Молекулярная биология, 2023, T. 57, № 3, стр. 440-457

Методы обогащения ДНК-фрагментов для высокопроизводительного секвенирования

А. Н. Синяков a*, Е. В. Костина a

a Институт химической биологии и фундаментальной медицины, Сибирское отделение Российской академии наук
630090 Новосибирск, Россия

* E-mail: sinyakov@niboch.nsc.ru

Поступила в редакцию 08.11.2022
После доработки 16.12.2022
Принята к публикации 16.12.2022

Аннотация

В обзоре описано использование олигонуклеотидов, в основном полученных с помощью синтезаторов ДНК нового поколения (микрочиповых синтезаторов ДНК), для обогащения целевых геномных фрагментов. Рассмотрены способы обогащения целевых мишеней с использованием методов молекулярной гибридизации, ПЦР и системы CRISPR-Cas9. Приведены примеры практического применения разработанных методов для исследовательских и диагностических целей.

Ключевые слова: высокопроизводительное секвенирование, олигонуклеотиды, микрочипы, амплификация, гибридизация, диагностика, экзом, CRISPR-Cas9

Список литературы

  1. Lesnik E.A., Freier S.M. (1995) Relative thermodynamic stability of DNA, RNA, and DNA:RNA hybrid duplexes: relationship with base composition and structure. Biochemistry. 34, 10807‒10815.

  2. Okou D.T., Steinberg K.M., Middle C., Cutler D.J., Albert T.J., Zwick M.E. (2007) Microarray-based genomic selection for high-throughput resequencing. Nat. Methods. 4(11), 907–909.

  3. Mamanova L., Coffey A.J., Scott C.E., Kozarewa I., Turner E.H., Kumar A., Howard E., Shendure J., Turner D.J. (2010) Target-enrichment strategies for next-generation sequencing. Nat. Methods. 7, 111–118.

  4. Kozarewa I., Armisen J., Gardner A.F., Slatko B.E., Hendrickson C.L. (2015) Overview of target enrichment strategies. Curr. Protoc. Mol. Biol. 112, 7.21.1–7.21.23.

  5. Hodges E., Xuan Z., Balija V., Kramer M., Molla M.N., Smith S.W., Middle C.M., Rodesch M.J., Albert T.J., Hannon G.J., McCombie W.R. (2008) Genome-wide in situ exon capture for selective resequencing. Nat. Genet. 39(12), 1522–1527.

  6. Albert T.J., Molla M.N., Muzny D.M., Nazareth L., Wheeler D., Song X., Richmond T.A., Middle C.M., Rodesch M.J., J Packard C.J., Weinstock G.M., Gibbs R.A. (2007) Direct selection of human genomic loci by microarray hybridization. Nat. Methods. 4(11), 903–905.

  7. Choi M., Scholl U.I., Ji W., Liu T., Tikhonova I.R., Zumbo P., Nayir A., Lu A.B., Ozen S., Sanjad S., Nelson-Williams C., Farhi A., Mane S., Lifton R.P. (2009) Genetic diagnosis by whole exome capture and massively parallel DNA sequencing. Proc. Natl. Acad. Sci. USA. 106(45), 19096–19101.

  8. Ng S.B., Turner E.H., Robertson P.D., Flygare S.D., Bigham A.W., Lee C., Shaffer T., Wong M., Bhattacharjee A., Eichler E.E., Bamshad M., Nickerson D.A., Shendure J. (2009) Targeted capture and massively parallel sequencing of 12 human exomes. Nature. 461, 272–276.

  9. Salmon A., Udall J.A., Jeddeloh J.A., Wendel J. (2012) Targeted capture of homoeologous coding and noncoding sequence in polyploid cotton. G3 (Bethesda). 2(8), 921–930.

  10. Lee H., O’Connor B.D., Merriman B., Funari V.A., Homer N., Chen Z., Cohn D.H., Nelson S.F. (2009) Improving the efficiency of genomic loci capture using oligonucleotide arrays for high throughput resequencing. BMC Genomics. 10, 646.

  11. Summerer D., Wu H., Haase B., Cheng Y., Schracke N., Stahler C.F., Chee M.S., Stahler P.F., Beier M. (2009) Microarray-based multicycle-enrichment of genomic subsets for targeted next-generation sequencing. Genome Res. 19(9), 1616–1621.

  12. Bau S., Schracke N., Kränzle M., Wu H., Stähler P.F., Hoheisel J.D., Beier M., Summerer D. (2009) Targeted next-generation sequencing by specific capture of multiple genomic loci using low-volume microfluidic DNA arrays. Anal. Bioanal. Chem. 393, 171–175.

  13. Summerer D., Schracke N., Wu H., Cheng Y., Bau S., Stähler C.F., Stähler P.F., Beier M. (2010) Targeted high throughput sequencing of a cancer-related exome subset by specific sequence capture with a fully automated microarray platform. Genomics. 95, 241–246.

  14. Gnirke A., Melnikov A., Maguire J., Rogov P., LeProu-st E.M., Brockman W., Fennell T., Giannoukos G., Fisher S., Russ C., Gabriel S., Jaffe D.B., Lander E.S., Nusbaum C. (2009) Solution hybrid selection with ultra-long oligonucleotides for massively parallel targeted sequencing. Nat. Biotechnol. 27, 182–189.

  15. Chen R., Im H., Snyder M. (2015) Whole-exome enrichment with the Agilent SureSelect Human All Exon platform. Cold Spring Harb. Protoc. 7, 626–633.

  16. Chen R., Im H., Snyder M. (2015) Whole-exome enrichment with the Illumina TruSeq exome enrichment platform. Cold Spring Harb. Protoc. 7, 642–648.

  17. Chen R., Im H., Snyder M. (2015) Whole-exome enrichment with the roche NimbleGen SeqCap EZ exome library SR platform. Cold Spring Harb. Protoc. 7, 634‒641.

