Молекулярная биология, 2023, T. 57, № 4, стр. 623-631

Влияние адипорона на экспрессию генов липидного обмена в первичной культуре макрофагов человека

И. А. Побожева ab*, К. В. Драчева ab, С. Н. Пчелина abc, В. В. Мирошникова ab

a Петербургский институт ядерной физики им. Б.П. Константинова, Национальный исследовательский центр “Курчатовский институт”
188300 Гатчина, Ленинградская обл., Россия

b Первый Санкт-Петербургский государственный медицинский университет им. академика И.П. Павлова Министерства здравоохранения Российской Федерации
197022 Санкт-Петербург, Россия

c Институт экспериментальной медицины
197376 Санкт-Петербург, Россия

* E-mail: perhaps_to_be@mail.ru

Поступила в редакцию 11.11.2022
После доработки 08.01.2023
Принята к публикации 25.01.2023

Аннотация

Избыточное поглощение богатых холестерином липопротеинов низкой плотности макрофагами сосудистой стенки приводит к трансформации макрофагов в пенистые клетки, накоплению липидов в интиме артерий и, как следствие, к образованию атеросклеротических бляшек и развитию сердечно-сосудистых заболеваний. Адипонектин – секретируемый жировой тканью адипокин, вызывает антиатерогенные и противовоспалительные эффекты, взаимодействуя с рецепторами AdipoR1 и AdipoR2. Одним из механизмов антиатерогенного действия адипонектина может быть участие в регуляции обратного транспорта холестерина и предотвращение образования пенистых клеток. Мы предположили, что низкомолекулярный агонист рецепторов адипонектина – адипорон – может модулировать экспрессию генов обратного транспорта холестерина и воспаления в макрофагах человека, и изучили влияние различных концентраций адипорона (0, 5, 10 и 20 мкМ) на экспрессию генов ABCA1, ABCG1, APOA1, NR1H3 (LXRα), NR1H2 (LXRβ), PPARG, ACAT1, IL6, TNFA, TLR4 в клетках первичной культуры макрофагов человека, а также на макрофаги линии THP-1. Выживаемость клеток оценивали с использованием MTS-теста. Уровень мРНК генов ABCA1, ABCG1, APOA1, NR1H3, NR1H2, PPARG, ACAT1, IL6, TNFA, TLR4 в первичной культуре макрофагов человека оценивали методом ПЦР в реальном времени. Показано увеличение относительного уровня мРНК генов PPARG и ABCA1 при воздействии адипорона в концентрации 5 и 10 мкМ в течение суток. Отмечен цитотоксический эффект адипорона в высокой концентрации (20 мкМ), выраженный в большей степени в макрофагах линии THP-1. Полученные данные о влиянии адипорона на макрофаги человека и изучение возможных агонистов рецепторов адипонектина представляют значительный интерес, учитывая необходимость поиска новых подходов к профилактике и лечению атеросклероза.

Ключевые слова: адипорон, ABCA1, PPARG, обратный транспорт холестерина, макрофаги, THP-1

Список литературы

  1. Ghantous C.M., Kamareddine L., Farhat R., Zouein F.A., Mondello S., Kobeissy F., Zeidan A. (2020) Advances in cardiovascular biomarker discovery. Biomedicines. 8, 552.

  2. Libby P., Buring J.E., Badimon L., Hansson G.K., Deanfield J., Bittencourt M.S., Tokgözoğlu L., Lewis E.F. (2019) Atherosclerosis. Nat. Rev. Dis. Primers. 5, 56.

  3. Крюков Н.Н., Николаевский Е.Н., Поляков В.П. (2010) Ишемическая болезнь сердца (современные аспекты клиники, диагностики, лечения, профилактики, медицинской реабилитации, экспертизы): Монография. Самара: ФГОУ ВПО “Самарский государственный медицинский университет Росздрава”, 651 с.

