method for advanced genomics research. Nat. Protocols. 7, 467‒478.

  53. Li Z., Parris S., Saski C.A. (2020) A simple plant high-molecular-weight DNA extraction method suitable for single-molecule technologies. Plant Meth. 16, 38.

  54. Lieberman-Aiden E., van Berkum N.L., Williams L., Imakaev M., Ragoczy T., Telling A., Amit I., Lajoie B.R., Sabo P.J., Dorschner M.O., Sandstrom R., Bernstein B., Bender M.A., Groudine M., Gnirke A., Stamatoyannopoulos J., Mirny L.A., Lander E.S., Dekker J. (2009) Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science. 326, 289‒293.

  55. Yuan Y., Chung C.Y., Chan T.F. (2020) Advances in optical mapping for genomic research. Comput. Struct. Biotechnol. J. 18, 2051‒2062.

  56. Ma Z.S., Li L., Ye C., Peng M., Zhang Y.P. (2019) Hybrid assembly of ultra-long nanopore reads augmented with 10×-Genomics contigs: demonstrated with a human genome. Genomics. 111, 1896‒1901.

  57. Schmidt M.H., Vogel A., Denton A.K., Istace B., Wormit A., van de Geest H., Bolger M.E., Alseekh S., Mass J., Pfaff C., Schurr U., Chetelat R., Maumus F., Aury J.M., Koren S., Fernie A.R., Zamir D., Bolger A.M., Usadel B. (2017) De novo assembly of a new Solanum pennellii accession using nanopore sequencing. Plant Cell. 29, 2336‒2348.

  58. Michael T.P., Jupe F., Bemm F., Motley S.T., Sandoval J.P., Lanz C., Loudet O., Weigel D., Ecker J.R. (2018) High contiguity Arabidopsis thaliana genome assembly with a single nanopore flow cell. Nat. Commun. 9, 541.

  59. Zimin A.V., Puiu D., Luo M.C., Zhu T., Koren S., Marcais G., Yorke J.A., Dvorak J., Salzberg S.L. (2017) Hybrid assembly of the large and highly repetitive genome of Aegilops tauschii, a progenitor of bread wheat, with the MaSuRCA mega-reads algorithm. Genome Res. 27, 787‒792.

  60. Zimin A.V., Stevens K.A., Crepeau M.W., Puiu D., Wegrzyn J.L., Yorke J.A., Langley C.H., Neale D.B., Salzberg S.L. (2017) An improved assembly of the loblolly pine mega-genome using long-read single-molecule sequencing. GigaScience. 6, 1‒4.

  61. Mondal T.K., Rawal H.C., Gaikwad K., Sharma T.R., Singh N.K. (2017) First de novo draft genome sequence of Oryza coarctata, the only halophytic species in the genus Oryza. F1000Research. 6, 1750.

  62. Zhang H., Jain C., Aluru S. (2020) A comprehensive evaluation of long read error correction methods. BMC genomics. 21, 889.

  63. Koren S., Walenz B.P., Berlin K., Miller J.R., Bergman N.H., Phillippy A.M. (2017) Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 27, 722‒736.

  64. Kolmogorov M., Yuan J., Lin Y., Pevzner P.A. (2019) Assembly of long, error-prone reads using repeat graphs. Nat. Biotechnol. 37, 540‒546.

  65. Shafin K., Pesout T., Lorig-Roach R., Haukness M., Olsen H.E., Bosworth C., Armstrong J., Tigyi K., Maurer N., Koren S., Sedlazeck F.J., Marschall T., Mayes S., Costa V., Zook J.M., Liu K.J., Kilburn D., Sorensen M., Munson K.M., Vollger M.R., Monlong J., Garrison E., Eichler E.E., Salama S., Haussler D., Green R.E., Akeson M., Phillippy A., Miga K.H., Carnevali P., Jain M., Paten B. (2020) Nanopore sequencing and the Shasta toolkit enable efficient de novo assembly of eleven human genomes. Nat. Biotechnol. 38, 1044‒1053.

  66. Ruan J., Li H. (2020) Fast and accurate long-read assembly with wtdbg2. Nat. Meth. 17, 155‒158.

  67. Nowoshilow S., Schloissnig S., Fei J.F., Dahl A., Pang A.W.C., Pippel M., Winkler S., Hastie A.R., Young G., Roscito J.G., Falcon F., Knapp D., Powell S., Cruz A., Cao H., Habermann B., Hiller M., Tanaka E.M., Myers E.W. (2018) The axolotl genome and the evolution of key tissue formation regulators. Nature. 554, 50‒55.

  68. Chin C.S., Peluso P., Sedlazeck F.J., Nattestad M., Concepcion G.T., Clum A., Dunn C., O’Malley R., Figueroa-Balderas R., Morales-Cruz A., Cramer G.R., Delledonne M., Luo C., Ecker J.R., Cantu D., Rank D.R., Schatz M.C. (2016) Phased diploid genome assembly with single-molecule real-time sequencing. Nat. Meth. 13, 1050‒1054.

