Молекулярная биология, 2022, T. 56, № 4, стр. 574-584

HECTD2 cупрессирует пролиферацию клеток колоректального рака, направляя LPCAT1 на убиквитинирование и деградацию

L. Ma a, D. H. Li a, Z. Xu a*

a Department of General Surgery, Qingdao Municipal Hospital, Qingdao University
266000 Qingdao, China

* E-mail: xuzhixuzhi1981@163.com

Поступила в редакцию 09.11.2021
После доработки 29.12.2021
Принята к публикации 29.12.2021

Аннотация

Колоректальный рак (КРР) представляет собой злокачественное новообразование, характеризующееся плохой общей выживаемостью и высокой частотой рецидивов, в то время как биомаркеры КРР еще плохо изучены. Нами обнаружено, что лизофосфатидилхолинацилтрансфераза-1 (LPCAT1) высоко экспрессирована при КРР, а сверхэкспрессия LPCAT1 значительно облегчала пролиферацию клеток КРР, в то время как дефицит LPCAT1 приводил к обратному эффекту. Кроме того, содержащий HECT-домен белок-2 (HECT domain-containing 2 protein; HECTD2) идентифицирован как пост-трансляционный медиатор LPCAT1, так как при иммунопреципитации анти-LPCAT1-антителами находился в комплексе с высокоубиквитинированным LPCAT1. Кроме того, повышенная экспрессия LPCAT1 восстанавливала пролиферацию клеток КРР, нарушенную сверхэкспрессией HECTD2. На основании полученных данных ось HECTD2/LPCAT1 можно считать потенциальным прогностическим биомаркером КРР.

Ключевые слова: колоректальный рак, LPCAT1, HECTD2, убиквитинирование, пролиферация клеток

Список литературы

  1. (2020) Erratum: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 70, 313.

  2. Feng M., Zhao Z., Yang M., Ji J., Zhu D. (2021) T-cell-based immunotherapy in colorectal cancer. Cancer Lett. 498, 201‒209.

  3. Barbosa A., Savage D., Siniossoglou S. (2015) Lipid droplet-organelle interactions: emerging roles in lipid metabolism. Curr. Opin. Cell Biol. 35, 91‒97.

  4. Shindou H., Hishikawa D., Harayama T., Yuki K., Shimizu T. (2009) Recent progress on acyl CoA: lysophospholipid acyltransferase research. J. Lipid Res. 50(Suppl.), S46‒S51.

  5. Lin S., Ikegami M., Moon C., Naren A. Shannon J. (2015) Lysophosphatidylcholine acyltransferase 1 (LPCAT1) specifically interacts with phospholipid transfer protein StarD10 to facilitate surfactant phospholipid trafficking in alveolar type II cells. J. Biol. Chem. 290, 18559‒18574.

  6. Dai X., Zhang H., Han J., He Y., Zhang Y., Qi Y., Pang J.J. (2016) Effects of subretinal gene transfer at different time points in a mouse model of retinal dege-neration. PLoS One. 11, e0156542.

  7. Okubo M., Yamanaka H., Kobayashi K., Kanda H., Dai Y., Noguchi K. (2012) Up-regulation of platelet-activating factor synthases and its receptor in spinal cord contribute to development of neuropathic pain following peripheral nerve injury. Mol. Pain. 8, 8.

  8. Zhao T., Zhang Y., Ma X., Wei L., Hou Y., Sun R., Jiang J. (2021) Elevated expression of LPCAT1 predicts a poor prognosis and is correlated with the tumour microenvironment in endometrial cancer. Cancer Cell Int. 21, 269.

  9. Han C., Yu G., Mao Y., Song S., Li L., Zhou L., Wang Z., Liu Y., Li M., Xu B. (2020) LPCAT1 enhances castration resistant prostate cancer progression via increased mRNA synthesis and PAF production. PLoS One. 15, e0240801.

  10. Wei C., Dong X., Lu H., Tong F., Chen L., Zhang R., Dong J., Hu Y., Wu G., Dong X. (2019) LPCAT1 promotes brain metastasis of lung adenocarcinoma by up-regulating PI3K/AKT/MYC pathway. J. Exp. Clin. Cancer Res. 38, 95.

  11. Mansilla F., da Costa K., Wang S., Kruhøffer M., Lewin T., Orntoft T., Coleman R., Birkenkamp-Demtröder K. (2009) Lysophosphatidylcholine acyltransferase 1 (LPCAT1) overexpression in human colorectal cancer. J. Mol. Med. (Berl.) 87, 85‒97.