  18. Caruccio N. (2011) Preparation of next-generation sequencing libraries using NexteraTM technology: simultaneous DNA fragmentation and adaptor tagging by in vitro transposition. Methods Mol. Biol. 733, 241–255.

  19. Marine R., Polson S.W., Ravel J., Hatfull G., Russell D., Sullivan M., Syed F., Dumas M., Wommack K.E. (2011) Evaluation of a transposase protocol for rapid generation of shotgun high-throughput sequencing libraries from nanogram quantities of DNA. Appl. Environ. Microbiol. 77(22), 8071–8079.

  20. Shearer A.E., DeLuca A.P., Hildebrand M.S., Taylor K.R., Gurrola J., Scherer S., Scheetz T.E., Smith R.J.H. (2010) Comprehensive genetic testing for hereditary hearing loss using massively parallel sequencing. Proc. Natl. Acad. Sci. USA. 107, 21104–21109.

  21. Martignetti J.A., Tian L., Li D., Ramirez M.C.M., Camacho-Vanegas O., Camacho S.C., Guo Y., Zand D.J., Bernstein A.M., Masur S.K., Kim C.E., Otieno F.G., Hou C., Abdel-Magid N., Tweddale B., Metry D., Fournet J.C., Papp E., McPherson E.V., Zabel C., Vaksmann G., Morisot C., Keating B., Sleiman P.M., Cleveland J.A., Everman D.B., Zackai E., Hakonarson H. (2013) Mutations in PDGFRB cause autosomal-dominant infantile myofibromatosis. Am. J. Hum. Genet. 92, 1001–1007.

  22. Nectoux J., de Cid R., Baulande S., Leturcq F., Urtizberea J.A., Penisson-Besnier I., Nadaj-Pakleza A., Roudaut C., Criqui A., Orhant L., Peyroulan D., Yaou R.B., Nelson I., Cobo A.M., Arné-Bes M.C., Uro-Coste E., Nitschke P., Claustres M., Bonne G., Lévy N., Chelly J., Richard I., Cossée M. (2015) Detection of TRIM32 deletions in LGMD patients analyzed by a combined strategy of CGH array and massively parallel sequencing. Eur. J. Hum. Genet. 23, 929–934.

  23. Rousseau-Nepton I., Okubo M., Grabs R., Mitchell J., Polychronakos C., Rodd C. (2015) A founder AGL mutation causing glycogen storage disease type IIIa in Inuit identified through whole-exome sequencing: a case series. Can. Med. Assoc. J. 187, E68–E73.

  24. Poultney C.S., Goldberg A.P., Drapeau E., Kou Y., Harony-Nicolas H., Kajiwara Y., De Rubeis S., Durand S., Stevens C., Rehnström K., Palotie A., Daly M.J., Ma’ayan A., Fromer M., Buxbaum J.D. (2013) Identification of small exonic CNV from whole-exome sequence data and application to autism spectrum disorder. Am. J. Hum. Genet. 93, 607–619.

  25. Guipponi M., Santoni F.A., Setola V., Gehrig C., Rotharmel M., Cuenca M., Guillin O., Dikeos D., Georgantopoulos G., Papadimitriou G., Curtis L., Méary A., Schürhoff F., Jamain S., Avramopoulos D., Leboyer M., Rujescu D., Pulver A., Campion D., Siderovski D.P., Antonarakis S.E. (2014) Exome sequencing in 53 sporadic cases of schizophrenia identifies 18 putative candidate genes. PLoS One. 9, e112745.

  26. Griesi-Oliveira K., Acab A., Gupta A.R., Sunaga D.Y., Chailangkarn T., Nicol X., Nunez Y., Walker M.F., Murdoch J.D., Sanders S.J., Fernandez T.V., Ji W., Lifton R.P., Vadasz E., Dietrich A., Pradhan D., Song H., Ming G.L., Gu X., Haddad G., Marchetto M.C.N., Spitzer N., Passos-Bueno M.R., State M.W., Muotri A.R. (2015) Modeling non-syndromic autism and the impact of TRPC6 disruption in human neurons. Mol. Psychiatry. 20, 1350–1365.

  27. Pérez-Serra A., Toro R., Campuzano O., Sarquella-Brugada G., Berne P., Iglesias A., Mangas A., Brugada J., Brugada R. (2015) A novel mutation in lamin a/c causing familial dilated cardiomyopathy associated with sudden cardiac death. J. Card. Fail. 21, 217–225.

  28. Calvo S.E., Compton A.G., Hershman S.G., Lim S.C., Lieber D.S., Tucker E.J., Laskowski A., Garone C., Liu S., Jaffe D.B., Christodoulou J., Fletcher J.M., Bruno D.L., Goldblatt J., Dimauro S., Thorburn D.R., Mootha V.K. (2012) Molecular diagnosis of infantile mitochondrial disease with targeted next-generation sequencing. Sci. Transl. Med. 4, 118ra10.

  29. Gai X., Ghezzi D., Johnson M.A., Biagosch C.A., Shamseldin H.E., Haack T.B., Reyes A., Tsukikawa M., Sheldon C.A., Srinivasan S., Gorza M., Kremer L.S., Wieland T., Strom T.M., Polyak E., Place E., Consugar M., Ostrovsky J., Vidoni S., Robinson A.J., Wong L.-J., Sondheimer N., Salih M.A., Al-Jishi E., Raab C.P., Bean C., Furlan F., Parini R., Lamperti C., Mayr J.A., Konstantopoulou V., Huemer M., Pierce E.A., Meitinger T., Freisinger P., Sperl W., Prokisch H., Alkuraya F.S., Falk M.J., Zeviani M. (2013) Mutations in FBXL4, encoding a mitochondrial protein, cause early-onset mitochondrial encephalomyopathy. Am. J. Hum. Genet. 93, 482–495.