  69. Li H. (2016) Minimap and miniasm: fast mapping and de novo assembly for noisy long sequences. Bioinformatics. 32, 2103‒2110.

  70. Vaser R., Šikić M. (2021) Time- and memory-efficient genome assembly with Raven. Nat. Comput. Sci. 1, 332‒336.

  71. Jayakumar V., Sakakibara Y. (2019) Comprehensive evaluation of non-hybrid genome assembly tools for third-generation PacBio long-read sequence data. Brief. Bioinform. 20, 866‒876.

  72. Murigneux V., Rai S.K., Furtado A., Bruxner T.J.C., Tian W., Harliwong I., Wei H., Yang B., Ye Q., Anderson E., Mao Q., Drmanac R., Wang O., Peters B.A., Xu M., Wu P., Topp B., Coin L.J.M., Henry R.J. (2020) Comparison of long-read methods for sequencing and assembly of a plant genome. GigaScience. 9, giaa146.

  73. Dvorianinova E.M., Pushkova E.N., Novakovskiy R.O., Povkhova L.V., Bolsheva N.L., Kudryavtseva L.P., Rozhmina T.A., Melnikova N.V., Dmitriev A.A. (2021) Nanopore and Illumina genome sequencing of Fusarium oxysporum f. sp. lini strains of different virulence. Front. Genet. 12, 662928.

  74. Jung H., Jeon M.S., Hodgett M., Waterhouse P., Eyun S.I. (2020) Comparative evaluation of genome assemblers from long-read sequencing for plants and crops. J. Agricult. Food Chem. 68, 7670‒7677.

  75. Gurevich A., Saveliev V., Vyahhi N., Tesler G. (2013) QUAST: quality assessment tool for genome assemblies. Bioinformatics. 29, 1072‒1075.

  76. Seppey M., Manni M., Zdobnov E.M. (2019) BUSCO: assessing genome assembly and annotation completeness. Meth. Mol. Biol. 1962, 227‒245.

  77. Vaser R., Sovic I., Nagarajan N., Sikic M. (2017) Fast and accurate de novo genome assembly from long uncorrected reads. Genome Res. 27, 737‒746.

  78. Walker B.J., Abeel T., Shea T., Priest M., Abouelliel A., Sakthikumar S., Cuomo C.A., Zeng Q., Wortman J., Young S.K., Earl A.M. (2014) Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PloS One. 9, e112963.

  79. Loman N.J., Quick J., Simpson J.T. (2015) A complete bacterial genome assembled de novo using only nanopore sequencing data. Nat. Meth. 12, 733‒735.

  80. Melnikova N.V., Pushkova E.N., Dvorianinova E.M., Beniaminov A.D., Novakovskiy R.O., Povkhova L.V., Bolsheva N.L., Snezhkina A.V., Kudryavtseva A.V., Krasnov G.S., Dmitriev A.A. (2021) Genome assembly and sex-determining region of male and female Populus × sibirica. Front. Plant Sci. 12, 625416.

  81. Zhang X., Wu R., Wang Y., Yu J., Tang H. (2020) Unzipping haplotypes in diploid and polyploid genomes. Comput. Struct. Biotechnol. J. 18, 66‒72.

  82. Roach M.J., Schmidt S.A., Borneman A.R. (2018) Purge Haplotigs: allelic contig reassignment for third-gen diploid genome assemblies. BMC Bioinformatics. 19, 460.

  83. Vekemans X., Castric V., Hipperson H., Muller N.A., Westerdahl H., Cronk Q. (2021) Whole-genome sequencing and genome regions of special interest: lessons from major histocompatibility complex, sex determination, and plant self-incompatibility. Mol. Ecol. 30, 6072–6086.

  84. Geraldes A., Hefer C.A., Capron A., Kolosova N., Martinez-Nunez F., Soolanayakanahally R.Y., Stanton B., Guy R.D., Mansfield S.D., Douglas C.J., Cronk Q.C. (2015) Recent Y chromosome divergence despite ancient origin of dioecy in poplars (Populus). Mol. Ecol. 24, 3243‒3256.

  85. McKown A.D., Klapste J., Guy R.D., Soolanayakanahally R.Y., La Mantia J., Porth I., Skyba O., Unda F., Douglas C.J., El-Kassaby Y.A., Hamelin R.C., Mansfield S.D., Cronk Q.C.B. (2017) Sexual homomorphism in dioecious trees: extensive tests fail to detect sexual dimorphism in Populus (dagger). Sci. Rep. 7, 1831.

  86. Xue L., Wu H., Chen Y., Li X., Hou J., Lu J., Wei S., Dai X., Olson M.S., Liu J., Wang M., Charlesworth D., Yin T. (2020) Evidences for a role of two Y-specific genes in sex determination in Populus deltoides. Nat. Commun. 11, 5893.