  12. Deribe Y.L., Pawson T. Dikic I. (2010) Post-translational modifications in signal integration. Nat. Struct. Mol. Biol. 17, 666.

  13. Schwartz A. Ciechanover A. (2009) Targeting proteins for destruction by the ubiquitin system: implications for human pathobiology. Annu. Rev. Pharmacol. Toxicol. 49, 73‒96.

  14. Jones D., Crowe E., Stevens T.A. Candido E.P.M. (2001) Functional and phylogenetic analysis of the ubiquitylation system in Caenorhabditis elegans: ubiquitin-conjugating enzymes, ubiquitin-activating enzymes, and ubiquitin-like proteins. Genome Biol. 3(1), RESEARCH0002. https://doi.org/10.1186/gb-2001-3-1-research0002

  15. Wójcik C., DeMartino G.N. (2003) Intracellular loca-lization of proteasomes. Int. J. Biochem. Cell Biol. 35, 579‒589.

  16. Song Y., Wu C., Wu K., Han Q., Miao X., Ma D., Leung C. (2021) Ubiquitination regulators discovered by virtual screening for the treatment of cancer. Front. Cell Dev. Biol. 9, 665646.

  17. Xu Y., Wang C., Jiang X., Zhang Y., Su H., Jiang J., Ren H., Qiu X. (2021) KLHL38 involvement in non-small cell lung cancer progression via activation of the Akt signaling pathway. Cell Death Dis. 12, 556.

  18. Castro-Gonzalez S., Simpson S., Shi Y., Chen Y., Benjamin J., Serra-Moreno R. (2021) HIV Nef-mediated ubiquitination of BCL2: implications in autophagy and apoptosis. Front. Immunol. 12, 682624.

  19. Liu J., Li X., Zhou G., Zhang Y., Sang Y., Wang J., Li Y., Ge W., Sun Z., Zhou X. (2021) Silica nanoparticles inhibiting the differentiation of round spermatid and chromatin remodeling of haploid period via MIWI in mice. Environ. Pollut. 284, 117446.

  20. Gong Z., Li A., Ding J., Li Q., Zhang L., Li Y., Meng Z., Chen F., Huang J., Zhou D., Hu R., Ye J., Liu W., You H. (2021) OTUD7B deubiquitinates LSD1 to go-vern its binding partner specificity, homeostasis, and breast cancer metastasis. Adv. Sci. (Weinh.). 8(15), e2004504.

  21. Shmuel-Galia L., Humphries F., Lei X., Ceglia S., Wilson R., Jiang Z., Ketelut-Carneiro N., Foley S., Pechhold S., Houghton J., Muneeruddin K., Shaffer S., McCormick B., Reboldi A., Ward D., Marshak-Rothstein A., Fitzgerald K. (2021) Dysbiosis exacerbates colitis by promoting ubiquitination and accumulation of the innate immune adaptor STING in myeloid cells. Immunity. 54, 1137‒1153.e8.

  22. Lepore A., Choy P., Lee N., Carella M., Favicchio R., Briones-Orta M., Glaser S., Alpini G., D’Santos C., Tooze R., Lorger M., Syn W., Papakyriakou A., Giamas G., Bubici C., Papa S. (2021) Phosphorylation and stabilization of PIN1 by JNK promote intrahepatic cho-langiocarcinoma growth. Hepatology. 74(5), 2561‒2579.

  23. Kapur R., Semple J. (2016) Alleviation of gram-negative bacterial lung inflammation by targeting HECTD2. Ann. Trans. Med. 4, 488.

  24. Coon T., McKelvey A., Lear T., Rajbhandari S., Dunn S., Connelly W., Zhao J., Han S., Liu Y., Weathington N., McVerry B., Zhang Y., Chen B. (2015) The proinflammatory role of HECTD2 in innate immunity and experimental lung injury. Sci. Trans. Med. 7, 295ra109.

  25. Sun T., Wang X., He H., Sweeney C., Liu S., Brown M., Balk S., Lee G., Kantoff P. (2014) MiR-221 promotes the development of androgen independence in prostate cancer cells via downregulation of HECTD2 and RAB1A. Oncogene. 33, 2790‒2800.

  26. Li J.H., Liu S., Zhou H., Qu L.H. Yang J.H. (2014) starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res. 42, D92–D97.