  30. Sikkema-Raddatz B., Johansson L.F., de Boer E.N., Almomani R., Boven L.G., van den Berg M.P., van Spaendonck-Zwarts K.Y., van Tintelen J.P., Sijmons R.H., Jongbloed J.D.H., Sinke R.J. (2013) Targeted next-generation sequencing can replace Sanger sequencing in clinical diagnostics. Hum. Mutat. 34, 1035–1042.

  31. Drilon A., Wang L., Arcila M.E., Balasubramanian S., Greenbowe J.R., Ross J.S., Stephens P., Lipson D., Miller V.A., Kris M.G., Ladanyi M., Rizvi N.A. (2015) Broad, hybrid capture-based next-generation sequencing identifies actionable genomic alterations in “driver-negative” lung adenocarcinomas. Clin. Cancer Res. 21, 3631–3639.

  32. Xie J., Lu X., Wu X., Lin X., Zhang C., Huang X., Chang Z., Wang X., Wen C., Tang X., Shi M., Zhan Q., Chen H., Deng X., Peng C., Li H., Fang Y., Shao Y., Shen B. (2016) Capture-based next-generation sequencing reveals multiple actionable mutations in cancer patients failed in traditional testing. Mol. Genet. Genomic Med. 4, 262–272.

  33. Rozenblum A.B., Ilouze M., Dudnik E., Dvir A., Soussan-Gutman L., Geva S., Peled N. (2017) Clinical impact of hybrid capture-based next-generation sequencing on changes in treatment decisions in lung cancer. J. Thorac. Oncol. 12, 258–268.

  34. Xu M.-D., Liu S.-L., Feng Y.-Z., Liu, Q., Shen M., Zhi Q., Liu Z., Gu D.M., Yu J., Shou L.-M., Gong F.-R., Zhu Q., Duan W., Chen K., Zhang J., Wu M.-Y., Tao M., Li W. (2017) Genomic characteristics of pancreatic squamous cell carcinoma, an investigation by using high throughput sequencing after in-solution hybrid capture. Oncotarget. 8, 14620–14635.

  35. Clark T.A., Chung J.H., Kennedy M., Hughes J.D., Chennagiri N., Lieber D.S., Fendler B., Young L., Zhao M., Coyne M., Breese V., Young G., Donahue A., Pavlick D., Tsiros A., Brennan T., Zhong S., Mughal T., Bailey M., He J., Roels S., Frampton G.M., Spoerke J.M., Gendreau S., Lackner M., Schleifman E., Peters E., Ross J.S., Ali S.M., Miller V.A., Gregg J.P., Stephens P.J., Welsh A., Otto G.A., Lipson D. (2018) Analytical validation of a hybrid capture-based next-generation sequencing clinical assay for genomic profiling of cell-free circulating tumor DNA. J. Mol. Diagn. 20, 686–702.

  36. Schrock A.B., Pavlick D., Klempner S.J., Chung J.H., Forcier B., Welsh, A., Young L., Leyland-Jones B., Bordoni R., Carvajal R.D., Chao J., Kurzrock R., Sicklick J.K., Ross J.S., Stephens P.J., Devoe C., Braiteh F., Ali S.A., Miller V.A. (2018) Hybrid capture-based genomic profiling of circulating tumor DNA from patients with advanced cancers of the gastrointestinal tract or anus. Clin. Cancer Res. 24, 1881–1890.

  37. Briggs A.W., Good J.M., Green R.E., Krause J., M-aricic T., Stenzel U., Lalueza-Fox C., Rudan P., Brajkovic D., Kucan Z., Gusic I., Schmitz R., Doronichev V.B., Golovanova L.V., de la Rasilla M., Fortea J., Rosas A., Pääbo S. (2009) Targeted retrieval and analysis of five Neandertal mtDNA genomes. Science. 325, 318–321.

  38. Krause J., Fu Q., Good J.M., Viola B., Shunkov M.V., Derevianko A.P., Pääbo S. (2010) The complete mitochondrial DNA genome of an unknown hominin from southern Siberia. Nature. 464, 894–897.

  39. Enk J., Rouillard J.-M., Poinar H. (2013) Quantitative PCR as a predictor of aligned ancient DNA read counts following targeted enrichment. Biotechniques. 55, 300–309.

  40. Kihana M., Mizuno F., Sawafuji R., Wang L., Ueda S. (2013) Emulsion PCR-coupled target enrichment: an effective fishing method for high-throughput sequencing of poorly preserved ancient DNA. Gene. 528, 347–351.

  41. Templeton J.E.L., Brotherton P.M., Llamas B., Soubrier J., Haak W., Cooper A., Austin J.J. (2013) DNA capture and next-generation sequencing can recover whole mitochondrial genomes from highly degraded samples for human identification. Investig. Genet. 4, 26.

  42. Eduardoff M., Xavier C., Strobl C., Casas-Vargas A., Parson W. (2017) Optimized mtDNA control region primer extension capture analysis for forensically relevant samples and highly compromised mtDNA of different age and origin. Genes. 8, E237.

  43. Loreille O., Ratnayake S., Bazinet A.L., Stockwell T.B., Sommer D.D., Rohland N., Mallick S., Johnson P.L.F., Skoglund P., Onorato A.J., Bergman N.H., Reich D., Irwin J.A. (2018) Biological sexing of a 4000-year-old Egyptian mummy head to assess the potential of nuclear DNA recovery from the most damaged and limited forensic specimens. Genes. 9, E135.

  44. Fu Q., Meyer M., Gao X., Stenzel U., Burbano H. A., Kelso J., Pääbo S. (2013) DNA analysis of an early modern human from Tianyuan Cave, China. Proc. Natl. Acad. Sci. USA. 110, 2223–2227.