  87. Zhou R., Macaya-Sanz D., Schmutz J., Jenkins J.W., Tuskan G.A., DiFazio S.P. (2020) Sequencing and analysis of the sex determination region of Populus trichocarpa. Genes. 11, 843.

  88. Yang W., Wang D., Li Y., Zhang Z., Tong S., Li M., Zhang X., Zhang L., Ren L., Ma X., Zhou R., Sanderson B.J., Keefover-Ring K., Yin T., Smart L.B., Liu J., DiFazio S.P., Olson M., Ma T. (2021) A general model to explain repeated turnovers of sex determination in the Salicaceae. Mol. Biol. Evol. 38, 968‒980.

  89. Nishiyama T., Sakayama H., de Vries J., Buschmann H., Saint-Marcoux D., Ullrich K.K., Haas F.B., Vanderstraeten L., Becker D., Lang D., Vosolsobe S., Rombauts S., Wilhelmsson P.K.I., Janitza P., Kern R., Heyl A., Rumpler F., Villalobos L., Clay J.M., Skokan R., Toyoda A., Suzuki Y., Kagoshima H., Schijlen E., Tajeshwar N., Catarino B., Hetherington A.J., Saltykova A., Bonnot C., Breuninger H., Symeonidi A., Radhakrishnan G.V., Van Nieuwerburgh F., Deforce D., Chang C., Karol K.G., Hedrich R., Ulvskov P., Glockner  G., Delwiche C.F., Petrasek J., Van de Peer Y., Friml J., Beilby M., Dolan L., Kohara Y., Sugano S., Fujiyama A., Delaux P.M., Quint M., Theissen G., Hagemann M., Harholt J., Dunand C., Zachgo S., Langdale J., Maumus F., Van Der Straeten D., Gould S.B., Rensing S.A. (2018) The Chara genome: secondary complexity and implications for plant terrestrialization. Cell. 174, 448‒464.

  90. Hori K., Maruyama F., Fujisawa T., Togashi T., Yamamoto N., Seo M., Sato S., Yamada T., Mori H., Tajima N., Moriyama T., Ikeuchi M., Watanabe M., Wada H., Kobayashi K., Saito M., Masuda T., Sasaki-Sekimoto Y., Mashiguchi K., Awai K., Shimojima M., Masuda S., Iwai M., Nobusawa T., Narise T., Kondo S., Saito H., Sato R., Murakawa M., Ihara Y., Oshima-Yamada Y., Ohtaka K., Satoh M., Sonobe K., Ishii M., Ohtani R., Kanamori-Sato M., Honoki R., Miyazaki D., Mochizuki H., Umetsu J., Higashi K., Shibata D., Kamiya Y., Sato N., Nakamura Y., Tabata S., Ida S., Kurokawa K., Ohta H. (2014) Klebsormidium flaccidum genome reveals primary factors for plant terrestrial adaptation. Nat. Commun. 5, 3978.

  91. Banks J.A., Nishiyama T., Hasebe M., Bowman J.L., Gribskov M., dePamphilis C., Albert V.A., Aono N., Aoyama T., Ambrose B.A., Ashton N.W., Axtell M.J., Barker E., Barker M.S., Bennetzen J.L., Bonawitz N.D., Chapple C., Cheng C., Correa L.G., Dacre M., DeBarry J., Dreyer I., Elias M., Engstrom E.M., Estelle M., Feng L., Finet C., Floyd S.K., Frommer W.B., Fujita T., Gramzow L., Gutensohn M., Harholt J., Hattori M., Heyl A., Hirai T., Hiwatashi Y., Ishikawa M., Iwata M., Karol K.G., Koehler B., Kolukisaoglu U., Kubo M., Kurata T., Lalonde S., Li K., Li Y., Litt A., Lyons E., Manning G., Maruyama T., Michael T.P., Mikami K., Miyazaki S., Morinaga S., Murata T., Mueller-Roeber B., Nelson D.R., Obara M., Oguri Y., Olmstead R.G., Onodera N., Petersen B.L., Pils B., Prigge M., Rensing S.A., Riano-Pachon D.M., Roberts A.W., Sato Y., Scheller H.V., Schulz B., Schulz C., Shakirov E.V., Shibagaki N., Shinohara N., Shippen D.E., Sorensen I., Sotooka R., Sugimoto N., Sugita M., Sumikawa N., Tanurdzic M., Theissen G., Ulvskov P., Wakazuki S., Weng J.K., Willats W.W., Wipf D., Wolf P.G., Yang L., Zimmer A.D., Zhu Q., Mitros T., Hellsten U., Loque D., Otillar R., Salamov A., Schmutz J., Shapiro H., Lindquist E., Lucas S., Rokhsar D., Grigoriev I.V. (2011) The Selaginella genome identifies genetic changes associated with the evolution of vascular plants. Science. 332, 960‒963.

