Молекулярная биология, 2022, T. 56, № 4, стр. 564-573

Связанная с GTP форма Rab3D способствует росту липидных капель в адипоцитах

T. Wang ab, M. J. Jin ab, L. K. Li ab*

a MOE Key Laboratory of Bioinformatics and Tsinghua-Peking Center for Life Sciences
100084 Beijing, China

b Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University
100190 Beijing, China

* E-mail: liangkui826@mail.tsinghua.edu.cn

Поступила в редакцию 11.10.2021
После доработки 27.12.2021
Принята к публикации 27.12.2021

Аннотация

GTPaзы Rab ‒ главные регуляторы мембранного трафика. Профилирование протеома выявило десятки белков Rab, ассоциированных с липидными каплями (LD), но установлены функции лишь некоторых из них. Белок Cidec, которым обогащены участки контактов LD‒LD, опосредует слияние и рост LD. Нами изучена роль Rab3D в хранении липидов в адипоцитах. Подтверждено, что уровень транскриптов Rab3D в адипоцитах выше, чем у других членов семейства Rab3; различия были наиболее выраженными в белой жировой ткани. Более того, нами показано, что Rab3D способствует дозозависимому росту LD в преадипоцитах 3T3-L1 независимо от опосредованного Cidec слияния LD. Наконец, подтверждено, что GTP-связанная форма Rab3D способствует росту LD; в ходе дифференцировки адипоцитов эта форма транслоцируется в LD из других везикул. Напротив, Rab3D-GDP остается в цитоплазме и не влияет на размеры LD. Получены данные, доказывающие участие Rab3D в контролируемом образовании крупных LD в адипоцитах. Можно заключить, что Rab3D ‒ это новый регулятор LD, свойства которого отличаются от свойств идентифицированных ранее белков Rab18 и Rab8a, ассоциированных с LD.

Ключевые слова: липидные капли, адипоциты, Rab3D

Список литературы

  1. Rosen E.D., Spiegelman B.M. (2014) What we talk about when we talk about fat. Cell. 156(1‒2), 20‒44.

  2. Fujimoto T., Parton R.G. (2011) Not just fat: the structure and function of the lipid droplet. Cold Spring. Harb. Perspect. Biol. 3(3). a004838

  3. Olzmann J.A., Carvalho P. (2019) Dynamics and functions of lipid droplets. Nat. Rev. Mol. Cell Biol. 20(3), 137‒155.

  4. Martin S., Parton R.G. (2006) Lipid droplets: a unified view of a dynamic organelle. Nat. Rev. Mol. Cell Biol. 7(5), 373‒378.

  5. Farese R.V., Jr., Walther T.C. (2009) Lipid droplets finally get a little R-E-S-P-E-C-T. Cell. 139(5), 855‒860.

  6. Thiam A.R., Farese R.V., Jr., Walther T.C. (2013) The biophysics and cell biology of lipid droplets. Nat. Rev. Mol. Cell Biol. 14(12), 775‒786.

  7. Wilfling F., Haas J.T., Walther T.C., Farese R.V., Jr. (2014) Lipid droplet biogenesis. Curr. Opin. Cell Biol. 29, 39‒45.

  8. Long A.P., Manneschmidt A.K., VerBrugge B., Dortch M.R., Minkin S.C., Prater K.E., Biggerstaff J.P., Dunlap J.R., Dalhaimer P. (2012) Lipid droplet de novo formation and fission are linked to the cell cycle in fission yeast. Traffic. 13(5), 705‒714.

  9. Krahmer N., Guo Y., Farese R.V., Jr., Walther T.C. (2009) SnapShot: lipid droplets. Cell. 139(5), 1024‒U1192.

  10. Gong J., Sun Z., Wu L., Xu W., Schieber N., Xu D., Shui G., Yang H., Parton R.G., Li P. (2011) Fsp27 promotes lipid droplet growth by lipid exchange and transfer at lipid droplet contact sites. J. Cell Biol. 195(6), 953‒963.

  11. Wu L.Z., Zhou L.K., Chen C., Gong J.Y., Xu L., Ye J., Li D., Li P. (2014) Cidea controls lipid droplet fusion and lipid storage in brown and white adipose tissue. Sci. China-Life Sci. 57(1), 107‒116.

  12. Murphy S., Martin S., Parton R.G. (2010) Quantitative analysis of lipid droplet fusion: inefficient steady state fusion but rapid stimulation by chemical fusogens. PLoS One. 5(12), e15030.

  13. Gong J., Sun Z., Li P. (2009) CIDE proteins and metabolic disorders. Curr. Opin. Lipidology. 20(2), 121‒126.

  14. Inohara N., Koseki T., Chen S., Wu X.Y., Nunez G. (1998) CIDE, a novel family of cell death activators with homology to the 45 kDa subunit of the DNA fragmentation factor. EMBO J. 17(9), 2526‒2533.