  45. Cruz Dávalos D.I., Nieves-Colón M.A., Sockell A., Poznik D.G., Schroeder H., Stone A.C., Bustamante C.D., Malaspinas A.-S., Ávila-Arcos M.C. (2017) In-solution Y-chromosome capture-enrichment on ancient DNA libraries. BMC Genomics. 19, 608.

  46. Carpenter M.L., Buenrostro J.D., Valdiosera C., Schroeder H., Allentoft M.E., Sikora M., Rasmussen M., Gravel S., Guillén S., Nekhrizov G., Leshtakov K., Dimitrova D., Theodossiev N., Pettener D., Luiselli D., Sandoval K., Moreno-Estrada A., Li Y., Wang J., Gilbert M.T.P., Willerslev E., Greenleaf W.J., Bustamante C.D. (2013) Pulling out the 1%: whole-genome capture for the targeted enrichment of ancient DNA sequencing libraries. Am. J. Hum. Genet. 93, 852–864.

  47. Enk J.M., Devault A.M., Kuch M., Murgha Y.E., Rouillard J.-M., Poinar H.N. (2014) Ancient whole genome enrichment using baits built from modern DNA. Mol. Biol. Evol. 31, 1292–1294.

  48. Lindo J., Achilli A., Perego U.A., Archer D., Valdiosera C., Petzelt B., Mitchell J., Worl R., Dixon E.J., Fifield T.E., Rasmussen M., Willerslev E., Cybulski J.S., Kemp B.M., DeGiorgio M., Malhi R.S. (2017) Ancient individuals from the North American Northwest Coast reveal 10 000 years of regional genetic continuity. Proc. Natl. Acad. Sci. USA. 114, 4093–4098.

  49. Bi K., Vanderpool D., Singhal S., Linderoth T., Moritz C., Good J.M. (2012) Transcriptome-based exon capture enables highly cost-effective comparative genomic data collection at moderate evolutionary scales. BMC Genomics. 13, 403.

  50. Cosart T., Beja-Pereira A., Chen S., Ng S.B., Shendure J., Luikart G. (2011) Exome-wide DNA capture and next generation sequencing in domestic and wild species. BMC Genomics. 12, 347.

  51. Perry G.H., Marioni J.C., Melsted P., Gilad Y. (2010) Genomic-scale capture and sequencing of endogenous DNA from feces. Mol. Ecol. 19(24), 5332–5344.

  52. Tewhey R., Nakano M, Wang X., Pabón-Peña C., Novak B., Giuffre A., Lin E., Happe S., Roberts D.N., LeProust E.M., Topol E.J., Harismendy O., Frazer K.A. (2009) Enrichment of sequencing targets from the human genome by solution hybridization. Genome Biol. 10, R116.

  53. Brownstein Z., Friedman L.M., Shahin H., Oron-Karni V., Kol N., Rayyan A.A., Parzefall T., Lev D., Shalev S., Frydman M., Davidov B., Shohat M., Rahile M., Lieberman S., Levy-Lahad E., Lee M.K., Shomron N., King M.-C., Walsh T., Kanaan M., Avraham K.B. (2011) Targeted genomic capture and massively parallel sequencing to identify genes for hereditary hearing loss in Middle Eastern families. Genome Biol. 12, R89.

  54. Miyazato P., Katsuya H., Fukuda A., Uchiyama Y., Matsuo M., Tokunaga M., Hino S., Nakao M., Satou Y. (2016) Application of targeted enrichment to next-generation sequencing of retroviruses integrated into the host human genome. Sci. Rep. 6, 28324.

  55. Hodges E., Rooks M., Xuan Z., Bhattacharjee A., Gordon D.B., Brizuela L., McCombie W.R., Hannon G.J. (2009) Hybrid selection of discrete genomic intervals on custom designed microarrays for massively parallel sequencing. Nat. Protocols. 4, 960–974.

  56. Nilsson M., Malmgren H., Samiotaki M., Kwiatkowski M., Chowdhary B.P., Landegren U. (1994) Padlock probes: circularizing oligonucleotides for localized DNA detection. Science. 265, 2085–2088.

  57. Akhras M.S., Unemo M., Thiyagarajan S., Nyren P., Davis R.W., Fire A.Z., Pourmand N. (2007) Connector inversion probe technology: a powerful one-primer multiplex DNA amplification system for numerous scientific applications. PLoS One. 2(9), e915.

  58. Pogoda M., Hilke F.-J., Lohmann E., Sturm M., Lenz F., Matthes J., Muyas F., Ossowski S., Hoischen A., Faust U., Sepahi I., Casadei N., Poths S., Riess O., Schroeder C., Grundmann K. (2019) Single molecule molecular inversion probes for high throughput germline screenings in dystonia. Front. Neurol. 10, 1332.

  59. Bekers E.M., Eijkelenboom A., Rombout P., van Zwam P., Mol S., Ruijter E., Scheijen B., Flucke U. (2019) Identification of novel GNAS mutations in intramuscular myxoma using next-generation sequencing with single-molecule tagged molecular inversion probes. Diagn. Pathol. 14, 15.

  60. Lenting K., van den Heuvel C.N.A.M., van Ewijk A., ElMelik D., de Boer R., Tindall E., Wei G., Kusters B., Te Dorsthorst M., Ter Laan M., Huynen M.A., Leenders W.P. (2019) Mapping actionable pathways and mutations in brain tumours using targeted RNA next generation sequencing. Acta Neuropathol. Commun. 7, 185.

  61. van den Heuvel C.N.A.M., van Ewijk A., Zeelen C., de Bitter T., Huynen M., Mulders P., Oosterwijk E., Leenders W.P.J. (2019) Molecular profiling of druggable targets in clear cell renal cell carcinoma through targeted RNA sequencing. Front. Oncol. 9, 117.

  62. Stefan C.P., Hall A.T., Minogue T.D. (2018) Detection of 16S rRNA and KPC genes from complex matrix utilizing a molecular inversion probe assay for next-generation sequencing. Sci. Rep. 8(1), 2028.