  4. Severino P., D’Amato A., Pucci M., Infusino F., Adamo F., Birtolo L.I., Netti L., Montefusco G., Chimenti C., Lavalle C., Maestrini V., Mancone M., Chilian W.M., Fedele F. (2020) Ischemic heart disease pathophysiology paradigms overview: from plaque activation to microvascular dysfunction. Int. J. Mol. Sci. 21, 8118.

  5. Рыжкова А.И., Карагодин В.П., Сухоруков В.Н., Сазонова М.А., Орехов А.Н. (2017) Десиалированные липопротеины низкой плотности в крови человека. Clin. Medicine. Russ. J. 95(3), 216–221.

  6. Miller Y.I., Choi S., Fang L., Harkewicz R. (2009) Toll-like receptor-4 and lipoprotein accumulation in macrophages. Trends Cardiovasc. Med. 19, 227–232.

  7. Demina E.P., Smutova V., Pan X., Fougerat A., Guo T., Zou C., Chakraberty R., Snarr B.D., Shiao T.C., Roy R., Orekhov A.N., Miyagi T., Laffargue M., Sheppard D.C., Cairo C.W., Pshezhetsky A.V. (2021) Neuraminidases 1 and 3 trigger atherosclerosis by desialylating low-density lipoproteins and increasing their uptake by macrophages. J. Am. Heart. Assoc. 10, e018756.

  8. Мищенко Е.Л., Мищенко А.М., Иванисенко В.А. (2021) Механочувствительные молекулярные взаимодействия в атерогенных районах артерий: развитие атеросклероза. Вавил. журн. генетики и селекции. 25, 552–561.

  9. Yu X., Fu C., Zhang D., Yin K., Tang C. (2013) Foam cells in atherosclerosis. Clinica Chimica Acta. 424, 245–252.

  10. Chistiakov D.A., Bobryshev Y.V., Orekhov A.N. (2016) Macrophage-mediated cholesterol handling in atherosclerosis. J. Cell. Mol. Med. 20, 17–28.

  11. Shemiakova T., Ivanova E., Grechko A.V., Gerasimova E.V., Sobenin I.A., Orekhov A.N. (2020) Mitochondrial dysfunction and DNA damage in the context of pathogenesis of atherosclerosis. Biomedicines. 8, 166.

  12. Shemiakova T., Ivanova E., Wu W.K., Kirichenko T.V., Starodubova A.V., Orekhov A.N. (2021) Atherosclerosis as mitochondriopathy: repositioning the disease to help finding new therapies. Front. Cardiovasc. Med. 8, 660473.

  13. Никифоров Н.Г., Грачев А.Н., Собенин И.А., Орехов А.Н., Кжышковска Ю.Г. (2012) Макрофаги и метаболизм липопротеинов в атеросклеротическом поражении. Патологическая физиология. 13, 900–922. www.medline.ru

  14. Bezsonov E.E., Sobenin I.A., Orekhov A.N. (2021) Immunopathology of atherosclerosis and related diseases: focus on molecular biology. Int. J. Mol. Sci. 22, 4080.

  15. Смирнова Л.А., Хасанова З.Б., Ежов М.В., Полевая Т.Ю., Матчин Ю.Г., Балахонова Ю.Г., Собенин И.А., Постнов А.Ю. (2014) Cвязь мутаций митохондриального генома с атеросклеротическим поражением коронарных и сонных артерий. Клиницист. 1, 34–41.

  16. Remmeriea A., Scott C.L. (2018) Macrophages and lipid metabolism. Cell. Immunol. 330, 27–42.

  17. Miroshnikova V.V., Panteleeva A.A., Pobozheva I.A., Razgildina N.D., Polyakova E.A., Markov A.V., Belyaeva O.D., Berkovich O.A., Baranova E.I., Nazarenko M.S., Puzyrev V.P., Pchelina S.N. (2021) ABCA1 and ABCG1 DNA methylation in epicardial adipose tissue of patients with coronary artery disease. BMC Cardiovasc. Disord. 21, 566.

  18. Liberale L., Bonaventura A., Vecchiè A., Matteo C., Dallegri F., Montecucco F., Carbone F. (2017) The role of adipocytokines in coronary atherosclerosis. Curr. Atherosclerosis Rep. 19, 10.