  15. Puri V., Konda S., Ranjit S., Aouadi M., Chawla A., Chouinard M., Chakladar A., Czech M.P. (2007) Fat-specific protein 27, a novel lipid droplet protein that enhances triglyceride storage. J. Biol. Chem. 282(47), 34213‒34218.

  16. Puri V., Ranjit S., Konda S., Nicoloro S.M.C., Straubhaar J., Chawla A., Chouinard M., Lin C., Burkart A., Corvera S., Perugini R.A., Czech M.P. (2008) Cidea is associated with lipid droplets and insulin sensitivity in humans. Proc. Natl. Acad. Sci. USA. 105(22), 7833–7838.

  17. Jambunathan S., Yin J., Khan W., Tamori Y., Puri V. (2011) FSP27 promotes lipid droplet clustering and then fusion to regulate triglyceride accumulation. PLoS One. 6(12), e28614.

  18. Lin S.C., Li P. (2004) CIDE-A, a novel link between brown adipose tissue and obesity. Trends Mol. Med. 10(9), 434‒439.

  19. Wu C., Zhang Y., Sun Z., Li P. (2008) Molecular evolution of Cide family proteins: novel domain formation in early vertebrates and the subsequent divergence. BMC Evol. Biol. 8, 159.

  20. Li J.Z., Lei Y., Wang Y., Zhang Y., Ye J., Xia X., Pan X., Li P. (2010) Control of cholesterol biosynthesis, uptake and storage in hepatocytes by Cideb. Biochim. Biophys. Acta-Mol. Cell Biol. Lipids. 1801(5), 577‒586.

  21. Li J.Z., Ye J., Xue B., Qi J., Zhang J., Zhou Z., Li Q., Wen Z., Li P. (2007) Cideb regulates diet-induced obesity, liver steatosis, and insulin sensitivity by controlling lipogenesis and fatty acid oxidation. Diabetes. 56(10), 2523‒2532.

  22. Singaravelu R., Lyn R.K., Srinivasan P., Delcorde J., Steenbergen R.H., Tyrrell D.L., Pezacki J.P. (2013) Human serum activates CIDEB-mediated lipid droplet enlargement in hepatoma cells. Biochem. Biophys. Res. Commun. 441(2), 447‒452.

  23. Danesch U., Hoeck W., Ringold G.M. (1992) Cloning and transcriptional regulation of a novel adipocyte-specific gene, Fsp27 ‒ CAAT-enhancer-binding protein (c/EBP) and c/EBP-like proteins interact with sequences required for differentiation-dependent expression. J. Biol. Chem. 267(10), 7185‒7193.

  24. Li D., Zhang Y., Xu L., Zhou L., Wang Y., Xue B., Wen Z., Li P., Sang J. (2010). Regulation of gene expression by FSP27 in white and brown adipose tissue. BMC Genomics. 11, 446.

  25. Nishino N., Tamori Y., Tateya S., Kawaguchi T., Shibakusa T., Mizunoya W., Inoue K., Kitazawa R., Kitazawa S., Matsuki Y., Hiramatsu R., Masubuchi S., Omachi A., Kimura K., Saito M., Amo T., Ohta S., Yamaguchi T., Osumi T., Cheng J., Fujimoto T., Nakao H., Nakao K., Aiba A., Okamura H., Fushiki T., Kasuga M. (2008) FSP27 contributes to efficient energy storage in murine white adipocytes by promoting the formation of unilocular lipid droplets. J. Clin. Invest. 118(8), 2808‒2821.

  26. Walther T.C., Farese R.V., Jr. (2012) Lipid droplets and cellular lipid metabolism. Annu. Rev. Biochem. 81, 687‒714.

  27. Ducharme N.A., Bickel P.E. (2008) Lipid droplets in lipogenesis and lipolysis. Endocrinology. 149(3), 942‒949.

  28. Pereira-Leal J.B., Seabra M.C. (2001) Evolution of the Rab family of small GTP-binding proteins. J. Mol. Biol. 313(4), 889‒901.

  29. Seabra M.C., Mules E.H., Hume A.N. (2002) Rab GTPases, intracellular traffic and disease. Trends Mol. Med. 8(1), 23‒30.

  30. Vonmollard G.F., Stahl B., Li C., Sudhof T.C., Jahn R. (1994) Rab proteins in regulated exocytosis. Trends Biochem. Sci. 19(4), 164‒168.

  31. Mizuno-Yamasaki E., Rivera-Molina F., Novick P. (2012) GTPase networks in membrane traffic. Annu. Rev. Biochem. 81, 637‒659.

