Молекулярная биология, 2022, T. 56, № 5, стр. 687-696

Физиологические среды в исследованиях метаболизма клеток в норме и при патологии

М. В. Голиков a, В. Т. Валуев-Эллистон a, О. А. Смирнова a, А. В. Иванов a*

a Институт молекулярной биологии им. В.А. Энгельгардта Российской академии наук
119991 Москва, Россия

* E-mail: aivanov@yandex.ru

Поступила в редакцию 17.01.2022
После доработки 22.02.2022
Принята к публикации 01.03.2022

Аннотация

Изменения клеточного метаболизма сопровождают развитие широкого спектра патологий, включая рак, аутоиммунные и воспалительные заболевания. В связи с этим одна из стратегий создания терапевтических средств заключается в использовании ингибиторов ферментов измененных метаболических путей. Однако исследования нарушений метаболизма клеток затруднены, в том числе вследствие значительного влияния используемых культуральных сред, которые сами могут изменить многие процессы в клетке, которая в этом случае становится далекой от реальной. Многие группы, занимающиеся изучением аспектов метаболизма, сталкиваются с невоспроизводимостью результатов, полученных in vitro, при переходе к пациентам. В последнее десятилетие в биохимии появился подход, заключающийся в изменении классических культуральных сред с целью приближения их состава к составу плазмы крови. И в 2017‒2019 гг. были предложены две культуральные плазмаподобные среды: Plasmax и HPLM. Данный обзор посвящен анализу недостатков классических сред, а также различий в метаболизме клеток при культивировании в общераспространенных и плазмаподобных средах в норме и при патологии.

Ключевые слова: культуральная среда, клетки, метаболизм, окислительный стресс, вирусы

Список литературы

  1. Cox J., McBeath D., Harper C., Daniel R. (2020) Co-occurrence of cell lines, basal media and supplementation in the biomedical research literature. J. Data Inform. Sci. 5(3), 161‒177.

  2. Pavlacky J., Polak J. (2020) Technical feasibility and physiological relevance of hypoxic cell culture models. Front. Endocrinol. (Lausanne). 11, 57.

  3. Ikari R., Mukaisho K.I., Kageyama S., Nagasawa M., Kubota S., Nakayama T., Murakami S., Taniura N., Tanaka H., Kushima R.P., Kawauchi A. (2021) Diffe-rences in the central energy metabolism of cancer cells between conventional 2D and novel 3D culture systems. Int. J. Mol. Sci. 22(4), 1805.

  4. Abbas M., Moradi F., Hu W., Regudo K.L., Osborne M., Pettipas J., Atallah D.S., Hachem R., Ott-Peron N., Stuart J.A. (2021) Vertebrate cell culture as an experimental approach ‒ limitations and solutions. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 254, 110570.

  5. Dulbecco R., Hartwell L.H., Vogt M. (1965) Induction of cellular DNA synthesis by polyoma virus. Proc. Natl. Acad. Sci. USA. 53, 403‒410.

  6. Eagle H., Habel K. (1956) The nutritional requirements for the propagation of poliomyelitis virus by the HeLa cell. J. Exp. Med. 104(2), 271‒287.

  7. Moore G.E., Gerner R.E., Franklin H.A. (1967) Culture of normal human leukocytes. JAMA. 199(8), 519‒524.

  8. Ackermann T., Tardito S. (2019) Cell culture medium formulation and its implications in cancer metabolism. Trends Cancer. 5(6), 329‒332.

  9. Amanso A.M., Griendling K.K. (2012) Differential roles of NADPH oxidases in vascular physiology and pathophysiology. Front. Biosci. (Schol Ed.). 4(3), 1044‒1064.

  10. Ivanov A.V., Smirnova O.A., Ivanova O.N., Masalova O.V., Kochetkov S.N., Isaguliants M.G. (2011) Hepatitis C virus proteins activate NRF2/ARE pathway by distinct ROS-dependent and independent mechanisms in HUH7 cells. PLoS One. 6(9), e24957.

  11. Dimri M., Humphries A., Laknaur A., Elattar S., Lee T.J., Sharma A., Kolhe R., Satyanarayana A. (2020) NAD(P)H quinone dehydrogenase 1 ablation inhibits activation of the phosphoinositide 3-kinase/ Akt serine/threonine kinase and mitogen-activated protein kinase/extracellular signal-regulated kinase pathways and blocks metabolic adaptation in hepatocellular carcinoma. Hepatology. 71(2), 549‒568.

  12. Irshad Z., Xue M., Ashour A., Larkin J.R., Thornalley P.J., Rabbani N. (2019) Activation of the unfolded protein response in high glucose treated endothelial cells is mediated by methylglyoxal. Sci. Rep. 9(1), 7889.

  13. Liberti M.V., Locasale J.W. (2016) The Warburg effect: how does it benefit cancer cells? Trends Biochem. Sci. 41(3), 211‒218.

