Молекулярная биология, 2023, T. 57, № 5, стр. 771-781

Цифровая ПЦР: обзор применения высокочувствительного диагностического инструмента

К. В. Копылова a, Э. В. Каспаров a, И. В. Марченко a, М. В. Смольникова a*

a Научно-исследовательский институт медицинских проблем Севера
660022 Красноярск, Россия

* E-mail: smarinv@yandex.ru

Поступила в редакцию 29.12.2022
После доработки 29.03.2023
Принята к публикации 29.03.2023

Аннотация

Цифровая ПЦР (цПЦР) – метод определения абсолютного количества целевой нуклеиновой кислоты в образце – все шире используется в биологии и медицине. К важным преимуществам цПЦР относится возможность количественного определения генетического материала без построения калибровочных кривых, что позволяет выявлять даже единичные молекулы нуклеиновых кислот. В обзоре рассмотрены основные этапы становления метода цПЦР, начиная с технологии микрофлюидных чипов, до современных систем, способных обнаружить одну молекулу ДНК-мишени среди 100 000 копий. Проанализирована эффективность выявления различных патогенов с помощью цПЦР, обобщены результаты исследований, иллюстрирующие инновационность данного метода. Рассмотрены возможности мультиплексного цПЦР-анализа и его использования в клинической практике. Также обсуждается роль цПЦР в развитии неинвазивных методов анализа онкологических заболеваний и вероятные пути развития технологии цПЦР, включая использование в качестве систем “point-of-care”.

Ключевые слова: цифровая ПЦР, инфекция, ДНК, онкология, вирусы, COVID-19

Список литературы

  1. Lei S. (2021) Digital PCR for accurate quantification of pathogens: principles, applications, challenges and future prospects. Int. J. Biol. Macromol. 10, 750‒759.

  2. Vynck M., Trypsteen W., Thas O., Vandekerckhove L., De Spiegelaere W. (2016) The future of digital polymerase chain reaction in virology. Mol. Diagn. Ther. 20, 437–447.

  3. Huggett J.F., Cowen S., Foy C.A. (2015) Considerations for digital PCR as an accurate molecular diagnostic tool. Clin. Chem. 61, 79–88.

  4. Zhu X., Liu P., Lu L., Zhong H., Xu M., Jia R., Su L., Cao L., Sun Y., Guo M., Sun J., Xu J. (2022) Development of a multiplex droplet digital PCR assay for detection of enterovirus, parechovirus, herpes simplex virus 1 and 2 simultaneously for diagnosis of viral CNS infections. Virol. J. 19, 70.

  5. Leong N.K.C., Chu D.K.W., Chu J.T.S., Tam Y.H., Ip D.K.M., Cowling B.J., Poon L.L.M. (2020) A six-plex droplet digital RT-PCR assay for seasonal influenza virus typing, subtyping, and lineage determination. Influenza Other Respir. Viruses. 14, 720–729.

  6. Whale A.S., Huggett J.F., Tzonev S. (2016) Fundamentals of multiplexing with digital PCR. Biomol. Detect. Quantif. 10, 15–23.

  7. The dMIQE Group, Huggett J.F. (2020) The digital MIQE guidelines update: minimum information for publication of quantitative digital PCR experiments for 2020. Clin. Chem. 66, 1012–1029.

  8. Mao X., Liu C., Tong H., Chen Y., Liu K. (2019) Principles of digital PCR and its applications in current obstetrical and gynecological diseases. Am. J. Transl. Res. 11, 7209–7222.

  9. Chen B. (2021) Droplet digital PCR as an emerging tool in detecting pathogens nucleic acids in infectious diseases. Clin. Chim. Acta. 517, 156‒161.

  10. Basu A.S. (2017) Digital assays part I: partitioning statistics and digital PCR. SLAS Technol. 22, 369–386.

  11. Pinheiro L.B., Coleman V.A., Hindson C.M., Herrmann J., Hindson B.J., Bhat S., Emslie K.R. (2012) Evaluation of a droplet digital polymerase chain reaction format for DNA copy number quantification. Anal. Chem. 84, 1003–1011.

  12. Wang K., Li B., Guo Y., Wu Y., Li Y., Wu W. (2022) An integrated digital PCR system with high universality and low cost for nucleic acid detection. Front. Bioeng. Biotechnol. 10, 947895.