  63. Neveling K., Mensenkamp A.R., Derks R., Kwint M., Ouchene H., Steehouwer M., van Lier B., Bosgoed E., Rikken A., Tychon M., Zafeiropoulou D., Castelein S., Hehir-Kwa J., Thung D.T., Hofste T., Lelieveld S.H., Bertens S.M.M., Adan I.B.J.F., Eijkelenboom A., Tops B.B., Yntema H., Stokowy T., Knappskog P.M., Hoberg-Vetti H., Steen V.M., Boyle E., Martin B., Ligtenberg M.J.L., Shendure J., Nelen M.R., Hoischen A. (2017) BRCA testing by single-molecule molecular inversion probes. Clin. Chem. 63(2), 503–512.

  64. Lange I.M., Koudijs M.J., van ’t Slot R., Sonsma A.C.M., Mulder F., Carbo E.C., van Kempen M.J.A., Nijman I.J., Ernst R.F., Savelberg S.M.C., Knoers N.V.A.M., Brilstra E.H., Koeleman B.P.C. (2018) Assessment of parental mosaicism in SCN1A-related epilepsy by single-molecule molecular inversion probes and next-generation sequencing. J. Med. Genet. 56(2), 75–80.

  65. Mirzaa G., Timms A.E., Conti V., Boyle E.A., Girisha K.M., Martin B., Kircher M., Olds C., Juusola J., Collins S., Park K., Carter M., Glass I., Krogeloh-Mann I., Chitayat D., Parikh A.S., Bradshaw R., Torti E., Braddock S., Burke L., Ghedia S., Stephan M., Stewart F., Prasad C., Napier M., Saitta S., Straussberg R., Gabbett M., O’Connor B.C., Keegan C.E., Yin L.J., Lai A.H.M., Martin N., McKinnon M. Addor M.-C., Boccuto L., Schwartz C.E., Lanoel A., Conway R.L., Devriendt K., Tatton-Brown K., Pierpont M.E., Painter M., Worgan L., Reggin J., Hennekam R., Tsuchiya K., Pritchard C.C., Aracena M., Gripp K.W., Cordisco M., Esch H.V., Garavelli L., Curry C., Goriely A., Kayserilli H., Shendure J., Graham J.Jr., Guerrini R., Dobyns W.B. (2016) PIK3CA-associated developmental disorders exhibit distinct classes of mutations with variable expression and tissue distribution. JCI Insight. 1(9), e87623.

  66. Wada Y., Maekawa M., Ohnishi T., Balan S., Matsuoka S., Iwamoto K., Iwayama Y., Ohba H., Watanabe A., Hisano Y., Nozaki Y., Toyota T., Shimogori T., Itokawa M., Kobayashi T., Yoshikawa T. (2020) Peroxisome proliferator-activated receptor α as a novel therapeutic target for schizophrenia. EBioMedicine. 62, 103130.

  67. Sleczkowska M., Almomani R., Marchi M., de Greef B.T.A., Sopacua M., Hoeijmakers J.G.J., Lindsey P., Salvi E., Bönhof G.J., Ziegler D., Malik R.A., Waxman S.G., Lauria G., Faber C.G., Smeets H.J.M., Gerrits M.M. (2022) Peripheral ion channel gene screening in painful- and painless-diabetic neuropathy. Int. J. Mol. Sci. 23, 7190.

  68. Almomani R., Marchi M., Sopacua M., Lindsey P., Salvi E., de Koning B., Santoro S., Magri S., Smeets H.J.M, Martinelli B.F., Malik R.R, Ziegler D., Hoeijmakers J.G.J, Bönhof G., Dib-Hajj S., Waxman S.G., Merkies I.S.J, Lauria G., Faber C.G., Gerrits M.M. (2020) Evaluation of molecular inversion probe versus TruSeq® custom methods for targeted next-generation sequencing. PLoS One. 15(9), e0238467.

  69. Suzuki O., Dong O.M., Howard R.M., Wiltshire T. (2019) Characterizing the pharmacogenome using molecular inversion probes for targeted next-generation sequencing. Pharmacogenomics. 20(14), 1005–1020.

  70. Yoon J.-K., Ahn J., Kim H.S., Han S.M., Jang H., Lee M.G., Lee J.H., Bang D. (2015) microDuMIP: target-enrichment technique for microarray-based duplex molecular inversion probes. Nucleic Acids Res. 43(5), e28.

  71. Saiki R.K., Scharf S., Faloona F., Mullis K.B., Horn G.T., Erlich H.A., Arnheim N. (1985) Enzymatic amplification of β-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Sc-ience. 230, 1350–1354.

  72. Halbritter J., Diaz K., Chaki M., Porath J.D., Tarrier B., Fu C., Innis J.L., Allen S.J., Lyons R.H., Stefanidis C.J., Omran H., Soliman N.A., Otto E.A. (2012) High-throughput mutation analysis in patients with a nephronophthisis-associated ciliopathy applying multiplexed barcoded array-based PCR amplification and next-generation sequencing. J. Med. Genet. 49(12), 756–767.

  73. Tewhey R., Warner J.B., Nakano M., Libby B., Medkova M., David P.H., Kotsopoulos S.K., Samuels M.L., Hutchison J.B., Larson J.W., Topol E.J., Weiner M.P., Harismendy O., Olson J., Link D.R., Frazer K.A. (2009) Microdroplet-based PCR enrichment for large-scale targeted sequencing. Nat. Biotechnol. 27, 1025–1031.

  74. Vollbrecht C., Werner R., Walter R.F.H., Christoph D.C., Heukamp L.C., Peifer M., Hirsch B., Burbat L., MairingerT., Schmid K.W., Wohlschlaeger J., Mairinger F.D. (2015) Mutational analysis of pulmonary tumours with neuroendocrine features using targeted massive parallel sequencing: a comparison of a neglected tumour group. Br. J. Cancer. 113, 1704–171.