  19. Villarreal-Molina M.T., Antuna-Puente B. (2012) Adiponectin: anti-inflammatory and cardioprotective effects. Biochimie. 94, 2143–2149.

  20. Choi H.M., Doss H.M., Kim K.S. (2020) Multifaceted physiological roles of adiponectin in inflammation and diseases. Int. J. Mol. Sci. 21, 1219.

  21. van Stijn C.M.W., Kim J., Lusis A.J., Barish G.D., Tangirala R.K. (2015) Macrophage polarization phenotype regulates adiponectin receptor expression and adiponectin anti-inflammatory response. FASEB J. 29, 636–649.

  22. Shabalala S.C., Dludla P.V., Mabasa L., Kappo A.P., Basson A.K., Pheiffer C., Johnson R. (2020) The effect of adiponectin in the pathogenesis of non-alcoholic fatty liver disease (NAFLD) and the potential role of polyphenols in the modulation of adiponectin signaling. Biomed. Pharmacother. 131, 110785

  23. Lia H., Yub X.H., Ouc X., Ouyangd X.P., Tang C.K. (2021) Hepatic cholesterol transport and its role in non-alcoholic fatty liver disease and atherosclerosis. Prog. Lipid Res. 83, 101109.

  24. Christen T., Trompet S., Noordam R., van Klinken J.B., van Dijk K.W., Lamb H.J., Cobbaert C.M., den Heije M., Jazet I.M., Jukema J.W., Rosendaal F.R., de Mutsert R. (2018) Sex differences in body fat distribution are related to sex differences in serum leptin and adiponectin. Peptides. 107, 25–31

  25. Побожева И.А., Разгильдина Н.Д., Полякова Е.А., Пантелеева А.А., Беляева О.Д., Нифонтов С.Е., Галкина О.В., Колодина Д.А., Беркович О.А., Баранова Е.И., Пчелина С.Н., Мирошникова В.В. (2020) Экспрессия гена адипонектина в эпикардиальной и подкожной жировой ткани при ишемической болезни сердца. Кардиология. 60, 62–69.

  26. Jonas M.I., Kurylowicz A., Bartoszewicz Z., Lisik W., Jonas M., Domienik-Karlowicz J., Puzianowska-Kuznicka M. (2017) Adiponectin/resistin interplay in serum and in adipose tissue of obese and normal-weight individuals. Diabetol. Metab. Syndr. 9, 95.

  27. Sadashiv, Tiwari S., Paul B.N., Kumar S., Chandra A., Dhananjai S., Pal M., Negi S. (2013) Adiponectin mRNA in adipose tissue and its association with metabolic risk factors in postmenopausal obese women. Hormones. 12, 119–127.

  28. Разгильдина Н.Д., Бровин Д.Л., Побожева И.А., Пантелеева А.А., Мирошникова В.В., Беляева О.Д., Нифонтов С.Е., Галкина О.В., Колодина Д.А., Беркович О.А., Баранова Е.И., Пчелина С.Н., Мирошникова В.В. (2018) Экспрессия гена ADIPOQ в подкожной и интраабдоминальной жировой ткани у женщин с различной степенью ожирения. Цитология. 60, 531–535.

  29. Liang B., Wang X., Guo X., Yang Z., Bai R., Liu M., Xiao C., Bian Y. (2015) Adiponectin upregulates A-BCA1 expression through liver X receptor alpha signaling pathway in RAW 264.7 macrophages. Int. J. Clin. Exp. Pathol. 8, 450–457.

  30. Furukawa K., Hori M., Ouchi N., Kihara S., Funahashi T., Matsuzawa Y., Miyazaki A., Nakayama H., Horiuchi S. (2004) Adiponectin down-regulates acyl-coenzyme A: cholesterol acyltransferase-1 in cultured human monocyte-derived macrophages. Biochem. Biophys. Res. Commun. 317, 831–836.

