Молекулярная биология, 2023, T. 57, № 4, стр. 692-705

Математическое моделирование процесса репликации ВИЧ и ответа системы интерферона

И. А. Гайнова a*, А. Е. Соболева b, Д. С. Гребенников cd, Г. А. Бочаров cd

a Институт математики им. С.Л. Соболева Сибирского отделения Российской академии наук
630090 Новосибирск, Россия

b Московский физико-технический институт (Национальный исследовательский университет)
141701 Московская область, Долгопрудный, Россия

c Институт вычислительной математики им. Г.И. Марчука Российской академии наук
119333 Москва, Россия

d Первый Московский государственный медицинский университет им. И.М. Сеченова Министерства здравоохранения России
119991 Москва, Россия

* E-mail: gajnova@math.nsc.ru

Поступила в редакцию 09.08.2022
После доработки 29.11.2022
Принята к публикации 24.12.2022

Аннотация

Разработка физиологически содержательных математических моделей, описывающих многоуровневую регуляцию в сложной сети иммунных ответов, в частности системы интерферонрегулируемых процессов репликации вирусов, является фундаментальной научной задачей в рамках межинтеграционного системного подхода к исследованиям в иммунологии. В работе представлена детальная математическая модель высокого разрешения, описывающая репликацию вируса иммунодефицита человека (ВИЧ), ответ системы интерферона (ИФН) I типа на проникновение вируса в клетку и подавление действия ИФН-индуцируемых белков вспомогательными белками ВИЧ. В результате проведенного исследования впервые разработана модель, учитывающая взаимодействие всех трех процессов. Математическая модель представляет собой систему из 37 нелинейных обыкновенных дифференциальных уравнений, включающую 78 параметров. Особенность модели заключается в том, что в ней описаны не только процессы, вовлеченные в интерфероновый ответ клетки на заражение вирусом, но также используемые вирусом механизмы, препятствующие действию системы ИФН.

Ключевые слова: математическая модель, вирус иммунодефицита человека, репликация, вспомогательные белки, интерферон типа 1, интерфероновый ответ, индуцируемые интерфероном белки

Список литературы

  1. Zinkernagel R.M., Hengartner H. (2004) On immunity against infections and vaccines: credo 2004. Scand J. Immunol. 60(1‒2), 9‒13. Erratum in: Scand J. Immunol. 60(3), 327.https://doi.org/10.1111/j.0300-9475.2004.01460.x

  2. Hardy G., Sieg S., Rodriguez B., Anthony D., Asaad R., Jiang W., Mudd J., Schacker T., Funderburg N., Pilch-Cooper H., Debernardo R., Rabin R., Lederman M., Harding C. (2013) Interferon-α is the primary plasma type-I IFN in HIV-1 infection and correlates with immune activation and disease markers. PLoS One. 8, e56527. https://doi.org/10.1371/journal.pone.0056527

  3. Sandler N.G., Bosinger S.E., Estes J.D., Zhu R., Tharp G.K., Boritz E., Levin D., Wijeyesinghe S., Makamdop K., del Prete G., Hill B., Timmer J.K., Reiss E., Yarden G., Darko S., Contijoch E., Todd J.P., Silvestri G., Nason M., Norgren Jr. R., Keele B., Rao S., Langer J., Lifson J., Schreiber G., Douek D. (2014) Type I interferon responses in rhesus macaques prevent SIV infection and slow disease progression. Nature. 511, 601–605. https://doi.org/10.1038/nature13554

  4. Doyle T., Goujon C., Malim M.H. (2015) HIV and interferons: who’s interfering with whom? Nat. Rev. 13, 403–413. https://doi.org/10.1038/nrmicro3449

  5. Browne E.P., Letham B., Rudin C. (2016) A computational model of inhibition of HIV-1 by interferon-alpha. PLoS One. 11(3), e0152316. https://doi.org/10.1371/journal.pone.0152316

  6. Lavigne G.M., Russell H., Sherry B., Ke R. (2021) Autocrine and paracrine interferon signalling as ‘ring vaccination’ and ‘contact tracing’ strategies to suppress virus infection in a host. Proc. R. Soc. B. 288(1945), 20203002. https://doi.org/10.1098/rspb.2020.3002