  13. Hall Sedlak R., Jerome K.R. (2014) The potential advantages of digital PCR for clinical virology diagnostics. Expert. Rev. Mol. Diagn. 14, 501–507.

  14. Tang L., Sun Y., Buelow D., Gu Z., Caliendo A.M., Pounds S., Hayden R.T. (2016) Quantitative assessment of commutability for clinical viral load testing using a digital PCR-based reference standard. J. Clin. Microbiol. 54, 1616–1623.

  15. Sedlak R.H., Nguyen T., Palileo I., Jerome K.R., Kuypers J. (2017) Superiority of digital reverse transcription-PCR (RT-PCR) over real-time RT-PCR for quantitation of highly divergent human rhinoviruses. J. Clin. Microbiol. 55, 442–449.

  16. Sedlak R.H., Jerome K.R. (2013) Viral diagnostics in the era of digital polymerase chain reaction. Diagn. Microbiol. Infect. Dis. 75, 1–4.

  17. Hudecova I. (2015) Digital PCR analysis of circulating nucleic acids. Clin. Biochem. 48, 948–956.

  18. Sanders R., Mason D.J., Foy C.A., Huggett J.F. (2013) Evaluation of digital PCR for absolute RNA quantification. Anal. Chem. 8, e75296.

  19. Hayden R.T., Gu Z., Sam S.S., Sun Y., Tang L., Pounds S., Caliendo A.M. (2016) Comparative performance of reagents and platforms for quantitation of cytomegalovirus DNA by digital PCR. J. Clin. Microbiol. 54, 2602–2608.

  20. Vogelstein B., Kinzler K.W. (1999) Digital PCR. Proc. Natl. Acad. Sci. USA. 96, 9236–9241.

  21. Saiki R.K., Gelfand D.H., Stoffel S., Scharf S.J., Higuchi R., Horn G.T., Mullis K.B., Erlich H.A. (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science. 239, 487–491.

  22. Morley A.A. (2014) Digital PCR: a brief history. Biomol. Detect. Quantif. 1, 1–2.

  23. Simmonds P., Balfe P., Peutherer J.F., Ludlam C.A., Bishop J.O., Brown A.J. (1990) Human immunodeficiency virus-infected individuals contain provirus in small numbers of peripheral mononuclear cells and at low copy numbers. J. Virol. 64, 864–872.

  24. Sykes P.J., Neoh S.H., Brisco M.J., Hughes E., Condon J., Morley A.A. (1992) Quantitation of targets for PCR by use of limiting dilution. BioTechniques. 13, 444–449.

  25. Sanders R., Huggett J.F., Bushell C.A., Cowen S., Scott D.J., Foy C.A. (2011) Evaluation of digital PCR for absolute DNA quantification. Anal. Chem. 83, 6474–6484.

  26. Qin J., Jones R.C., Ramakrishnan R. (2008) Studying copy number variations using a nanofluidic platform. Nucl. Acids Res. 36, e116.

  27. Pekin D., Skhiri Y., Baret J.-C., Corre D.L., Mazutis L., Salem C.B., Millot F., Harrak A.E., Hutchison J.B., Larson J.W., Link D.R., Laurent-Puig P., Griffiths A.D., Taly V. (2011) Quantitative and sensitive detection of rare mutations using droplet-based microfluidics. Lab. Chip. 11, 2156–2166.

  28. Tan L.L., Loganathan N., Agarwalla S., Yang C., Yuan W., Zeng J., Wu R., Wang W., Duraiswamy S. (2022) Current commercial dPCR platforms: technology and market review. Crit. Rev. Biotechnol. 1–32.

  29. Garzarelli V., Chiriacò M.S., Cereda M., Autuori I., Ferrara F. (2022) Miniaturized real-time PCR systems for SARS-CoV-2 detection at the Point-of-Care. Clin. Chim. Acta. 536, 104–111.

  30. Cassinari K., Alessandri-Gradt E., Chambon P., Charbonnier F., Gracias S., Beaussire L., Alexandre K., Sarafan-Vasseur N., Houdayer C., Etienne M., Caron F., Plantier J.C., Frebourg T. (2021) Assessment of multiplex digital droplet RT-PCR as a diagnostic tool for SARS-CoV-2 detection in nasopharyngeal swabs and saliva samples. Clin. Chem. 67, 736–741.