  75. Lee A., Lee S.-H., Jung C.K., Park G., Lee K.Y., Choi H.J., Min K.O., Kim T.J., Lee E.J., Lee Y.S. (2018) Use of the Ion AmpliSeq Cancer Hotspot Panel in clinical molecular pathology laboratories for analysis of solid tumours: with emphasis on validation with relevant single molecular pathology tests and the Oncomine Focus Assay. Pathol. Res. Pract. 214(5), 713–719.

  76. Mustafa A.E., Faquih T., Baz B., Kattan R., Al-Issa A., Tahir A.I., Imtiaz F., Ramzan K., Al-Sayed M., Alowain M., Al-Hassnan Z., Al-Zaidan H., Abouelhoda M., Al-Mubarak B.R., Al Tassan N.A. (2018) Validation of ion TorrentTM inherited disease panel with the PGMTM sequencing platform for rapid and comprehensive mutation detection. Genes (Basel). 9(5), 267.

  77. Cao C., Lou I., Huang C., Lee M.-Y. (2016) Metagenomic sequencing of activated sludge filamentous bacteria community using the Ion Torrent platform. Desalin. Water Treat. 57(5), 2175–2183.

  78. Jiang F., Doudna J.A. (2017) CRISPR-Cas9 structures and mechanisms. Annu. Rev. Biophys. 46, 505–529.

  79. Schultzhaus Z., Wang Z., Stenger D. (2021) CRISPR-based enrichment strategies for targeted sequencing. Biotechnol. Adv. 46, 107672.

  80. Gu W., Crawford E.D., O’Donovan B.D., Wilson M.R., Chow E.D., Retallack H., DeRisi J.L. (2016) Depletion of Abundant Sequences by Hybridization (DASH): using Cas9 to remove unwanted high-abundance species in sequencing libraries and molecular counting applications. Genome Biol. 17(1), 41.

  81. Lee S.H., Yu J., Hwang G.H., Kim S., Kim H.S., Ye S., Kim K., Park J., Park D.Y., Cho Y.K., Kim J.S., Bae S. (2017) CUT-PCR: CRISPR-mediated, ultrasensitive detection of target DNA using PCR. Oncogene. 36(49), 6823–6829.

  82. Stevens R.C., Steele J.L., Glover W.R., Sanchez-Garcia J.F., Simpson S.D., O’Rourke D., Ramsdell J.S., MacManes M.D., Thomas W.K., Shuber A.P. (2019) A novel CRISPR/Cas9 associated technology for sequence-specific nucleic acid enrichment. PLoS One. 14(4), e0215441.

  83. Bennett-Baker P.E., Mueller J.L. (2017) CRISPR-mediated isolation of specific megabase segments of genomic DNA. Nucleic Acids Res. 45(19), e165.

  84. Gabrieli T., Sharim H., Fridman D., Arbib N., Michaeli Y., Ebenstein Y. (2018) Selective nanopore sequencing of human BRCA1 by Cas9-assisted targeting of chromosome segments (CATCH). Nucleic Acids Res. 46(14), e87.

  85. Nachmanson D., Lian S., Schmidt E.K., Hipp M.J., Baker K.T., Zhang Y., Tretiakova M., Loubet-Senear K., Kohrn B.F., Salk J.J., Kennedy S.R., Risques R.A. (2018) Targeted genome fragmentation with CR-ISPR/Cas9 enables fast and efcient enrichment of small genomic regions and ultra-accurate sequencing with low DNA input (CRISPR-DS). Genome Res. 28(10), 1589–1599.

  86. Lee J., Lim H., Jang H., Hwang B., Lee J.H., Cho J., Lee J.H., Bang D. (2019) CRISPR-Cap: multiplexed double-stranded DNA enrichment based on the CRISPR system. Nucleic Acids Res. 47(1), e1.

  87. Peter B.J., Ach R.A. (2014) US Patent No. US 20140356867 A1. patents.google.com/patent/ US20140356867A1/en?oq=US+20140356867+A1.

  88. Carpenter M.L., Bustamante C.D. (2018) US Patent No. US 20180298421 A1. patents.google.com/patent/US20180298421A1/en?oq=US+20180298421

  89. Bang D., Ji Won Lee J.W., Lim H.S. (2016) US Patent No. US 20160244829 A1. patents.google.com/patent/ US20160244829A1/en?oq=US20160244829A1

  90. Xu X., Luo T., Gao J., Lin N., Li W., Xia X., Wang J. (2020) CRISPR-assisted DNA detection: a novel dCas9-based DNA detection technique. CRISPR J. 3(6), 487–502.

  91. Aalipour A., Dudley J.C., Park S.M., Murty S., Chabon J.J., Boyle E.A., Diehn M., Gambhir S.S. (2018) Deactivated CRISPR associated protein 9 for minor-allele enrichment in cell-free DNA. Clin. Chem. 64 (2), 307–316.

  92. Quan J., Langelier C., Kuchta A., Batson J., Teyssier N., Lyden A., Caldera S., McGeever A., Dimitrov B., King R., Wilheim J., Murphy M., Ares L.P., Travisano K.A., Sit R., Amato R., Mumbengegwi D.R., Smith J.L., Bennett A., Gosling R., Mourani P.M., Calfee C.S., Neff N.F., Chow E.D., Kim P.S., Greenhouse B., DeRisi J.L., Crawford E.D. (2019) FLASH: a next-generation CRISPR diagnostic for multiplexed detection of antimicrobial resistance sequences. N-ucleic Acids Res. 47(14), e83.

  93. Hafford-Tear N.J., Tsai Y.-C., Sadan A.N., Sanchez-Pintado B., Zarouchlioti C., Maher G.J., Liskova P., Tuft S.J., Hardcastle A.J., Clark T.A., Davidson A.E. (2019) CRISPR/Cas9-targeted enrichment and long-read sequencing of the Fuchs endothelial corneal dystrophy-associated TCF4 triplet repeat. Genet. Med. 21(9), 2092–2102.