  92. Lang D., Ullrich K.K., Murat F., Fuchs J., Jenkins J., Haas F.B., Piednoel M., Gundlach H., Van Bel M., Meyberg R., Vives C., Morata J., Symeonidi A., Hiss M., Muchero W., Kamisugi Y., Saleh O., Blanc G., De-cker E.L., van Gessel N., Grimwood J., Hayes R.D., Graham S.W., Gunter L.E., McDaniel S.F., Hoernstein S.N.W., Larsson A., Li F.W., Perroud P.F., Phillips J., Ranjan P., Rokshar D.S., Rothfels C.J., Schneider L., Shu S., Stevenson D.W., Thummler F., Tillich M., Villarreal Aguilar J.C., Widiez T., Wong G.K., Wymore A., Zhang Y., Zimmer A.D., Quatrano R.S., Mayer K.F.X., Goodstein D., Casacuberta J.M., Vandepoele K., Reski R., Cuming A.C., Tuskan G.A., Maumus F., Salse J., Schmutz J., Rensing S.A. (2018) The Physcomitrella patens chromosome-scale assembly reveals moss genome structure and evolution. Plant J.: Cell Mol. Biol. 93, 515‒533.

  93. Li F.W., Brouwer P., Carretero-Paulet L., Cheng S., de Vries J., Delaux P.M., Eily A., Koppers N., Kuo L.Y., Li Z., Simenc M., Small I., Wafula E., Angarita S., Barker M.S., Brautigam A., dePamphilis C., Gould S., Hosmani P.S., Huang Y.M., Huettel B., Kato Y., Liu X., Maere S., McDowell R., Mueller L.A., Nierop K.G.J., Rensing S.A., Robison T., Rothfels C.J., Sigel E.M., Song Y., Timilsena P.R., Van de Peer Y., Wang H., Wilhelmsson P.K.I., Wolf P.G., Xu X., Der J.P., Schluepmann H., Wong G.K., Pryer K.M. (2018) Fern genomes elucidate land plant evolution and cyanobacterial symbioses. Nat. Plants. 4, 460‒472.

  94. Wang S., Li L., Li H., Sahu S.K., Wang H., Xu Y., Xian W., Song B., Liang H., Cheng S., Chang Y., Song Y., Cebi Z., Wittek S., Reder T., Peterson M., Yang H., Wang J., Melkonian B., Van de Peer Y., Xu X., Wong G.K., Melkonian M., Liu H., Liu X. (2020) Genomes of early-diverging streptophyte algae shed light on plant terrestrialization. Nat. Plants. 6, 95‒106.

  95. Li F.W., Nishiyama T., Waller M., Frangedakis E., Keller J., Li Z., Fernandez-Pozo N., Barker M.S., Bennett T., Blazquez M.A., Cheng S., Cuming A.C., de Vries J., de Vries S., Delaux P.M., Diop I.S., Harrison C.J., Hauser D., Hernandez-Garcia J., Kirbis A., Meeks J.C., Monte I., Mutte S.K., Neubauer A., Quandt D., Robison T., Shimamura M., Rensing S.A., Villarreal J.C., Weijers D., Wicke S., Wong G.K., Sakakibara K., Szovenyi P. (2020) Anthoceros genomes illuminate the origin of land plants and the unique biology of hornworts. Nat. Plants. 6, 259‒272.

  96. Zhang J., Fu X.X., Li R.Q., Zhao X., Liu Y., Li M.H., Zwaenepoel A., Ma H., Goffinet B., Guan Y.L., Xue J.Y., Liao Y.Y., Wang Q.F., Wang Q.H., Wang J.Y., Zhang G.Q., Wang Z.W., Jia Y., Wang M.Z., Dong S.S., Yang J.F., Jiao Y.N., Guo Y.L., Kong H.Z., Lu A.M., Yang H.M., Zhang S.Z., Van de Peer Y., Liu Z.J., Chen Z.D. (2020) The hornwort genome and early land plant evolution. Nat. Plants. 6, 107‒118.

  97. Liu H., Wang X., Wang G., Cui P., Wu S., Ai C., Hu N., Li A., He B., Shao X., Wu Z., Feng H., Chang Y., Mu D., Hou J., Dai X., Yin T., Ruan J., Cao F. (2021) The nearly complete genome of Ginkgo biloba illuminates gymnosperm evolution. Nat. Plants. 7, 748‒756.

  98. Yang Y., Sun P., Lv L., Wang D., Ru D., Li Y., Ma T., Zhang L., Shen X., Meng F., Jiao B., Shan L., Liu M., Wang Q., Qin Z., Xi Z., Wang X., Davis C.C., Liu J. (2020) Prickly waterlily and rigid hornwort genomes shed light on early angiosperm evolution. Nat. Plants. 6, 215‒222.