  14. Jose C., Bellance N., Rossignol R. (2011) Choosing between glycolysis and oxidative phosphorylation: a tumor’s dilemma? Biochim. Biophys. Acta. 1807(6), 552‒561.

  15. Hirayama A., Kami K., Sugimoto M., Sugawara M., Toki N., Onozuka H., Kinoshita T., Saito N., Ochiai A., Tomita M., Esumi H., Soga T. (2009) Quantitative metabolome profiling of colon and stomach cancer microenvironment by capillary electrophoresis time-of-flight mass spectrometry. Cancer Res. 69(11), 4918‒4925.

  16. Urasaki Y., Heath L., Xu C.W. (2012) Coupling of glucose deprivation with impaired histone H2B monoubi-quitination in tumors. PLoS One. 7(5), e36775.

  17. Birsoy K., Possemato R., Lorbeer F.K., Bayraktar E.C., Thiru P., Yucel B., Wang T., Chen W.W., Clish C.B., Sabatini D.M. (2014) Metabolic determinants of cancer cell sensitivity to glucose limitation and biguanides. Nature. 508(7494), 108‒112.

  18. Balsa E., Soustek M.S., Thomas A., Cogliati S., Garcia-Poyatos C., Martin-Garcia E., Jedrychowski M., Gygi S.P., Enriquez J.A., Puigserver P. (2019) ER and nutrient stress promote assembly of respiratory chain supercomplexes through the PERK-eIF2α axis. Mol. Cell. 74(5), 877‒890.e876.

  19. Pakos-Zebrucka K., Koryga I., Mnich K., Ljujic M., Samali A., Gorman A.M. (2016) The integrated stress response. EMBO Rep. 17(10), 1374‒1395.

  20. Yang W.H., Qiu Y., Stamatatos O., Janowitz T., Lukey M.J. (2021) Enhancing the efficacy of glutamine metabolism inhibitors in cancer therapy. Trends Cancer. 7(8), 790‒804.

  21. Singleton D.C., Dechaume A.L., Murray P.M., Katt W.P., Baguley B.C., Leung E.Y. (2020) Pyruvate anaplerosis is a mechanism of resistance to pharmacological glutaminase inhibition in triple-receptor negative breast cancer. BMC Cancer. 20(1), 470.

  22. Morrison M.A., Spriet L.L., Dyck D.J. (2000) Pyruvate ingestion for 7 days does not improve aerobic performance in well-trained individuals. J. Appl. Physiol. (1985). 89(2), 549‒556.

  23. Bardy C., van den Hurk M., Eames T., Marchand C., Hernandez R.V., Kellogg M., Gorris M., Galet B., Palomares V., Brown J., Bang A.G., Mertens J., Bohnke L., Boyer L., Simon S., Gage F.H. (2015) Neuronal medium that supports basic synaptic functions and activity of human neurons in vitro. Proc. Natl. Acad. Sci. USA. 112(20), E2725‒E2734.

  24. Tardito S., Oudin A., Ahmed S.U., Fack F., Keunen O., Zheng L., Miletic H., Sakariassen P.O., Weinstock A., Wagner A., Lindsay S.L., Hock A.K., Barnett S.C., Ruppin E., Morkve S.H., Lund-Johansen M., Chalmers A.J., Bjerkvig R., Niclou S.P., Gottlieb E. (2015) Glutamine synthetase activity fuels nucleotide biosynthesis and supports growth of glutamine-restricted glioblastoma. Nat. Cell Biol. 17(12), 1556‒1568.

  25. Schug Z.T., Peck B., Jones D.T., Zhang Q., Grosskurth S., Alam I.S., Goodwin L.M., Smethurst E., Mason S., Blyth K., McGarry L., James D., Shanks E., Kalna G., Saunders R.E., Jiang M., Howell M., Lassailly F., Thin M.Z., Spencer-Dene B., Stamp G., van den Broek N.J., Mackay G., Bulusu V., Kamphorst J.J., Tardito S., Strachan D., Harris A.L., Aboagye E.O., Critchlow S.E., Wakelam M.J., Schulze A., Gottlieb E. (2015) Acetyl-CoA synthetase 2 promotes acetate utilization and maintains cancer cell growth under metabolic stress. Cancer Cell. 27(1), 57‒71.

  26. Biancur D.E., Paulo J.A., Malachowska B., Quiles Del Rey M., Sousa C.M., Wang X., Sohn A.S.W., Chu G.C., Gygi S.P., Harper J.W., Fendler W., Mancias J.D., Kimmelman A.C. (2017) Compensatory metabolic networks in pancreatic cancers upon perturbation of glutamine metabolism. Nat. Commun. 8, 15965.