  31. Artika I.M., Wiyatno A., Ma’roef C.N. (2020) Pathogenic viruses: molecular detection and characterization. Infect. Genet. Evol. 81, 104215.

  32. Brunetto G.S., Massoud R., Leibovitch E.C., Caruso B., Johnson K., Ohayon J., Fenton K., Cortese I., Jacobson S. (2014) Digital droplet PCR (ddPCR) for the precise quantification of human T-lymphotropic virus 1 proviral loads in peripheral blood and cerebrospinal fluid of HAM/TSP patients and identification of viral mutations. J. Neurovirol. 20, 341–351.

  33. White R.A., Quake S.R., Curr K. (2012) Digital PCR provides absolute quantitation of viral load for an occult RNA virus. J. Virol. Methods. 179, 45–50.

  34. Wouters Y., Dalloyaux D., Christenhusz A., Roelofs H.M.J., Wertheim H.F., Bleeker-Rovers C.P., te Morsche R.H., Wanten G.J.A. (2020) Droplet digital polymerase chain reaction for rapid broad-spectrum detection of bloodstream infections. Microb. Biotechnol. 13, 657–668.

  35. Mancusi A., Fulgione A., Girardi S., Di Maro O., Capuano F., Proroga Y.T.R., Cristiano D. (2022) Droplet digital PCR (ddPCR) analysis for detecting shiga-toxin-producing Escherichia coli (STEC). Appl. Sci. 12, 3654.

  36. Shao Z., Zhu J., Wei Y., Jin J., Zheng Y., Liu J., Zhang R., Sun R., Hu B. (2022) Pathogen load and species monitored by droplet digital PCR in patients with bloodstream infections: a prospective case series study. BMC Infect. Dis. 22, 771.

  37. Merino I., de la Fuente A., Domínguez-Gil M., Eiros J.M., Tedim A.P., Bermejo-Martín J.F. (2022) Digital PCR applications for the diagnosis and management of infection in critical care medicine. Crit. Care. 26, 63.

  38. Hu B., Tao Y., Shao Z., Zheng Y., Zhang R., Yang X., Liu J., Li X., Sun R. (2021) A comparison of blood pathogen detection among droplet digital PCR, metagenomic next-generation sequencing, and blood culture in critically ill patients with suspected bloodstream infections. Front. Microbiol. 12, 641202.

  39. Kondrashin A.V., Morozova L.F., Stepanova E.V., Turbabina N.A., Maksimova M.S., Morozov E.N. (2018) On the epidemiology of Plasmodium vivax malaria: past and present with special reference to the former USSR. Malar. J. 17, 346.

  40. Mangold K.A., Manson R.U., Koay E.S.C., Stephens L., Regner M., Thomson R.B., Peterson L.R., Kaul K.L. (2005) Real-time PCR for detection and identification of Plasmodium spp. J. Clin. Microbiol. 43, 2435–2440.

  41. Koepfli C., Nguitragool W., Hofmann N.E., Robinson L.J., Ome-Kaius M., Sattabongkot J., Felger I., Mueller I. (2016) Sensitive and accurate quantification of human malaria parasites using droplet digital PCR (ddPCR). Sci. Rep. 6, 39183.

  42. Gentilini F., Turba M.E., Taddei F., Gritti T., Fantini M., Dirani G., Sambri V. (2021) Modelling RT-qPCR cycle-threshold using digital PCR data for implementing SARS-CoV-2 viral load studies. PLoS One. 16, e0260884.

  43. Li Y., Yao L., Li J., Chen L., Song Y., Cai Z., Yang C. (2020) Stability issues of RT-PCR testing of SARS-CoV-2 for hospitalized patients clinically diagnosed with COVID-19. J. Med. Virol. 92, 903–908.

  44. Wu J., Liu J., Zhao X., Liu C., Wang W., Wang D., Zhang C., Yu J., Jiang B., Cao H., Li L. (2019) Clinical characteristics of imported cases of COVID-19 in Jiangsu province: a multicenter descriptive study. Clin. Infect. Dis. 71, 706–712.

  45. Tahamtan A., Ardebili A. (2020) Real-time RT-PCR in COVID-19 detection: issues affecting the results. Expert. Rev. Mol. Diagn. 20, 453–454.