  99. Zhang L., Chen F., Zhang X., Li Z., Zhao Y., Lohaus R., Chang X., Dong W., Ho S.Y.W., Liu X., Song A., Chen J., Guo W., Wang Z., Zhuang Y., Wang H., Chen X., Hu J., Liu Y., Qin Y., Wang K., Dong S., Liu Y., Zhang S., Yu X., Wu Q., Wang L., Yan X., Jiao Y., Kong H., Zhou X., Yu C., Chen Y., Li F., Wang J., Chen W., Chen X., Jia Q., Zhang C., Jiang Y., Zhang W., Liu G., Fu J., Chen F., Ma H., Van de Peer Y., Tang H. (2020) The water lily genome and the early evolution of flowering plants. Nature. 577, 79‒84.

  100. Szovenyi P., Gunadi A., Li F.W. (2021) Charting the genomic landscape of seed-free plants. Nat. Plants. 7, 554‒565.

  101. De La Torre A.R., Piot A., Liu B., Wilhite B., Weiss M., Porth I. (2020) Functional and morphological evolution in gymnosperms: a portrait of implicated gene families. Evol. Appl. 13, 210‒227.

  102. Zhao T., Zwaenepoel A., Xue J.Y., Kao S.M., Li Z., Schranz M.E., Van de Peer Y. (2021) Whole-genome microsynteny-based phylogeny of angiosperms. Nat. Commun. 12, 3498.

  103. He Z., Ji R., Havlickova L., Wang L., Li Y., Lee H.T., Song J., Koh C., Yang J., Zhang M., Parkin I.A.P., Wang X., Edwards D., King G.J., Zou J., Liu K., Snowdon R.J., Banga S.S., Machackova I., Bancroft I. (2021) Genome structural evolution in Brassica crops. Nat. Plants. 7, 757‒765.

  104. Perumal S., Koh C.S., Jin L., Buchwaldt M., Higgins E.E., Zheng C., Sankoff D., Robinson S.J., Kagale S., Navabi Z.K., Tang L., Horner K.N., He Z., Bancroft I., Chalhoub B., Sharpe A.G., Parkin I.A.P. (2020) A high-contiguity Brassica nigra genome localizes active centromeres and defines the ancestral Brassica genome. Nat. Plants. 6, 929‒941.

  105. Lewin H.A., Robinson G.E., Kress W.J., Baker W.J., Coddington J., Crandall K.A., Durbin R., Edwards S.V., Forest F., Gilbert M.T.P., Goldstein M.M., Grigo-riev I.V., Hackett K.J., Haussler D., Jarvis E.D., John-son W.E., Patrinos A., Richards S., Castilla-Rubio J.C., van Sluys M.A., Soltis P.S., Xu X., Yang H., Zhang G. (2018) Earth BioGenome Project: sequencing life for the future of life. Proc. Natl. Acad. Sci. USA. 115, 4325‒4333.

  106. Exposito-Alonso M., Drost H.G., Burbano H.A., Weigel D. (2020) The Earth BioGenome project: opportunities and challenges for plant genomics and conservation. Plant J. : Cell Mol. Biol. 102, 222‒229.

  107. Tettelin H., Masignani V., Cieslewicz M.J., Donati C., Medini D., Ward N.L., Angiuoli S.V., Crabtree J., Jones A.L., Durkin A.S., Deboy R.T., Davidsen T.M., Mora M., Scarselli M., Margarit y Ros I., Peterson J.D., Hauser C.R., Sundaram J.P., Nelson W.C., Madupu R., Brinkac L.M., Dodson R.J., Rosovitz M.J., Sullivan S.A., Daugherty S.C., Haft D.H., Selengut J., Gwinn M.L., Zhou L., Zafar N., Khouri H., Radune D., Dimitrov G., Watkins K., O’Connor K.J., Smith S., Utterback T.R., White O., Rubens C.E., Grandi G., Madoff L.C., Kasper D.L., Telford J.L., Wessels M.R., Rappuoli R., Fraser C.M. (2005) Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial “pan-genome”. Proc. Natl. Acad. Sci. USA. 102, 13950‒13955.

  108. Golicz A.A., Bayer P.E., Bhalla P.L., Batley J., Edwards D. (2020) Pangenomics comes of age: from bacteria to plant and animal applications. Trends Genet.: TIG. 36, 132‒145.

  109. Ho S.S., Urban A.E., Mills R.E. (2020) Structural variation in the sequencing era. Nat. Rev. Genet. 21, 171‒189.

  110. Li Y.H., Zhou G., Ma J., Jiang W., Jin L.G., Zhang Z., Guo Y., Zhang J., Sui Y., Zheng L., Zhang S.S., Zuo Q., Shi X.H., Li Y.F., Zhang W.K., Hu Y., Kong G., Hong H.L., Tan B., Song J., Liu Z.X., Wang Y., Ruan H., Yeung C.K., Liu J., Wang H., Zhang L.J., Guan R.X., Wang K.J., Li W.B., Chen S.Y., Chang R.Z., Jiang Z., Jackson S.A., Li R., Qiu L.J. (2014) De novo assembly of soybean wild relatives for pan-genome analysis of diversity and agronomic traits. Nat. Biotechnol. 32, 1045‒1052.