  32. Pfeffer S., Aivazian D. (2004) Targeting RAB GTPases to distinct membrane compartments. Nat. Rev. Mol. Cell Biol. 5(11), 886‒896.

  33. Seabra M.C., Wasmeier C. (2004) Controlling the location and activation of Rab GTPases. Curr. Opin. Cell Biol. 16(4), 451‒457.

  34. Gillingham A.K., Sinka R., Torres I.L., Lilley K.S., Munro S. (2014) Toward a comprehensive map of the effectors of rab GTPases. Dev. Cell. 31(3), 358‒373.

  35. Bersuker K., Peterson C.W.H., To M., Sahl S.J., Savi-khin V., Grossman E.A., Nomura D.K., Olzmann J.A. (2018) A proximity labeling strategy provides insights into the composition and dynamics of lipid droplet proteomes. Dev. Cell. 44(1), 97‒112. e117.

  36. Krahmer N., Hilger M., Kory N., Wilfling F., Stoehr G., Mann M., Farese R.V., Jr., Walther T.C. (2013) Protein correlation profiles identify lipid droplet proteins with high confidence. Mol. Cell Proteomics. 12(5), 1115‒1126.

  37. Turro S., Ingelmo-Torres M., Estanyol J.M., Tebar F., Fernandez M.A., Albor C.V., Gaus K., Grewal T., Enrich C., Pol A. (2006) Identification and characterization of associated with lipid droplet protein 1: a novel membrane-associated protein that resides on hepatic lipid droplets. Traffic. 7(9), 1254‒1269.

  38. Xu D., Li Y., Wu L., Li Y., Zhao D., Yu J., Huang T., Ferguson C., Parton R.G., Yang H., Li P. (2018) Rab18 promotes lipid droplet (LD) growth by tethering the ER to LDs through SNARE and NRZ interactions. J. Cell Biol. 217(3), 975‒995.

  39. Martin S., Driessen K., Nixon S.J., Zerial M., Parton R.G. (2005) Regulated localization of Rab18 to lipid droplets: effects of lipolytic stimulation and inhibition of lipid droplet catabolism. J. Biol. Chem. 280(51), 42325–42335.

  40. Ozeki S., Cheng J., Tauchi-Sato K., Hatano N., Taniguchi H., Fujimoto T. (2005) Rab18 localizes to lipid droplets and induces their close apposition to the endoplasmic reticulum-derived membrane. J. Cell Sci. 118(Pt 12), 2601‒2611.

  41. Pulido M.R., Diaz-Ruiz A., Jimenez-Gomez Y., Garcia-Navarro S., Gracia-Navarro F., Tinahones F., Lopez-Miranda J., Fruhbeck G., Vazquez-Martinez R., Malagon M.M. (2011) Rab18 dynamics in adipocytes in relation to lipogenesis, lipolysis and obesity. PLoS One. 6(7), e22931.

  42. Wu L., Xu D., Zhou L., Xie B., Yu L., Yang H., Huang L., Ye J., Deng H., Yuan Y.A., Chen S., Li P. (2014) Rab8a-AS160-MSS4 regulatory circuit controls lipid droplet fusion and growth. Dev. Cell. 30(4), 378‒393.

  43. Wang C., Liu Z., Huang X. (2012) Rab32 is important for autophagy and lipid storage in Drosophila. PLoS One. 7(2), e32086.

  44. Tan R., Wang W., Wang S., Wang Z., Sun L., He W., Fan R., Zhou Y., Xu X., Hong W., Wang T. (2013) Small GTPase Rab40c associates with lipid droplets and modulates the biogenesis of lipid droplets. PLoS One. 8(4), e63213.

  45. Schroeder B., Schulze R.J., Weller S.G., Sletten A.C., Casey C.A., McNiven M.A. (2015) The small GTPase Rab7 as a central regulator of hepatocellular lipophagy. Hepatology. 61(6), 1896‒1907.

  46. Li C., Yu S.S. (2016) Rab proteins as regulators of lipid droplet formation and lipolysis. Cell Biol. Int. 40(10), 1026‒1032.

  47. Liu P., Bartz R., Zehmer J.K., Ying Y.S., Zhu M., Serrero G., Anderson R.G. (2007). Rab-regulated interaction of early endosomes with lipid droplets. Biochim. Biophys. Acta. 1773(6), 784‒793.

  48. Nevo-Yassaf I., Yaffe Y., Asher M., Ravid O., Eizenberg S., Henis Y.I., Nahmias Y., Hirschberg K., Sklan E.H. (2012) Role for TBC1D20 and Rab1 in hepatitis C virus replication via interaction with lipid droplet-bound nonstructural protein 5A. J. Virol. 86(12), 6491‒6502.