  27. Vande Voorde J., Ackermann T., Pfetzer N., Sumpton D., Mackay G., Kalna G., Nixon C., Blyth K., Gottlieb E., Tardito S. (2019) Improving the metabolic fidelity of cancer models with a physiological cell culture medium. Sci. Adv. 5(1), eaau7314.

  28. Cantor J.R., Abu-Remaileh M., Kanarek N., Freinkman E., Gao X., Louissaint A., Jr., Lewis C.A., Sabatini D.M. (2017) Physiologic medium rewires cellular metabolism and reveals uric acid as an endogenous inhibitor of UMP synthase. Cell. 169(2), 258‒272.e217.

  29. Hui S., Ghergurovich J.M., Morscher R.J., Jang C., Teng X., Lu W., Esparza L.A., Reya T., Le Z., Yanxiang Guo J., White E., Rabinowitz J.D. (2017) Glucose feeds the TCA cycle via circulating lactate. Nature. 551(7678), 115‒118.

  30. Rabinowitz J.D., Enerback S. (2020) Lactate: the ugly duckling of energy metabolism. Nat. Metab. 2(7), 566‒571.

  31. Bastiaansen J.A., Merritt M.E., Comment A. (2016) Measuring changes in substrate utilization in the myocardium in response to fasting using hyperpolarized [1‑13C]butyrate and [1-13C]pyruvate. Sci. Rep. 6, 25573.

  32. Arnold P.K., Jackson B.T., Paras K.I., Brunner J.S., Hart M.L., Newsom O.J., Alibeckoff S.P., Endress J., Drill E., Sullivan L.B., Finley L.W.S. (2022) A non-canonical tricarboxylic acid cycle underlies cellular identity. Nature. 603(7901), 477‒481.

  33. Stephens F.B., Constantin-Teodosiu D., Greenhaff P.L. (2007) New insights concerning the role of carnitine in the regulation of fuel metabolism in skeletal muscle. J. Physiol. 581(Pt. 2), 431‒444.

  34. Keenan J., Pearson D., Clynes M. (2006) The role of recombinant proteins in the development of serum-free media. Cytotechnology. 50(1‒3), 49‒56.

  35. Brault C., Levy P., Duponchel S., Michelet M., Salle A., Pecheur E.I., Plissonnier M.L., Parent R., Vericel E., Ivanov A.V., Demir M., Steffen H.M., Odenthal M., Zoulim F., Bartosch B. (2016) Glutathione peroxidase 4 is reversibly induced by HCV to control lipid peroxidation and to increase virion infectivity. Gut. 65(1), 144‒154.

  36. Golikov M.V., Karpenko I.L., Lipatova A.V., Ivanova O.N., Fedyakina I.T., Larichev V.F., Zakirova N.F., Leonova O.G., Popenko V.I., Bartosch B., Kochetkov S.N., Smirnova O.A., Ivanov A.V. (2021) Cultivation of cells in a physiological Plasmax medium increases mitochondrial respiratory capacity and reduces replication levels of RNA viruses. Antioxidants (Basel). 11(1), 97.

  37. Genzel Y., Ritter J.B., Konig S., Alt R., Reichl U. (2005) Substitution of glutamine by pyruvate to reduce ammonia formation and growth inhibition of mammalian cells. Biotechnol. Prog. 21(1), 58‒69.

  38. Khomich O., Ivanov A.V., Bartosch B. (2019) Metabolic hallmarks of hepaticstellate cells in liver fibrosis. Cells. 9(1), 24.

  39. Smirnova O.A., Bartosch B., Zakirova N.F., Kochetkov S.N., Ivanov A.V. (2018) Polyamine metabolism and oxidative protein folding in the ER as ROS-producing systems neglected in virology. Int. J. Mol. Sci. 19(4), 1219.

  40. Ivanova O.N., Snezhkina A.V., Krasnov G.S., Valuev-Elliston V.T., Khomich O.A., Khomutov A.R., Kei-nanen T.A., Alhonen L., Bartosch B., Kudryavtseva A.V., Kochetkov S.N., Ivanov A.V. (2018) Activation of polyamine catabolism by N1,N11-diethylnorspermine in hepatic HepaRG cells induces dedifferentiation and mesenchymal-like phenotype. Cells. 7(12), 275.

  41. Pegg A.E. (2009) Mammalian polyamine metabolism and function. IUBMB Life. 61(9), 880‒894.

  42. Moradi F., Moffatt C., Stuart J.A. (2021) The effect of oxygen and micronutrient composition of cell growth media on cancer cell bioenergetics and mitochondrial networks. Biomolecules. 11(8), 1177.

  43. Moradi F., Fiocchetti M., Marino M., Moffatt C., Stuart J.A. (2021) Media composition and O2 levels determine effects of 17β-estradiol and selective estrogen receptor modulators on mitochondrial bioenergetics and cellular reactive oxygen species. Am. J. Physiol. Cell Physiol. 321(1), C72‒C81.