  111. Anderson J.E., Kantar M.B., Kono T.Y., Fu F., Stec A.O., Song Q., Cregan P.B., Specht J.E., Diers B.W., Cannon S.B., McHale L.K., Stupar R.M. (2014) A roadmap for functional structural variants in the soybean genome. G3. 4, 1307‒1318.

  112. Tao Y., Zhao X., Mace E., Henry R., Jordan D. (2019) Exploring and exploiting pan-genomics for crop improvement. Mol. Plant. 12, 156‒169.

  113. Swinnen G., Goossens A., Pauwels L. (2016) Lessons from domestication: targeting cis-regulatory elements for crop improvement. Trends Plant Sci. 21, 506‒515.

  114. Gao L., Gonda I., Sun H., Ma Q., Bao K., Tieman D.M., Burzynski-Chang E.A., Fish T.L., Stromberg K.A., Sacks G.L., Thannhauser T.W., Foolad M.R., Diez M.J., Blanca J., Canizares J., Xu Y., van der Knaap E., Huang S., Klee H.J., Giovannoni J.J., Fei Z. (2019) The tomato pan-genome uncovers new genes and a rare allele regulating fruit flavor. Nat. Genet. 51, 1044‒1051.

  115. Rancati G., Moffat J., Typas A., Pavelka N. (2018) Emerging and evolving concepts in gene essentiality. Nat. Rev. Genet. 19, 34‒49.

  116. Bayer P.E., Golicz A.A., Scheben A., Batley J., Edwards D. (2020) Plant pan-genomes are the new reference. Nat. Plants. 6, 914‒920.

  117. Zhou Y., Chebotarov D., Kudrna D., Llaca V., Lee S., Rajasekar S., Mohammed N., Al-Bader N., Sobel-Sorenson C., Parakkal P., Arbelaez L.J., Franco N., Alexandrov N., Hamilton N.R.S., Leung H., Maule-on R., Lorieux M., Zuccolo A., McNally K., Zhang J., Wing R.A. (2020) A platinum standard pan-genome resource that represents the population structure of Asian rice. Sci. Data. 7, 113.

  118. Wang W., Mauleon R., Hu Z., Chebotarov D., Tai S., Wu Z., Li M., Zheng T., Fuentes R.R., Zhang F., Mansueto L., Copetti D., Sanciangco M., Palis K.C., Xu J., Sun C., Fu B., Zhang H., Gao Y., Zhao X., Shen F., Cui X., Yu H., Li Z., Chen M., Detras J., Zhou Y., Zhang X., Zhao Y., Kudrna D., Wang C., Li R., Jia B., Lu J., He X., Dong Z., Xu J., Li Y., Wang M., Shi J., Li J., Zhang D., Lee S., Hu W., Poliakov A., Dubchak I., Ulat V.J., Borja F.N., Mendoza J.R., Ali J., Li J., Gao Q., Niu Y., Yue Z., Naredo M.E.B., Talag J., Wang X., Li J., Fang X., Yin Y., Glaszmann J.C., Zhang J., Li J., Hamilton R.S., Wing R.A., Ruan J., Zhang G., Wei C., Alexandrov N., McNally K.L., Li Z., Leung H. (2018) Genomic variation in 3,010 diverse accessions of Asian cultivated rice. Nature. 557, 43‒49.

  119. Zhao Q., Feng Q., Lu H., Li Y., Wang A., Tian Q., Zhan Q., Lu Y., Zhang L., Huang T., Wang Y., Fan D., Zhao Y., Wang Z., Zhou C., Chen J., Zhu C., Li W., Weng Q., Xu Q., Wang Z.X., Wei X., Han B., Huang X. (2018) Pan-genome analysis highlights the extent of genomic variation in cultivated and wild rice. Nat. Genet. 50, 278‒284.

  120. Walkowiak S., Gao L., Monat C., Haberer G., Kassa M.T., Brinton J., Ramirez-Gonzalez R.H., Kolod-ziej M.C., Delorean E., Thambugala D., Klymiuk V., Byrns B., Gundlach H., Bandi V., Siri J.N., Nilsen K., Aquino C., Himmelbach A., Copetti D., Ban T., Venturini L., Bevan M., Clavijo B., Koo D.H., Ens J., Wiebe K., N’Diaye A., Fritz A.K., Gutwin C., Fiebig A., Fosker C., Fu B.X., Accinelli G.G., Gardner K.A., Fradgley N., Gutierrez-Gonzalez J., Halstead-Nussloch G., Hatakeyama M., Koh C.S., Deek J., Costamagna A.C., Fobert P., Heavens D., Kanamori H., Kawaura K., Kobayashi F., Krasileva K., Kuo T., McKenzie N., Murata K., Nabeka Y., Paape T., Padmarasu S., Percival-Alwyn L., Kagale S., Scholz U., Sese J., Juliana P., Singh R., Shimizu-Inatsugi R., Swarbreck D., Cockram J., Budak H., Tameshige T., Tanaka T., Tsuji H., Wright J., Wu J., Steuernagel B., Small I., Cloutier S., Keeble-Gagnere G., Muehlbauer G., Tibbets J., Nasuda S., Melonek J., Hucl P.J., Sharpe A.G., Clark M., Legg E., Bharti A., Langridge P., Hall A., Uauy C., Mascher M., Krattinger S.G., Handa H., Shimizu K.K., Distelfeld A., Chalmers K., Keller B., Mayer K.F.X., Poland J., Stein N., McCartney C.A., Spannagl M., Wicker T., Pozniak C.J. (2020) Multiple wheat genomes reveal global variation in modern breeding. Nature. 588, 277‒283.