  7. Iwasaki A. (2012) A virological view of innate immune recognition. Annu. Rev. Microbiol. 66, 177–196. https://doi.org/10.1146/annurev-micro-092611-150203

  8. Shcherbatova O., Grebennikov D., Sazonov I., Meyerhans A., Bocharov G. (2020) Modeling of the HIV-1 life cycle in productively infected cells to predict novel therapeutic targets. Pathogens. 9(4), 255. https://doi.org/10.3390/pathogens9040255

  9. Черешнев В.А., Бажан С.И., Бахметьев Б.А., Гайнова И.А., Бочаров Г.А. (2012) Системный анализ патогенеза ВИЧ инфекции. Успехи современной биологии. 132(2), 115–140.

  10. Chereshnev V.A., Bocharov G., Bazhan S., Bachmetyev B., Gainova I., Likhoshvai V., Argilaguet J.M., Martinez J.P., Rump J.A., Mothe B., Brander C., Meyerhans A. (2013) Pathogenesis and treatment of HIV infection: the cellular, the immune system and the neuroendocrine systems perspective. Int. Rev. Immunol. 32(3), 282–306. https://doi.org/10.3109/08830185.2013.779375

  11. Li G., Clercq E.De. (2016) HIV genome-wide protein associations: a review of 30 years of research. ASM J. Microbiol. Mol. Biol. Rev. 80(3), 679‒731. https://doi.org/10.1128/MMBR.00065-15

  12. Черешнев В.А., Бочаров Г.А., Ким А.В., Бажан С.И., Гайнова И.А., Красовский А.Н., Шмагель Н.Г., Иванов А.В., Сафронов М.А., Третьякова Р.М. (2016) Введение в задачи моделирования и управления динамикой ВИЧ-инфекции. Москва–Ижевск, Институт компьютерных исследований. 230 с.

  13. Neil S., Bieniasz P. (2009) Human immunodeficiency virus, restriction factors, and interferon. J. Interferon Cytokine Res. 29(9), 569–580. https://doi.org/10.1089/jir.2009.0077

  14. Rinas M. (2016) Data-driven modeling of the dynamic competition between virus infection and the antiviral interferon response. Dissertation for the degree of Doctor of Natural Sciences. Combined Faculty for the Natural Sciences and Mathematics of the University of Heidelberg, Germany. http://archiv.ub.uni-heidelberg.de/ volltextserver/18987/1/Thesis_Melanie_Rinas.pdf.

  15. Marsili G., Remoli A.L., Sgarbanti M., Perrotti E., Fragale A., Battistini A. (2012) HIV-1, interferon and the interferon regulatory factor system: an interplay between induction, antiviral responses and viral evasion. Cytokine Growth Factor Rev. 23, 255–270. https://doi.org/10.1016/j.cytogfr.2012.06.001

  16. Colomer-Lluch M., Ruiz A., Moris A., Prado J.G. (2018) Restriction factors: from intrinsic viral restriction to shaping cellular immunity against HIV-1. Front. Immunol. 9, 2876. https://doi.org/10.3389/fimmu.2018.02876

  17. Зотова А.А., Атемасова А.А., Филатов А.В., Мазуров Д.В. (2019) Факторы рестрикции вируса иммунодефицита человека и их неоднозначная роль в инфекции. Молекуляр. биология. 53(2), 240–255.

  18. Chintala K., Mohareer K., Banerjee S. (2021) Dodging the host interferon-stimulated gene mediated innate immunity by HIV-1: a brief update on intrinsic mechanisms and counter-mechanisms. Front. Immunol. 12, 716927. https://doi.org/10.3389/fimmu.2021.716927

  19. Gillick K., Pollpeter D., Phalora P., Kim E.-Y., Wolinsky S.M., Malim M.H. (2013) Suppression of HIV-1 infection by APOBEC3 proteins in primary human CD4+ T cells is associated with inhibition of processive reverse transcription as well as excessive cytidine deamination. J. Virol. 87(3), 1508–1517. https://doi.org/10.1128/JVI.02587-12