  31. Yuan B., Huang L., Yan M., Zhang S., Zhang Y., Jin B., Ma Y., Luo Z. (2018) Adiponectin downregulates TNF-α expression in degenerated intervertebral discs. Spine (Phila Pa 1976). 43, E381–E389.

  32. Choi H.M., Doss H.M., Kim K.S. (2020) Multifaceted physiological roles of adiponectin in inflammation and diseases. Int. J. Mol. Sci. 21, 1219.

  33. Ohashi K., Parker J.L., Ouchi N., Higuchi A., Vita J.A., Gokce N., Pedersen A.A., Kalthoff C., Tullin S., Sams A., Summer R., Walsh K. (2010) Adiponectin promotes macrophage polarization toward an anti-inflammatory phenotype. J. Biol. Chem. 285, 6153–6160.

  34. Zhang Y., Zhao J., Li R., Lau W.B., Yuan Y., Liang B., Li R., Gao E., Koch W.J., Ma X., Wang Y. (2015) AdipoRon, the first orally active adiponectin receptor activator, attenuates postischemic myocardial apoptosis through both AMPK-mediated and AMPK-independent signaling. Am. J. Physiol. Endocrinol. Metab. 309, E275–E282.

  35. Okada-Iwabu M., Iwabu M., Ueki K., Yamauchi T., Kadowaki T. (2015) Perspective of small-molecule A-dipoR agonist for type 2 diabetes and short life in obesity. Diabetes Metab. J. 39, 363–372.

  36. Натвиг Д.Б., Перлманн П., Визгель Х. (1980) Лимфоциты: выделение, фракционирование и характеристика. Москва: Медицина, 185–201.

  37. Мирошникова В.В., Пантелеева А.А., Баженова Е.А., Демина Е.П., Усенко Т.С., Николаев М.А., Семенова И.А., Неймарк А.Е., Хе Чж., Беляева О.Д., Беркович О.А., Баранова Е.И., Пчелина С.Н. (2016) Регуляция экспрессии генов транспортеров ABCA1 и ABCG1 в интраабдоминальной жировой ткани. Биомед. химия. 62, 283–289.

  38. Okada-Iwabu M., Yamauchi T., Iwabu M., Honma T., Hamagami K., Matsuda K., Yamaguchi M., Tanabe H., Kimura-Someya T., Shirouzu M., Ogata H., Tokuyama K., Ueki K., Nagano T., Tanaka A., Yokoyama S., Kadowaki T. (2013) A small-molecule Ad-ipoR agonist for type 2 diabetes and short life in obesity. Nature. 503, 493–499.

  39. Tian L., Luo N., Zhu X., Chung B.H., Garvey W.T., Fu Y. (2012) Adiponectin-adipoR1/2-APPL1 signaling axis suppresses human foam cell formation; differential ability of AdipoR1 and AdipoR2 to regulate inflammatory cytokine responses. Atherosclerosis. 221, 66–75.

  40. Tsubakio-Yamamoto K., Matsuura F., Koseki M., Oku H., Sandoval J.C., Inagaki M., Nakatani K., Nakaoka H., Kawase R., Yuasa-Kawase M., Masuda D., Ohama T., Maeda N., Nakagawa-Toyama Y., Ishigami M., Nishida M., Kihara S., Shimomura I., Yamashita S. (2008) Adiponectin prevents atherosclerosis by increasing cholesterol efflux from macrophages. Biochem. Biophys. Res. Commun. 375, 390–394.

  41. Lee T.H., Christie B.R., van Praag H., Lin K., Ming-Fai Siu P., Xu A., So K., Yau S. (2021) AdipoRon treatment induces a dose-dependent response in adult hippocampal neurogenesis. Int. J. Mol. Sci. 22, 2068.

  42. Duan Z., Tu C., Liu Q., Li S., Li Y., Xie P., Li Z. (2020) Adiponectin receptor agonist AdipoRon attenuates calcification of osteoarthritis chondrocytes by promoting autophagy. J. Cell. Biochem. 121, 3333–3344.