  44. Jonas A.J., Greene A.A., Smith M.L., Schneider J.A. (1982) Cystine accumulation and loss in normal, hete-rozygous, and cystinotic fibroblasts. Proc. Natl. Acad. Sci. USA. 79(14), 4442‒4445.

  45. Chiu M., Taurino G., Dander E., Bardelli D., Fallati A., Andreoli R., Bianchi M.G., Carubbi C., Pozzi G., Galuppo L., Mirandola P., Rizzari C., Tardito S., Biondi A., D’Amico G., Bussolati O. (2021) ALL blasts drive primary mesenchymal stromal cells to increase asparagine availability during asparaginase treatment. Blood Adv. 5(23), 5164‒5178.

  46. Menezes W.P., Silva V.A.O., Gomes I.N.F., Rosa M.N., Spina M.L.C., Carloni A.C., Alves A.L.V., Melendez M., Almeida G.C., Silva L.S.D., Clara C., da Cunha I.W., Hajj G.N.M., Jones C., Bidinotto L.T., Reis R.M. (2020) Loss of 5'-methylthioadenosine phosphorylase (MTAP) is frequent in high-grade gliomas; nevertheless, it is not associated with higher tumor aggressiveness. Cells. 9(2), 492.

  47. Marjon K., Cameron M.J., Quang P., Clasquin M.F., Mandley E., Kunii K., McVay M., Choe S., Kernyt-sky A., Gross S., Konteatis Z., Murtie J., Blake M.L., Travins J., Dorsch M., Biller S.A., Marks K.M. (2016) MTAP deletions in cancer create vulnerability to targe-ting of the MAT2A/PRMT5/RIOK1 axis. Cell Rep. 15(3), 574‒587.

  48. Barekatain Y., Ackroyd J.J., Yan V.C., Khadka S., Wang L., Chen K.C., Poral A.H., Tran T., Georgiou D.K., Arthur K., Lin Y.H., Satani N., Ballato E.S., Behr E.I., deCarvalho A.C., Verhaak R.G.W., de Groot J., Huse J.T., Asara J.M., Kalluri R., Muller F.L. (2021) Homozygous MTAP deletion in primary human glioblastoma is not associated with elevation of methylthioadenosine. Nat. Commun. 12(1), 4228.

  49. Khadka S., Arthur K., Barekatain Y., Behr E., Washington M., Ackroyd J., Crowley K., Suriyamongkol P., Lin Y.H., Pham C.D., Zielinski R., Trujillo M., Galligan J., Georgiou D.K., Asara J., Muller F. (2021) Impaired anaplerosis is a major contributor to glycolysis inhibitor toxicity in glioma. Cancer Metab. 9(1), 27.

  50. TeSlaa T., Bartman C.R., Jankowski C.S.R., Zhang Z., Xu X., Xing X., Wang L., Lu W., Hui S., Rabinowitz J.D. (2021) The source of glycolytic intermediates in mammalian tissues. Cell Metab. 33(2), 367‒378.e5.

  51. Bagshaw O.R.M., Moradi F., Moffatt C.S., THettwer H.A., Liang P., Goldman J., Drenlich J.W., Stuart J.A. (2021) Bioabsorbable metal zinc differentially affects mitochondria in vascular endothelial and smooth muscle cells. Biomaterials and Biosystems. 4, 100027.

  52. Rossiter N.J., Huggler K.S., Adelmann C.H., Keys H.R., Soens R.W., Sabatini D.M., Cantor J.R. (2021) CRISPR screens in physiologic medium reveal conditionally essential genes in human cells. Cell Metab. 33(6), 1248‒1263.e9.

  53. Muri J., Kopf M. (2021) Redox regulation of immunometabolism. Nat. Rev. Immunol. 21(6), 363‒381.

  54. Leney-Greene M.A., Boddapati A.K., Su H.C., Cantor J.R., Lenardo M.J. (2020) Human plasma-like medium improves T lymphocyte activation. iScience. 23(1), 100759.

  55. Khomich O.A., Kochetkov S.N., Bartosch B., Iva-nov A.V. (2018) Redox biology of respiratory viral infections. Viruses. 10(8), 392.

  56. Ivanov A.V., Valuev-Elliston V.T., Tyurina D.A., Ivanova O.N., Kochetkov S.N., Bartosch B., Isaguliants M.G. (2017) Oxidative stress, a trigger of hepatitis C and B virus-induced liver carcinogenesis. Oncotarget. 8(3), 3895‒3932.

  57. Hung Y.P., Albeck J.G., Tantama M., Yellen G. (2011) Imaging cytosolic NADH-NAD+ redox state with a genetically encoded fluorescent biosensor. Cell Metab. 14(4), 545‒554.

Дополнительные материалы отсутствуют.