  46. Konka A., Lejawa M., Gaździcka J., Bochenek A., Fronczek M., Strzelczyk J.K. (2022) RT-PCR detection of SARS-CoV-2 among individuals from the upper Silesian region – analysis of 108516 tests. Diagnostics. 12, 7.

  47. Suo T., Liu X., Feng J., Guo M., Hu W., Guo D., Ullah H., Yang Y., Zhang Q., Wang X., Sajid M., Huang Z., Deng L., Chen T., Liu F., Xu K., Liu Y., Zhang Q., Liu Y., Xiong Y., Chen G., Lan K., Chen Y. (2020) ddPCR: a more accurate tool for SARS-CoV-2 detection in low viral load specimens. Emerg. Microbes Infect. 9, 1259–1268.

  48. Dong L., Zhou J., Niu C., Wang Q., Pan Y., Sheng S., Wang X., Zhang Y., Yang J., Liu M., Zhao Y., Zhang X., Zhu T., Peng T., Xie J., Gao Y., Wang D., Dai X., Fang X. (2021) Highly accurate and sensitive diagnostic detection of SARS-CoV-2 by digital PCR. Talanta. 224, 121726.

  49. Телышева Е.Н. (2017) Свободно-циркулирующая ДНК плазмы крови. Возможности применения в онкологии. Вестник РНЦРР. 17, 2.

  50. Sarhadi V.K., Armengol G. (2022) Molecular biomarkers in cancer. Biomolecules. 12, 1021.

  51. Wang S., Zhang K., Tan S., Xin J., Yuan Q., Xu H., Xu X., Liang Q., Christiani D.C., Wang M., Liu L., Du M. (2021) Circular RNAs in body fluids as cancer biomarkers: the new frontier of liquid biopsies. Mol. Cancer. 20, 13.

  52. Szilágyi M., Pös O., Márton É., Buglyó G., Soltész B., Keserű J., Penyige A., Szemes T., Nagy B. (2020) Circulating cell-free nucleic acids: main characteristics and clinical application. Int. J. Mol. Sci. 21, 6827.

  53. Pös O., Biró O., Szemes T., Nagy B. (2018) Circulating cell-free nucleic acids: characteristics and applications. Eur. J. Hum. Genet. 26, 937–945.

  54. Liu D., Yin H., Wang Y., Cao Y., Yin J., Zhang J., Yin H., Zhao X. (2021) Development of a highly sensitive digital PCR assay to quantify long non-coding RNA MYU in urine samples which exhibited great potential as an alternative diagnostic biomarker for prostate cancer. Transl. Androl. Urol. 10, 3815–3825.

  55. Du M., Huang C.-C., Tan W., Kohli M., Wang L. (2020) Multiplex digital PCR to detect amplifications of specific androgen receptor loci in cell-free DNA for prognosis of metastatic castration-resistant prostate cancer. Cancers. 12, E2139.

  56. Бит-Сава Е.М. (2014) Наследственные характеристики BRCA1 5382insC/сhek2/blm-ассоциированного рака молочной железы. Сибирский Онкол. Журн. 6, 15–18.

  57. Mehta A., Diwan H., Gupta G., Nathany S., Agnihotri S., Dhanda S. (2022) Founder BRCA1 mutations in Nepalese population. J. Pathol. Transl. Med. 56, 212–216.

  58. Цыганов М.М., Тарабановская Н.А., Дерюшева И.В., Ибрагимова М.И., Казанцева П.В., Певзнер А.М., Слонимская Е.М., Литвяков Н.В. (2019) Ответ на неоадъювантную химиотерапию с включением препаратов платины у больной раком молочной железы с делецией гена BRCA1 в опухоли. Сибирский Онкол. Журн. 18, 103–108.

  59. Каюкова Е.В. (2019) Возможности жидкостной биопсии в диагностике и мониторинге цервикального рака. Сибирский Онкол. Журн. 18, 92–101.

  60. Tewari K.S., Sill M.W., Monk B.J., Penson R.T., Moore D.H., Lankes H.A., Ramondetta L.M., Landrum L.M., Randall L.M., Oaknin A., Leitao M.M., Eisenhauer E.L., DiSilvestro P., Van Le L., Pearl M.L., Burke J.J., Salani R., Richardson D.L., Michael H.E., Kindelberger D.W., Birrer M.J. (2020) Circulating tumor cells in advanced cervical cancer: NRG oncology-gynecologic oncology group study 240 (NCT 00803062). Mol. Cancer Ther. 19, 2363–2370.