  121. Montenegro J.D., Golicz A.A., Bayer P.E., Hurgobin B., Lee H., Chan C.K., Visendi P., Lai K., Dolezel J., Batley J., Edwards D. (2017) The pangenome of hexaploid bread wheat. Plant J.: Cell Mol. Biol. 90, 1007‒1013.

  122. Jayakodi M., Padmarasu S., Haberer G., Bonthala V.S., Gundlach H., Monat C., Lux T., Kamal N., Lang D., Himmelbach A., Ens J., Zhang X.Q., Angessa T.T., Zhou G., Tan C., Hill C., Wang P., Schreiber M., Boston L.B., Plott C., Jenkins J., Guo Y., Fiebig A., Budak H., Xu D., Zhang J., Wang C., Grimwood J., Schmutz J., Guo G., Zhang G., Mochida K., Hirayama T., Sato K., Chalmers K.J., Langridge P., Waugh R., Pozniak C.J., Scholz U., Mayer K.F.X., Spannagl M., Li C., Mascher M., Stein N. (2020) The barley pan-genome reveals the hidden legacy of mutation breeding. Nature. 588, 284‒289.

  123. Hufford M.B., Seetharam A.S., Woodhouse M.R., Chougule K.M., Ou S., Liu J., Ricci W.A., Guo T., Olson A., Qiu Y., Della Coletta R., Tittes S., Hudson A.I., Marand A.P., Wei S., Lu Z., Wang B., Tello-Ruiz M.K., Piri R.D., Wang N., Kim D.W., Zeng Y., O’Connor C.H., Li X., Gilbert A.M., Baggs E., Krasileva K.V., Portwood J.L., 2nd, Cannon E.K.S., Andorf C.M., Manchanda N., Snodgrass S.J., Hufnagel D.E., Jiang Q., Pedersen S., Syring M.L., Kudrna D.A., Llaca V., Fengler K., Schmitz R.J., Ross-Ibarra J., Yu J., Gent J.I., Hirsch C.N., Ware D., Dawe R.K. (2021) De novo assembly, annotation, and comparative analysis of 26 diverse maize genomes. Science. 373, 655‒662.

  124. Song J.M., Guan Z., Hu J., Guo C., Yang Z., Wang S., Liu D., Wang B., Lu S., Zhou R., Xie W.Z., Cheng Y., Zhang Y., Liu K., Yang Q.Y., Chen L.L., Guo L. (2020) Eight high-quality genomes reveal pan-genome architecture and ecotype differentiation of Brassica napus. Nat. Plants. 6, 34‒45.

  125. Liu Y., Du H., Li P., Shen Y., Peng H., Liu S., Zhou G.A., Zhang H., Liu Z., Shi M., Huang X., Li Y., Zhang M., Wang Z., Zhu B., Han B., Liang C., Tian Z. (2020) Pan-genome of wild and cultivated soybeans. Cell. 182, 162‒176.

  126. Gordon S.P., Contreras-Moreira B., Woods D.P., Des Marais D.L., Burgess D., Shu S., Stritt C., Roulin A.C., Schackwitz W., Tyler L., Martin J., Lipzen A., Dochy N., Phillips J., Barry K., Geuten K., Budak H., Juenger T.E., Amasino R., Caicedo A.L., Goodstein D., Davidson P., Mur L.A.J., Figueroa M., Freeling M., Catalan P., Vogel J.P. (2017) Extensive gene content variation in the Brachypodium distachyon pan-genome correlates with population structure. Nat. Commun. 8, 2184.

  127. Della Coletta R., Qiu Y., Ou S., Hufford M.B., Hirsch C.N. (2021) How the pan-genome is changing crop genomics and improvement. Genome Biol. 22, 3.

  128. Syme R.A., Tan K.C., Rybak K., Friesen T.L., McDonald B.A., Oliver R.P., Hane J.K. (2018) Pan-parastagonospora comparative genome analysis-effector prediction and genome evolution. Genome Biol. Evol. 10, 2443‒2457.

  129. Plissonneau C., Hartmann F.E., Croll D. (2018) Pangenome analyses of the wheat pathogen Zymoseptoria tritici reveal the structural basis of a highly plastic eukaryotic genome. BMC Biol. 16, 5.

  130. Badet T., Oggenfuss U., Abraham L., McDonald B.A., Croll D. (2020) A 19-isolate reference-quality global pangenome for the fungal wheat pathogen Zymoseptoria tritici. BMC Biol. 18, 12.