  43. Salvator H., Grassin-Delyle S., Brollo M., Couderc L., Abrial C., Victoni T., Naline E., Devillier P. (2021) Adiponectin inhibits the production of TNF-α, IL-6 and chemokines by human lung macrophages. Front. Pharmacol. 12, 718929.

  44. Mallardo M., Costagliola C., Nigro E., Daniele A. (2021) AdipoRon negatively regulates proliferation and migration of ARPE-19 human retinal pigment epithelial cells. Peptides. 146, 170676.

  45. Messaggio F., Mendonsa A.M., Castellanos J., Nagathihalli N.S., Gorden L., Merchant N.B., VanSaun M.N. (2017) Adiponectin receptor agonists inhibit leptin induced pSTAT3 and in vivo pancreatic tumor growth. Oncotarget. 8, 85378–85391.

  46. Ramzan A.A., Bitler B.G., Hicks D., Barner K., Qamar L., Behbakht K., Powell T., Jansson T., Wilson H. (2019) Adiponectin receptor agonist AdipoRon induces apoptotic cell death and suppresses proliferation in human ovarian cancer cells. Mol. Cell. Biochem. 461, 37–46.

  47. Wang S., Wang C., Wang W., Hao Q., Liu Y. (2020) Adiponectin receptor agonist AdipoRon inhibits the proliferation of myeloma cells via the AMPK/autophagy pathway. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 28, 171–176.

  48. Akimoto M., Maruyama R., Kawabata Y., Tajima Y., Takenaga K. (2018) Antidiabetic adiponectin receptor agonist AdipoRon suppresses tumour growth of pancreatic cancer by inducing RIPK1/ERK-dependent necroptosis. Cell Death Dis. 9, 804.

  49. Parida S., Siddharth S., Sharma D. (2019) Adiponectin, obesity, and cancer: clash of the bigwigs in health and disease. Int. J. Mol. Sci. 20, 2519.

  50. Nigro E., Daniele A., Salzillo A., Ragone A., Naviglio S., Sapio L. (2021) AdipoRon and other adiponectin receptor agonists as potential candidates in cancer treatments. Int. J. Mol. Sci. 22, 5569.

  51. Mauro L., Pellegrino M., De Amicis F., Ricchio E., Giordano F., Rizza P., Catalano S., Bonofiglio D., Sisci D., Panno M.L., Andò S. (2014) Evidences that estrogen receptor α interferes with adiponectin effects on breast cancer cell growth. Cell Cycle. 13, 553–564.

  52. Illiano M., Nigro E., Sapio L., Caiafa I., Spina A., Scudiero O., Bianco A., Esposito S., Mazzeo F., Pedone P.V., Daniele A., Naviglio S. (2017) Adiponectin down-regulates CREB and inhibits proliferation of A549 lung cancer cells. Pulm. Pharmacol. Ther. 45, 114–120.

  53. Nigro E., Scudiero O., Sarnataro D., Mazzarella G., Sofia M., Bianco A., Daniele A. (2013) Adiponectin affects lung epithelial A549 cell viability counteracting TNF-α and IL-1ß toxicity through AdipoR1. Int. J. Biochem. Cell Biol. 45, 1145–1153.

  54. Kim A.Y., Lee Y.S., Kim K.H., Lee J.H., Lee H.K., Jang S., Kim S., Lee G.Y., Lee J., Jung S., Chung H.Y., Jeong S., Kim J.B. (2010) Adiponectin represses colon cancer cell proliferation via AdipoR1- and -R2-mediated AMPK activation. Mol. Endocrinol. 24, 1441–1452.

  55. Nigro E., Orlandella F.M., Polito R., Mariniello R.M., Monaco M.L., Mallardo M., De Stefano A.E., Iervolino P.L.C., Salvatore G., Daniele A. (2021) Adiponectin and leptin exert antagonizing effects on proliferation and motility of papillary thyroid cancer cell lines. J. Physiol. Biochem. 77, 237–248.

Дополнительные материалы отсутствуют.