  61. Buleje J., Guevara-Fujita M., Acosta O., Huaman F.D.P., Danos P., Murillo A., Pinto J.A., Araujo J.M., Aguilar A., Ponce J., Vigil C., Castaneda C., Calderon G., Gomez H.L., Fujita R. (2017) Mutational analysis of BRCA1 and BRCA2 genes in Peruvian families with hereditary breast and ovarian cancer. Mol. Genet. Genomic Med. 5, 481–494.

  62. Weigelt B., Comino-Méndez I., de Bruijn I., Tian L., Meisel J.L., García-Murillas I., Fribbens C., Cutts R., Martelotto L.G., Ng C.K., Lim R.S., Selenica P., Piscuoglio S., Aghajanian C., Norton L., Murali R., Hyman D.M., Borsu L., Arcila M.E., Konner J., Reis-Filho J.S., Greenberg R.A., Robson M.E., Turner N.C. (2017) Diverse BRCA1 and BRCA2 reversion mutations in circulating cell-free DNA of therapy-resistant breast or ovarian cancer. Clin. Cancer Res. 23, 6708–6720.

  63. He H.-J., Almeida J.L., Lund S.P., Steffen C.R., Choquette S., Cole K.D. (2016) Development of NIST standard reference material 2373: genomic DNA standards for HER2 measurements. Biomol. Detect. Quantif. 8, 1–8.

  64. Zhou R., Cai Y., Shen S., Sha M., Li Z., Head S.R., Wang Y. (2018) A digital PCR based assay to detect all ALK fusion species. Front. Lab. Med. 2, 49–54.

  65. Beck J., Bierau S., Balzer S., Andag R., Kanzow P., Schmitz J., Gaedcke J., Moerer O., Slotta J.E., Walson P., Kollmar O., Oellerich M., Schütz E. (2013) Digital droplet PCR for rapid quantification of donor DNA in the circulation of transplant recipients as a potential universal biomarker of graft injury. Clin. Chem. 59, 1732–1741.

  66. Mair R., Mouliere F. (2022) Cell-free DNA technologies for the analysis of brain cancer. Br. J. Cancer. 126, 371–378.

  67. McEwen A.E., Leary S.E.S., Lockwood C.M. (2020) Beyond the blood: CSF-derived cfDNA for diagnosis and characterization of CNS tumors. Front. Cell Dev. Biol. 8, 45.

  68. Bouchè V., Aldegheri G., Donofrio C.A., Fioravanti A., Roberts-Thomson S., Fox S.B., Schettini F., Generali D. (2021) BRAF signaling inhibition in glioblastoma: which clinical perspectives? Front. Oncol. 11, 772052.

  69. Castel D., Philippe C., Calmon R., Le Dret L., Truffaux N., Boddaert N., Pagès M., Taylor K.R., Saulnier P., Lacroix L., Mackay A., Jones C., Sainte-Rose C., Blauwblomme T., Andreiuolo F., Puget S., Grill J., Varlet P., Debily M.-A. (2015) Histone H3F3A and HIST1H3B K27M mutations define two subgroups of diffuse intrinsic pontine gliomas with different prognosis and phenotypes. Acta Neuropathol. (Berl.). 130, 815–827.

  70. Zaytseva M., Usman N., Salnikova E., Sanakoeva A., Valiakhmetova A., Chervova A., Papusha L., Novichkova G., Druy A. (2022) Methodological challenges of digital PCR detection of the histone H3 K27M somatic variant in cerebrospinal fluid. Pathol. Oncol. Res. 28, 1610024.

  71. Sahu R., Vishnuraj M.R., Srinivas Ch., Dadimi B., Megha G.K., Pollumahanti N., Malik S.S., Vaithiyanathan S., Rawool D.B., Barbuddhe S.B. (2021) Development and comparative evaluation of droplet digital PCR and quantitative PCR for the detection and quantification of Chlamydia psittaci. J. Microbiol. Methods. 190, 106318.

Дополнительные материалы отсутствуют.