  20. Goldstone D.C., Ennis-Adeniran V., Hedden J.J., Groom H.C.T., Rice G.I., Christodoulou E., Walker P.A., Kelly G., Haire L.F., Yap M.W., de Carvalho L.P.S., Stoye J.P., Crow Y.J., Taylor I.A., Webb M. (2011) HIV-1 restriction factor SAMHD1 is a deoxynucleoside triphosphate triphosphohydrolase. Nature. 480(7377), 379–382. https://doi.org/10.1038/nature10623

  21. Descours B., Cribier A., Chable-Bessia C., Ayinde D., Rice G., Crow Y., Yatim A., Schwartz O., Laguette N., Benkirane M. (2012) SAMHD1 restricts HIV-1 reverse transcription in quiescent CD4+ T-cells. Retrovirology. 9(1), 87. https://doi.org/10.1186/1742-4690-9-87

  22. Casartelli N., Sourisseau M., Feldmann J., Guivel-Benhassine F., Mallet A., Marcelin A.-G., Guatelli J., Schwartz O. (2010) Tetherin restricts productive HIV-1 cell-to-cell transmission. PLoS Pathog. 6(6), e1000955. https://doi.org/10.1371/journal.ppat.1000955

  23. Strebel K. (2013) HIV accessory proteins versus host restriction factors. Curr. Opin. Virol. 3(6), 692‒699. https://doi.org/10.1016/j.coviro.2013.08.004

  24. Doranz B.J., Baik S.S.W., Doms R.W. (1999) Use of a gp120 binding assay to dissect the requirements and kinetics of human immunodeficiency virus fusion events. J. Virol. 73, 10346–10358.

  25. Doms R.W., Moore J.P. (2000) HIV-1 membrane fusion. J. Cell Biol. 151, F9–F14.

  26. Gallo S.A., Finnegan C.M., Viard M., Raviv Y., Dimitrov A., Rawat S.S., Puri A., Durell S., Blumenthal R. (2003) The HIV Env-mediated fusion reaction. Biochim. Biophys. Acta. 1614, 36–50.

  27. Bocharov G., Chereshnev V., Gainova I., Bazhan S., Bachmetyev B., Argilaguet J., Martinez J., Meyerhans A. (2012) Human immunodeficiency virus infection: from biological observations to mechanistic mathematical modelling. Math. Model. Nat. Phenom. 7, 78–104.

  28. Ramratnam B., Bonhoeffer S., Binley J., Hurley A., Zhang L., Mittler J.E., Markowitz M., Moore J.P., Perelson A.S., Ho D.D. (1999) Rapid production and clearance of HIV-1 and hepatitis C virus assessed by large volume plasma apheresis. Lancet. 354, 1782–1785.

  29. Finzi D., Siliciano R.F. (1998) Viral dynamics in HIV-1 infection. Cell. 93, 665–671.

  30. Heesters B.A., Lindqvist M., Vagefi P.A., Scully E.P., Schildberg F.A., Altfeld M., Walker B.D., Kaufmann D.E., Carroll M.C. (2015) Follicular dendritic cells retain infectious HIV in cycling endosomes. PLoS Pathog. 11, 1–18.

  31. Raviv Y., Viard M., Bess J., Jr., Blumenthal R. (2002) Quantitative measurement of fusion of HIV-1 and SIV with cultured cells using photosensitized labeling. Virol-ogy. 293, 243–251.

  32. Gallo S.A., Reeves J.D., Garg H., Foley B., Doms R.W., Blumenthal R. (2006) Kinetic studies of HIV-1 and HIV-2 envelope glycoprotein-mediated fusion. Retrovirology. 3, 90. https://doi.org/10.1186/1742-4690-3-90

  33. Reddy B., Yin J. (1999) Quantitative intracellular kinetics of HIV type 1. AIDS Res. Hum. Retroviruses. 15, 273–283.

  34. Zarrabi N., Mancini E., Tay J., Shahand S., Sloot P.M. (2010) Modeling HIV-1 intracellular replication: two simulation approaches. Procedia Comput. Sci. 1, 555–564.

  35. Hu W.S., Hughes S.H. (2012) HIV-1 reverse transcription. Cold Spring Harb. Perspect. Med. 2(10), a006882. https://doi.org/10.1101/cshperspect.a006882

  36. Brussel A., Sonigo P. (2004) Evidence for gene expression by unintegrated human immunodeficiency virus type 1 DNA species. J. Virol. 78, 11263–11271.