  49. Yamaguchi K., Tanaka M., Mizoguchi A., Hirata Y., Ishizaki H., Kaneko K., Miyoshi J., Takai Y. (2002) A GDP/GTP exchange protein for the Rab3 small G protein family up-regulates a postdocking step of synaptic exocytosis in central synapses. Proc. Natl. Acad. Sci. USA. 99(22), 14536‒14541.

  50. Schluter O.M., Schmitz F., Jahn R., Rosenmund C., Sudhof T.C. (2004) A complete genetic analysis of neuronal Rab3 function. J. Neurosci. 24(29), 6629‒6637.

  51. Schluter O.M., Khvotchev M., Jahn R., Sudhof T.C. (2002) Localization versus function of Rab3 proteins ‒ Evidence for a common regulatory role in controlling fusion. J. Biol. Chem. 277(43), 40919‒40929.

  52. Valentijn J.A., Sengupta D., Gumkowski F.D., Tang L.H., Konieczko E.M., Jamieson J.D. (1996) Rab3D localizes to secretory granules in rat pancreatic acinar cells. Eur. J. Cell Biol. 70(1), 33‒41.

  53. Valentijn J.A., van Weeren L., Ultee A., Koster A.J. (2007) Novel localization of Rab3D in rat intestinal goblet cells and Brunner’s gland acinar cells suggests a role in early Golgi trafficking. Am. J. Physiol. Gastrointest. Liver Physiol. 293(1), G165‒177.

  54. Chen X., Edwards J.A., Logsdon C.D., Ernst S.A., Williams J.A. (2002) Dominant negative Rab3D inhibits amylase release from mouse pancreatic acini. J. Biol. Chem. 277(20), 18002‒18009.

  55. Chen X., Ernst S.A., Williams J.A. (2003) Dominant negative Rab3D mutants reduce GTP-bound endogenous Rab3D in pancreatic acini. J. Biol. Chem. 278(50), 50053‒50060.

  56. Riedel D., Antonin W., Fernandez-Chacon R., Alvarez de Toledo G., Jo T., Geppert M., Valentijn J.A., Valentijn K., Jamieson J.D., Sudhof T.C., Jahn R. (2002) Rab3D is not required for exocrine exocytosis but for maintenance of normally sized secretory granules. Mol. Cell Biol. 22(18), 6487‒6497.

  57. Wang T., Meng J., Li L., Zhang G. (2016) Characterization of CgHIFalpha-like, a novel bHLH-PAS transcription factor family member, and its role under hypoxia stress in the pacific oyster Crassostrea gigas. PLoS One. 11(11), e0166057.

  58. Iezzi M., Escher G., Meda P., Charollais A., Baldini G., Darchen F., Wollheim C.B., Regazzi R. (1999) Subcellular distribution and function of Rab3A, B, C, and D isoforms in insulin-secreting cells. Mol. Endocrinol. 13(2), 202‒212.

  59. Sun Z., Gong J., Wu H., Xu W., Wu L., Xu D., Gao J., Wu J.W., Yang H., Yang M., Li P. (2013) Perilipin1 promotes unilocular lipid droplet formation through the activation of Fsp27 in adipocytes. Nat. Commun. 4, 1594.

  60. Saely C.H., Geiger K., Drexel H. (2012) Brown versus white adipose tissue: a mini-review. Gerontology. 58(1), 15‒23.

  61. Xu X., Park J.-G., So J.-S., Lee A.-H. (2015) Transcriptional activation of Fsp27 by the liver-enriched transcription factor CREBH promotes lipid droplet growth and hepatic steatosis. Hepatology (Baltimore, Md). 61(3), 857‒869.

  62. Zhu S., Chim S.M., Cheng T., Ang E., Ng B., Lim B., Chen K., Qiu H., Tickner J., Xu H., Pavlos N., Xu J. (2016) Calmodulin interacts with Rab3D and modulates osteoclastic bone resorption. Sci. Rep. 6, 37963.

  63. Pavlos N.J., Xu J., Riedel D., Yeoh J.S., Teitelbaum S.L., Papadimitriou J.M., Jahn R., Ross F.P., Zheng M.H. (2005) Rab3D regulates a novel vesicular trafficking pathway that is required for osteoclastic bone resorption. Mol. Cell Biol. 25(12), 5253‒5269.

  64. van Weeren L., de Graaff A.M., Jamieson J.D., Batenburg J.J., Valentijn J.A. (2004). Rab3D and actin reveal distinct lamellar body subpopulations in alveolar epithelial type II cells. Am. J. Respir. Cell Mol. Bio. 30(3), 288‒295.

Дополнительные материалы

скачать ESM_1.tiff
S1 Fig. Rab3D mutants’ DNA sequences alignment.
 
S2 Fig. Rab3D mutants’ protein sequences alignment.