  94. Stangl C., de Blank S., Renkens I., Westera L., Verbeek T., Valle-Inclan J.E., González R.C., Henssen A.G., van Roosmalen M.J., Stam R.W., Voest E.E., Kloosterman W.P., van Haaften G., Monroe G.R. (2020) Partner independent fusion gene detection by multiplexed CRISPR-Cas9 enrichment and long read nanopore sequencing. Nat. Commun. 11(1), 2861.

  95. Watson C.M., Crinnion L.A., Hewitt S., Bates J., Robinson R., Carr I.M., Sheridan E., Adlard J., Bonthron D.T. (2019) Cas9-based enrichment and single-molecule sequencing for precise characterization of genomic duplications. Lab. Inv. 100(1), 135–146.

  96. Gilpatrick T., Lee I., Graham J.E., Raimondeau E., Bowen R., Heron A., Sedlazeck F.J., Timp W. (2020) Targeted Nanopore Sequencing with Cas9 for studies of methylation, structural variants, and mutations. Nat. Biotechnol. 38(4), 433–438.

  97. Kuhlenbäumer G., Hullmann J., Appenzeller S. (2011) Novel genomic techniques open new avenues in the analysis of monogenic disorders. Hum. Mutat. 32(2), 144–151.

  98. Kiezun A., Garimella K., Do R., Stitziel N.O., Neale B.M., McLaren P.J., Gupta N., Sklar P., Sullivan P.F., Morn J.L., Hultman C.M., Lichtenstein P., Magnusson P., Lehner T., Shugart Y.Y., Price A.L., de Bakker P.I., Purcell S.M., Sunyaev S.R. (2012) Exome sequencing and the genetic basis of complex traits. Nat. Genet. 44(6), 623–630.

  99. Vogelstein B., Papadopoulos N., Velculescu V.E., Zhou S., Diaz L.A.J., Kinzler K.W. (2013) Cancer genome landscapes. Science. 339(6127), 1546–1558.

  100. Gaudin M., Desnues C. (2018) Hybrid capture-based next generation sequencing and its application to human infectious diseases. Front. Microbiol. 9, 2924.

  101. Melnikov A., Galinsky K., Rogov P., Fennell T., Van Tyne D., Russ C., Daniels R., Barnes K.G., Bochicchio J., Ndiaye D., Sene P.D., Wirth D.F., Nusbaum C., Volkman S.K., Birren B.W., Gnirke A., Neafsey D.E. (2011) Hybrid selection for sequencing pathogen genomes from clinical samples. Genome Biol. 12, R73.

  102. Smith M., Campino S., Gu Y., Clark T.G., Otto T.D., Maslen G., Manske M., Imwong M., Dondorp A.M., Kwiatkowski D.P., Quail M.A., Swerdlow H. (2012). An in-solution hybridisation method for the isolation of pathogen DNA from human DNA-rich clinical samples for analysis by NGS. Open Genom. J. 5, 18–29.

  103. Bright A.T., Tewhey R., Abeles S., Chuquiyauri R., Llanos-Cuentas A., Ferreira M.U., Schork N.J., Vinetz J.M., Winzeler E.A. (2012) Whole genome sequencing analysis of Plasmodium vivax using whole genome capture. BMC Genomics. 13, 262.

  104. Amorim-Vaz S., Tran V.D.T., Pradervand S., Pagni M., Coste A.T., Sanglard D. (2015) RNA enrichment method for quantitative transcriptional analysis of pathogens in vivo applied to the fungus Candida albicans. mBio. 6(5), e00942-15.

  105. Brown A.C., Bryant J.M., Einer-Jensen K., Holdstock J., Houniet D.T., Chan J.Z.M., Depledge D.P., Nikolayevskyy V., Broda A., Stone M.J., Christiansen M.T., Williams R., McAndrew M.B., Tutill H., Brown J., Melzer M., Rosmarin C., McHugh T.D., Shorten R.J., Drobniewski F., Speight G., Breuer J. (2015) Rapid whole-genome sequencing of Mycobacterium tuberculosis isolates directly from clinical samples. J. Clin. Microbiol. 53(7), 2230–2237.

  106. Christiansen M.T., Brown A.C., Kundu S., Tutill H.J., Williams R., Brown J.R., Holdstock J., Holland M.J., Stevenson S., Dave J., Tong C.Y., Einer-Jensen K., Depledge D.P., Breuer J. (2014) Whole-genome enrichment and sequencing of Chlamydia trachomatis directly from clinical samples. BMC Infect. Dis. 14, 591.

  107. Clark S.A., Doyle R., Lucidarme J., Borrow R., Breuer J. (2018) Targeted DNA enrichment and whole genome sequencing of Neisseria meningitides directly from clinical specimens. Int. J. Med. Microbiol. 308, 256–262.

  108. Houldcroft C.J., Beale M.A., Breuer J. (2017) Clinical and biological insights from viral genome sequencing. Nat. Rev. Microbiol. 15, 183–192.

  109. Depledge D.P., Palser A.L., Watson S.J., Lai I.Y.-C., Gray E.R., Grant P., Kanda R.K., Leproust E., Kellam P., Breuer J. (2011) Specific capture and whole-genome sequencing of viruses from clinical samples. PLoS One. 6, e27805.

  110. Kwok H., Wu C.W., Palser A.L., Kellam P., Sham P.C., Kwong D.L.W., Chiang A.K.S. (2014) Genomic diversity of Epstein–Barr virus genomes isolated from primary nasopharyngeal carcinoma biopsy samples. J. Virol. 88, 10662–10672.