  37. Murray J.M., McBride K., Boesecke C., Bailey M., Amin J., Suzuki K., Baker D., Zaunders J.J., Emery S., Cooper D.A., Koelsch K.K., Kelleher A.D., PINT STUDY TEAM. (2012) Integrated HIV DNA accumulates prior to treatment while episomal HIV DNA records ongoing transmission afterwards. AIDS. 26(5), 543–550.

  38. Vandegraaff N., Kumar R., Burrell C.J., Li P. (2001) Kinetics of human immunodeficiency virus type 1 (HIV) DNA integration in acutely infected cells as determined using a novel assay for detection of integrated HIV DNA. J. Virol. 75, 11253–11260.

  39. Barbosa P., Charneau P., Dumey N., Clavel F. (1994) Kinetic analysis of HIV-1 early replicative steps in a coculture system. AIDS Res. Hum. Retroviruses. 10, 53–59.

  40. Mohammadi P., Desfarges S., Barha I., Joos B., Zangger N., Muñoz M., Günthard H.F., Beerenwinkel N., Telenti A., Ciuffi A. (2013) 24 hours in the life of HIV-1 in a T cell line. PLoS Pathog. 9(1), e1003161. https://doi.org/10.1371/journal.ppat.1003161

  41. Andreadis S.T., Palsson B.O. (1996) Kinetics of retrovirus mediated gene transfer: the importance of intracellular half-life of Retroviruses. J. Theor. Biol., 182, 1–20.

  42. Pellegrino M.G., Li G., Potash M.J., Volsky D.J. (1991) Contribution of multiple rounds of viral entry and reverse transcription to expression of human immunodeficiency virus type 1. A quantitative kinetic study. J. Biol. Chem. 266, 1783–1788.

  43. Butler S.L., Hansen M.S., Bushman F.D. (2001) A quantitative assay for HIV DNA integration in vivo. Nat. Med. 7, 631–634.

  44. Kustikova O.S., Wahlers A., Kuhlcke K., Stahle B., Zander A.R., Baum C., Fehse B. (2003) Dose finding with retroviral vectors: correlation of retroviral vector copy numbers in single cells with gene transfer efficiency in a cell population. Blood. 102, 3934–3937.

  45. Siliciano J.D., Kajdas J., Finzi D., Quinn T.C., Chadwick K., Margolick J.B., Kovacs C., Gange S.J., Siliciano R. (2003) Long-term follow-up studies confirm the stability of the latent reservoir for HIV-1 in resting CD4+ T cells. Nat. Med. 9, 727–728.

  46. Hultquist J.F., Harris R.S. (2009) Leveraging AP-OBEC3 proteins to alter the HIV mutation rate and combat AIDS. Future Virol. 4(6), 605. https://doi.org/10.2217/fvl.09.59

  47. Laguette N., Sobhian B., Casartelli N., Ringeard M., Chable-Bessia C., Ségéral E., Yatim A., Emiliani S., Schwartz O., Benkirane M. (2013) SAMHD1 is the dendritic- and myeloid-cell-specific HIV-1 restriction factor counteracted by Vpx. Nature. 474, 654–657. https://doi.org/10.1038/nature10117

  48. Kim H., Yin J. (2005) Robust growth of human immunodeficiency virus type 1 (HIV-1). Biophys. J. 89, 2210–2221.

  49. Chen J., Grunwald D., Sardo L., Galli A., Plisov S., Nikolaitchik O.A., Chen D., Lockett S., Larson D.R., Pathak V.K., Hu W.-Sh. (2014) Cytoplasmic HIV-1 RNA is mainly transported by diffusion in the presence or absence of Gag protein. Proc. Natl. Acad. Sci. USA. 111(48), E5205–E5213. https://doi.org/10.1073/pnas.14131691

  50. Likhoshvai V.A., Khlebodarova T.M., Bazhan S.I., Gainova I.A., Chereshnev V.A., Bocharov G.A. (2014) Mathematical model of the Tat-Rev regulation of HIV-1 replication in an activated cell predicts the existence of oscillatory dynamics in the synthesis of viral components. BMC Genomics. 15(Suppl. 12), S1. https://doi.org/10.1186/1471-2164-15-S12-S1

  51. Müller B., Tessmerand U., Schubert U., Kräusslich H.-S. (2000) Human immunodeficiency virus type 1 Vpr protein is incorporated into the virion in significantly smaller amounts than gag and is phosphorylated in infected cells. J. Virol. 74(20), 9727–9731.