  27. Uhlen M., Oksvold P., Fagerberg L., Lundberg E., Jonasson K., Forsberg M., Zwahlen M., Kampf C., Wes-ter K., Hober S., Wernerus H., Bjorling L., Ponten F. (2010) Towards a knowledge-based Human Protein Atlas. Nat. Biotechnol. 28, 1248‒1250.

  28. Uehara T., Kikuchi H., Miyazaki S., Iino I., Setoguchi T., Hiramatsu Y., Ohta M., Kamiya K., Morita Y., Tanaka H., Baba S., Hayasaka T., Setou M., Konno H. (2016) Overexpression of lysophosphatidylcholine acyltransferase 1 and concomitant lipid alterations in gastric cancer. Ann. Surg. Oncol. 23(Suppl. 2), S206‒S213.

  29. Shida-Sakazume T., Endo-Sakamoto Y., Unozawa M., Fukumoto C., Shimada K., Kasamatsu A., Ogawara K., Yokoe H., Shiiba M., Tanzawa H., Uzawa K. (2015) Lysophosphatidylcholine acyltransferase1 overexpression promotes oral squamous cell carcinoma progression via enhanced biosynthesis of platelet-activating factor. PLoS One. 10, e0120143.

  30. Grupp K., Sanader S., Sirma H., Simon R., Koop C., Prien K., Hube-Magg C., Salomon G., Graefen M., Heinzer H., Minner S., Izbicki J., Sauter G., Schlomm T., Tsourlakis M. (2013) High lysophosphatidylcholine acyltransferase 1 expression independently predicts high risk for biochemical recurrence in prostate cancers. Mol. Oncol. 7, 1001‒1011.

  31. Liu F., Wu Y., Liu J., Ni R.J., Yang A.G., Bian K., Zhang R. (2020) A miR-205‒LPCAT1 axis contributes to proliferation and progression in multiple cancers. Biochem. Biophys. Res. Commun. 527, 474‒480.

  32. Lebok P., von Hassel A., Meiners J., Hube-Magg C., Simon R., Hoflmayer D., Hinsch A., Dum D., Fraune C., Gobel C., Moller K., Sauter G., Jacobsen F., Buscheck F., Prien K., Krech T., Krech R.H., von der Assen A., Wolber L., Witzel I., Schmalfeldt B., Geist S., Paluchoswski P., Wilke C., Heilenkotter U., Terracciano L., Muller V., Wilczak W., Burandt E.C. (2019) Up-regulation of lysophosphatidylcholine acyltransferase 1 (LPCAT1) is linked to poor prognosis in breast cancer. Aging. 11, 7796‒7804.

  33. Du Y., Wang Q., Zhang X., Wang X., Qin C., Sheng Z., Yin H., Jiang C., Li J., Xu T. (2017) Lysophosphatidylcholine acyltransferase 1 upregulation and concomitant phospholipid alterations in clear cell renal cell carcinoma. J. Exp. Clin. Cancer Res. 36, 66.

  34. Hu J., Ding X., Tian S., Chu Y., Liu Z., Li Y., Li X., Wang G., Wang L., Wang Z. (2021) TRIM39 deficiency inhibits tumor progression and autophagic flux in colorectal cancer via suppressing the activity of Rab7. Cell Death Dis. 12, 391.

  35. Li B., Qi Z.P., He D.L., Chen Z.H., Liu J.Y., Wong M.W., Zhang J.W., Xu E.P., Shi Q., Cai S.L., Sun D., Yao L.Q., Zhou P.H., Zhong Y.S. (2021) NLRP7 deubiquitination by USP10 promotes tumor progression and tumor-associated macrophage polarization in colorectal cancer. J. Exp. Clin. Cancer Res. 40, 126.

  36. Erokhov P.A., Kulikov A.M., Karpova Y.D., Rodoman G.V., Sumedi I.R., Goncharov A.L., Razbirin D.V., Gorelova V.S., Sharova N.P., Astakhova T.M. (2021) Proteasomes in patient rectal cancer and diffe-rent intestine locations: where does proteasome pool change? Cancers (Basel). 13, 1108.

  37. Boland K., Flanagan L., McCawley N., Pabari R., Kay E.W., McNamara D.A., Murray F., Byrne A.T., Ramtoola Z., Concannon C.G., Prehn J.H. (2016) Targe-ting the 19S proteasomal subunit, Rpt4, for the treatment of colon cancer. Eur. J. Pharmacol. 780, 53‒64.

Дополнительные материалы

скачать ESM_1.doc
Supplementary Table 1. Sequences of siRNA Against Specific Targets
 
Supplementary Table 2. Sequences of PCR primers used in this study