  111. Metsky H.C., Matranga C.B., Wohl S., Schaffner S.F., Freije C.A., Winnicki S.M., West K, Qu J., Baniecki M.L., Gladden-Young A., Lin A.E., Tomkins-Tinch C.H., Ye S.H., Park D.J., Luo C.Y., Barnes K.G., Shah R.R., Chak B., Barbosa-Lima G., Delatorre E., Vieira Y.R., Paul L.M., Tan A.L., Barcellona C.M., Porcelli M.C., Vasquez C., Cannons A.C., Cone M.R., Hogan K.N., Kopp E.W., Anzinger J.J., Garcia K.F., Parham L.A., Ramírez R.M.G., Montoya M.C.M., Rojas D.P., Brown C.M., Hennigan S., Sabina B., Scotland S., Gangavarapu K., Grubaugh N.D., Oliveira G., Robles-Sikisaka R., Rambaut A., Gehrke L., Smole S., Halloran M.E., Villar L., Mattar S., Lorenzana I., Cerbino-Neto J., Valim C., Degrave W., Bozza P.T., Gnirke A., Andersen K.G., Isern S., Michael S.F., Bozza F.A., Souza T.M.L., Bosch I., Yozwiak N.L., MacInnis B.L., Sabeti P.C. (2017) Zika virus evolution and spread in the Americas. Nature. 546, 411–415.

  112. Brown J.R., Roy S., Ruis C., Yara Romero E., Shah D., Williams R., Breuer J. (2016) Norovirus whole-genome sequencing by sureselect target enrichment: a robust and sensitive method. J. Clin. Microbiol. 54, 2530–2537.

  113. Matranga C.B., Andersen K.G., Winnicki S., Busby M., Gladden A.D., Tewhey, R., Stremlau M., Berlin A., Gire S.K., England E., Moses L.M., Mikkelsen T.S., Odia I., Ehiane P.E., Folarin O., Goba A., Kahn S.H., Grant D.S., Honko A., Hensley L, Happi C., Garry R.F., Malboeuf C.M., Birren B.W., Gnirke A., Levin J.Z., Sabeti P.C. (2014) Enhanced methods for unbiased deep sequencing of Lassa and Ebola RNA viruses from clinical and biological samples. Genome Biol. 15, 519.

  114. Thomson E., Ip C.L.C., Badhan A., Christiansen M.T., Adamson W., Ansari M.A., Bibby D., Breuer J., Brown A., Bowden R., Bryant J., Bonsall D., Da Silva Filipe A., Hinds C., Hudson E., Klenerman P., Lythgow K., Mbisa J.L., McLauchlan J., Myers R., Piazza P., Roy S., Trebes A., Sreenu V.B., Witteveldt J., STOP-HCV Consortium, Barnes E., Simmonds P. (2016) Comparison of next generation sequencing technologies for the comprehensive assessment of full-length hepatitis C viral genomes. J. Clin. Microbiol. 54, 2470–2484.

  115. Donaldson C.D., Clark D.A., Kidd I.M., Breuer J., Depledge D.D. (2013) Genome sequence of human herpesvirus 7 strain UCL-1. Genome Announc. 1, e00830-13.

  116. Greninger A.L., Roychoudhury P., Xie H., Casto A., Cent A., Pepper G., Koelle D.M., Huang M.L., Wald A., Johnston C., Jerome K.R. (2018) Ultrasensitive capture of human herpes simplex virus genomes directly from clinical samples reveals extraordinarily limited evolution in cell culture. mSphere. 3, e00283-18.

  117. Wylie T.N., Wylie K.M., Herter B.N., Storch G.A. (2015) Enhanced virome sequencing using targeted sequence capture. Genome Res. 25, 1910–1920.

  118. Briese T., Kapoor A., Mishra N., Jain K., Kumar A., Jabado O. Lipkin W.I. (2015) Virome capture sequencing enables sensitive viral diagnosis and comprehensive virome analysis. mBio. 6, e01491-15.

  119. Chalkias S., Gorham J.M., Mazaika E., Parfenov M., Dang X., DePalma S., McKean D., Seidman C.E., Seidman J.G., Koralnik I.J. (2018) ViroFind: a novel target-enrichment deep-sequencing platform reveals a complex JC virus population in the brain of PML patients. PLoS One. 13, e0186945.

  120. Chilamakuri C.S.R., Lorenz S., Madoui M.-A., Vodák D., Sun J., Hovig E., Myklebost O., Meza-Zepeda L.A. (2014) Performance comparison of four exome capture systems for deep sequencing. BMC Genomics. 15(1), 449.

  121. Clark M.J., Chen R., Lam H.Y.K., Karczewski K.J., Chen R., Euskirchen G., Butte A.J., Snyder M. (2011) Performance comparison of exome DNA sequencing technologies. Nat. Biotechnol. 29(10), 908–914.

  122. Shigemizu D., Momozawa Y., Abe T., Morizono T., Boroevich K.A., Takata S., Ashikawa K., Kubo M., Tsunoda T. (2015) Performance comparison of four commercial human whole-exome capture platforms. Sci. Rep. 5(1), 12742.

  123. Zhou J., Zhang M., Li X., Wang Z., Pan D., Shi Y. (2021) Performance comparison of four types of target enrichment baits for exome DNA sequencing. Hereditas. 158, 10.

  124. Синяков А.Н., Бессмельцев В.П., Камаев Г.Н. (2018) Микрочиповый синтезатор ДНК. II Всероссийская научно-практическая конференция “Научное приборостроение – современное состояние и перспективы развития”. Казань 4–7 июня. Сб. материалов конференции. с. 280–282.

  125. Sinyakov A.N., Ryabinin V.A., Kostina E.V., Zaytsev D.E., Chukanov N.V., Kamaev G.N. (2021) Linkers for oligonucleotide microarray synthesis. J. Saudi Chem. Soc. 25, 101382.

Дополнительные материалы отсутствуют.