  52. Goila-Gaur R., Strebel K. (2008) HIV-1 Vif, APOBEC, and intrinsic immunity. Retrovirology. 5, 51. https://doi.org/10.1186/1742-4690-5-51

  53. Schwanhäusser B., Busse D., Li N., Dittmar G., Schuchhardt J., Wolf J., Chen W., Selbach M. (2011) Global quantification of mammalian gene expression control. Nature. 473, 337–342.

  54. Schwanhäusser B., Busse D., Li N., Dittmar G., Schuchhardt J., Wolf J., Chen W., Selbach M. (2013) Correction: Corrigendum: Global quantification of mammalian gene expression control. Nature. 495, 126–127.

  55. Buccitelli C., Selbach M. (2020) mRNAs, proteins and the emerging principles of gene expression control. Nat. Rev. Genet. 21, 630–644.

  56. Qu N., Ma Z., Zhang M., Rushdi M.N., Krueger C.J., Chen A.K. (2018) Inhibition of retroviral Gag assembly by non-silencing miRNAs promotes autophagic viral degradation. Protein Cell. 9, 640–651.

  57. Hare J.F., Taylor K. (1991) Mechanisms of plasma membrane protein degradation: recycling proteins are degraded more rapidly than those confined to the cell surface. Proc. Natl. Acad. Sci. USA. 88, 5902–5906.

  58. Inamdar K., Floderer C., Favard C., Muriaux D. (2019) Monitoring HIV-1 assembly in living cells: insights from dynamic and single molecule microscopy. Viruses. 11(1), 72. https://doi.org/10.3390/v11010072

  59. Sundquist W.I., Krausslich H.G. (2012) HIV-1 assembly, budding, and maturation. Cold Spring Harb. Perspect. Med. 2(7), a006924. https://doi.org/10.1101/cshperspect.a006924

  60. Ivanchenko S., Godinez W.J., Lampe M., Kräusslich H.G., Eils R., Rohr K., Bräuchle C., Müller B., Lamb D.C. (2009) Dynamics of HIV-1 assembly and release. PLoS Pathog. 5(11), e1000652. https://doi.org/10.1371/journal.ppat.1000652

  61. Freed E.O. (2015) HIV-1 assembly, release and maturation. Nat. Rev. Microbiol, 13(8), 484–496. https://doi.org/10.1038/nrmicro3490

  62. Swanson C.M., Malim M.H. (2008) SnapShot: HIV-1 proteins. Cell. 133(4), 742. https://doi.org/10.1016/j.cell.2008.05.005

  63. Chojnacki J., Staudt T., Glass B., Bingen P., Engelhardt J., Anders M., Schneider J., Muller B., Hell S.W., Krausslich H.G. (2012) Maturation-dependent HIV-1 surface protein redistribution revealed by fluorescence nanoscopy. Science. 338, 524–528.

  64. Könnyũ B., Sadiq S.K., Turányi T., Hírmondó R., Müller B., Kräusslich H.G., Coveney P.V., Müller V. (2013) Gag-Pol processing during HIV-1 virion maturation: a systems biology approach. PLoS Comput. Biol. 9(6), e1003103. https://doi.org/10.1371/journal.pcbi.1003103

  65. Prakash A., Levy D.E. (2006) Regulation of IRF7 through cell type-specific protein stability. Biochem. Biophys. Res. Commun. 342(1), 50–56.

  66. Gelais C.S., Kim S.H., Ding L., Yount J.S., Ivanov D., Spearman P., Wu L. (2016) A putative cyclin-binding motif in human samhd1 contributes to protein phosphorylation, localization, and stability. J. Biol. Chem. 291(51), 26332–26342.