  131. Gage J.L., Vaillancourt B., Hamilton J.P., Manrique-Carpintero N.C., Gustafson T.J., Barry K., Lipzen A., Tracy W.F., Mikel M.A., Kaeppler S.M., Buell C.R., de Leon N. (2019) Multiple maize reference genomes impact the identification of variants by genome-wide association study in a diverse inbred panel. Plant Genome. 12, 1‒12.

  132. Понажев В.П., Рожмина Т.А., Тихомирова В.Я. (2011) Инновационные разработки – льноводству: Селекция, семеноводство, возделывание, первичная обработка, экономика. Тверь: Твер. гос.ун-т.

  133. Jung S., Lee T., Gasic K., Campbell B.T., Yu J., Humann J., Ru S., Edge-Garza D., Hough H., Main D. (2021) The Breeding Information Management System (BIMS): an online resource for crop breeding. Database: J. Biol Databases Curation. 2021, baab054.

  134. Liu J., Fernie A.R., Yan J. (2021) Crop breeding ‒ from experience-based selection to precision design. J. Plant Physiol. 256, 153313.

  135. Furbank R.T., Jimenez-Berni J.A., George-Jaeggli B., Potgieter A.B., Deery D.M. (2019) Field crop phenomics: enabling breeding for radiation use efficiency and biomass in cereal crops. New Phytologist. 223, 1714‒1727.

  136. Winter P., Kahl G. (1995) Molecular marker technologies for plant improvement. W. J. Microbiol. Biotechnol. 11, 438‒448.

  137. Andersen J.R., Lubberstedt T. (2003) Functional markers in plants. Trends Plant Sci. 8, 554‒560.

  138. Varshney R.K., Graner A., Sorrells M.E. (2005) Genomics-assisted breeding for crop improvement. Trends Plant Sci. 10, 621‒630.

  139. Thudi M., Palakurthi R., Schnable J.C., Chitikineni A., Dreisigacker S., Mace E., Srivastava R.K., Satyavathi C.T., Odeny D., Tiwari V.K., Lam H.M., Hong Y.B., Singh V.K., Li G., Xu Y., Chen X., Kaila S., Nguyen H., Sivasankar S., Jackson S.A., Close T.J., Shubo W., Varshney R.K. (2021) Genomic resources in plant breeding for sustainable agriculture. J. Plant Physiol. 257, 153351.

  140. Salgotra R.K., Stewart C.N., Jr. (2020) Functional markers for precision plant breeding. Int. J. Mol. Sci. 21, 4792.

  141. Tibbs Cortes L., Zhang Z., Yu J. (2021) Status and prospects of genome-wide association studies in plants. Plant Genome. 14, e20077.

  142. Desta Z.A., Ortiz R. (2014) Genomic selection: genome-wide prediction in plant improvement. Trends Plant Sci. 19, 592‒601.

  143. Crossa J., Perez-Rodriguez P., Cuevas J., Montesinos-Lopez O., Jarquin D., de Los Campos G., Burgueno J., Gonzalez-Camacho J.M., Perez-Elizalde S., Beyene Y., Dreisigacker S., Singh R., Zhang X., Gowda M., Roorkiwal M., Rutkoski J., Varshney R.K. (2017) Genomic selection in plant breeding: methods, models, and perspectives. Trends Plant Sci. 22, 961‒975.

  144. Розанова И.В., Хлесткина Е.К. (2020) NGS-секвенирование в селекционно-генетических исследованиях ячменя. Вавиловский журн. генет. селекции. 24, 348‒355.

  145. Gupta P.K., Kulwal P.L., Jaiswal V. (2019) Association mapping in plants in the post-GWAS genomics era. Adv. Genetics. 104, 75‒154.

  146. You F.M., Cloutier S. (2020) Mapping quantitative trait loci onto chromosome-scale pseudomolecules in flax. Meth. Protocols. 3, 28.

  147. Lai J., Li R., Xu X., Jin W., Xu M., Zhao H., Xiang Z., Song W., Ying K., Zhang M., Jiao Y., Ni P., Zhang J., Li D., Guo X., Ye K., Jian M., Wang B., Zheng H., Liang H., Zhang X., Wang S., Chen S., Li J., Fu Y., Springer N.M., Yang H., Wang J., Dai J., Schnable P.S., Wang J. (2010) Genome-wide patterns of genetic variation among elite maize inbred lines. Nat. Genetics. 42, 1027‒1030.

  148. Darracq A., Vitte C., Nicolas S., Duarte J., Pichon J.P., Mary-Huard T., Chevalier C., Berard A., Le Paslier M.C., Rogowsky P., Charcosset A., Joets J. (2018) Sequence analysis of European maize inbred line F2 provides new insights into molecular and chromosomal characteristics of presence/absence variants. BMC Genomics. 19, 119.

Дополнительные материалы отсутствуют.