  67. Dubé M., Bego M., Paquay C., Cohen E. (2010) Modulation of HIV-1-host interaction: role of the Vpu acc-essory protein. Retrovirology. 7, 114. https://doi.org/10.1186/1742-4690-7-114

  68. Baldauf H.M., Pan X., Erikson E., Schmidt S., Daddacha W., Burggraf M., Schenkova K., Ambiel I., Wabnitz G., Gramberg T., Panitz S., Flory E., Landau N.R., Sertel S., Rutsch F., Lasitschka F., Kim B., König R., Fackler O.T.,Keppler O.T. (2012) SAMHD1 restricts HIV-1 infection in resting CD4+ T-cells. Nat. Med. 18(11), 1682–1688.

  69. Bishop K.N., Verma M., Kim E.-Y., Wolinsky S.M., Malim M.H. (2008) APOBEC3G inhibits elongation of HIV-1 reverse transcripts. PLoS Pathog. 4(12), e1000231. https://doi.org/10.1371/journal.ppat.1000231

  70. Марчук Г.И. (2006) Сопряженные уравнения и их применения. Труды ИММ УрО РАН. 12(1), 184–195.

  71. Marchuk G.I., Shutyaev V., Bocharov G. (2005) Adjoint equations and analysis of complex systems: application to virus infection modelling. J. Comput. Appl. Math. 184(1), 177–204.

  72. Фадеев С.И., Покровская С.А., Березин А.Ю., Гайнова И.А. (1998) Пакет программ STEP для численного исследования систем нелинейных уравнений и автономных систем общего вида. Описание работы пакета STEP на примерах задач из учебного курса “Инженерная химия каталитических процессов”. Новосибирск: НГУ. 198 с.

  73. Rand U., Rinas M., Schwerk J., Nöhren G., Linnes M., Kröger A., Flossdorf M., Kály-Kullai K., Hauser H., Höfer T., Köster M. (2012) Multi-layered stochasticity and paracrine signal propagation shape the type-I interferon response. Mol. Syst. Biol. 8, 584.

  74. Huang Y., Dai H., Ke R. (2019) Principles of effective and robust innate immune response to viral infections: a multiplex network analysis. Front. Immunol. 10, 1736. https://doi.org/10.3389/fimmu.2019.01736

  75. He B., Tran J.T., Sanchez D.J. (2019) Manipulation of type I interferon signaling by HIV and AIDS-associated viruses. J. Immunol. Res. 4, 8685312. https://doi.org/10.1155/2019/8685312

  76. Conway J.M., Ribeiro R.M. (2018) Modeling the immune response to HIV infection. Curr. Opin. Syst. Biol. 12, 61–69. https://doi.org/10.1016/j.coisb.2018.10.006

  77. Ranganath N., Sandstrom T.S., Fadel S., Côté S.C., Angel J.B. (2016) Type I interferon responses are impaired in latently HIV infected cells. Retrovirology. 13(1), 66. https://doi.org/10.1186/s12977-016-0302-9

  78. Cheng L., Yu H., Li G., Li F., Ma J., Li J., Chi L., Zhang L., Su L. (2017) Type I interferons suppress viral replication but contribute to T cell depletion and dysfunction during chronic HIV-1 infection. JCI Insight. 2(12), e94366. https://doi.org/10.1172/jci.insight.94366

  79. Carnathan D., Lawson B., Yu J., Patel K., Billingsley J.M., Tharp G.K., Delmas O.M., Dawoud R., Wilkinson P., Nicolette C., Cameron M.J., Sekaly R.P., Bosinger S.E., Silvestri G., Vanderford T.H. (2018) Reduced chronic lymphocyte activation following interferon alpha blockade during the acute phase of simian immunodeficiency virus infection in rhesus macaques. J. Virol. 92(9), e01760-17. https://doi.org/10.1128/JVI.01760-17

  80. Sanchez D.J., Miranda D., Jr., Marsden M.D., Dizon T.M.A., Bontemps J.R., Davila S.J., Del Mundo L.E., Ha T., Senaati A., Zack J.A., Cheng G. (2015) Disruption of type I interferon induction by HIV infection of T cells. PLoS One. 10(9), e0137951. https://doi.org/10.1371/journal.pone.0137951

  81. Wong H.S., Germain R.N. (2018) Robust control of the adaptive immune system. Semin. Immunol. 36, 17‒27. https://doi.org/10.1016/j.smim.2017.12.009

Дополнительные материалы

скачать ESM.zip
Приложение 1.
Численные результаты. Рис. S1 - Рис. S4