Онтогенез, 2023, T. 54, № 5, стр. 306-322

Трансформация состояний плюрипотентности в ходе морфогенеза эпибласта мыши и человека

В. К. Абдыев a*, Е. В. Алпеева a, Е. Н. Калистратова b, Е. А. Воротеляк a, А. В. Васильев ab

a Институт биологии развития им. Н.К. Кольцова РАН
119334 Москва, ул. Вавилова 26, Россия

b Московский государственный университет им. М.В. Ломоносова, биологический факультет
119234 Москва, ул. Ленинские горы, д. 1, стр. 12, Россия

* E-mail: mailtovepa@gmail.com

Поступила в редакцию 27.07.2022
После доработки 01.06.2023
Принята к публикации 19.07.2023

Аннотация

Плюрипотентный статус клетки in vivo имеет пространственно-временную регуляцию в рамках эмбриогенеза и обусловлен процессами самообновления, бесконечной пролиферации и дифференцировки во все типы клеток организма. Статус плюрипотентности был охарактеризован при исследовании клеток тератокарциномы, а затем это понятие было применено к эмбриональным клеткам преимплантационного эмбриона мыши. Плюрипотентные стволовые клетки (ПСК) мыши и человека образуются в преимплантационный период и присутствуют у эмбриона до начала гаструляции. Одно из основных событий раннего развития млекопитающих – разделение внутренней клеточной массы бластоцисты (ВКМ) на гипобласт и эпибласт, который дает начало собственно эмбриону. В ходе морфогенетических процессов, связанных с формированием эпибласта, состояния плюрипотентности его клеток трансформируются. Таким образом, клетки ВКМ бластоцисты эпигенетическим и транскрипционным паттернами отличаются от своих дочерних клеток пери/постимплантационного эпибласта. С началом гаструляционных движений созревание клеток эпибласта завершается их дифференцировкой в клетки трех зародышевых листков. В данном обзоре рассмотрены исторические аспекты изучения плюрипотентности клеток, различные источники ПСК, механизмы и сигнальные пути, поддерживающие самообновление и плюрипотентность клеток в культурах ПСК. Кроме того, мы обобщили данные о морфогенетических процессах, которые влияют на образование наивных клеток ВКМ in vivo и последующее созревание клеток эпибласта мыши и человека, связанное с трансформацией их состояний плюрипотентности.

Ключевые слова: эмбриогенез млекопитающих, морфогенез, ВКМ бластоцисты, эпибласт, BMP, FGF, WNT сигнальные пути, плюрипотентные стволовые клетки, ИПСК, ЭСК, наивные ПСК, праймированные ПСК, репрограммирование

Список литературы

  1. Абдыев В.К. и др. Современные технологии получения первичных половых клеток человека in vitro // Биохимия. 2019. Т. 84. № 3. С. 330–342.

  2. Гордеев М.Н., Бахмет Е.И., Томилин А.Н. Динамика плюрипотентности в эмбриогенезе и в культуре // Онтогенез. 2021. Т. 52. № 6. С. 429–440.

  3. Мучкаева И.А. и др. Молекулярные механизмы индуцированной плюрипотентности // 2012. Т. 1. № 12. С. 32–43.

  4. Честков И.В. и др. Молекулярные барьеры в процессах генетического репрограммирования и трансформации клеток // 2014. С. 1592–1604.

  5. Abdyyev V.K. et al. In vitro derived female hPGCLCs are unable to complete meiosis in embryoid bodies // Exp. Cell Res. 2020. V. 397. № 2. P. 112358.

  6. Andrews P.W. From teratocarcinomas to embryonic stem cells // Philos. Trans. R. Soc. London. Ser. B. Biol. Sci. 2002. V. 357. № 1420. P. 405–417.

  7. Arnold S.J. et al. Dose-dependent Smad1, Smad5 and Smad8 signaling in the early mouse embryo // Dev. Biol. 2006. V. 296. № 1. P. 104–118.

  8. Banito A., Gil J. Induced pluripotent stem cells and senescence: learning the biology to improve the technology // EMBO Rep. 2010. V. 11. № 5. P. 353–9.

  9. Bartoccetti M. и дp. Regulatory Dynamics of Tet1 and Oct4 Resolve Stages of Global DNA Demethylation and Transcriptomic Changes in Reprogramming // Cell Rep. 2020. V. 30. № 7.

  10. Bayerl J. et al. Principles of signaling pathway modulation for enhancing human naive pluripotency induction // Cell Stem Cell. 2021. V. 28. № 9. P. 1549-1565.e12.

  11. Bedzhov I., Zernicka-Goetz M. Self-Organizing Properties of Mouse Pluripotent Cells Initiate Morphogenesis upon Implantation // Cell. 2014. V. 156. P. 1032–1044.

  12. Blakeley P. et al. Defining the three cell lineages of the human blastocyst by single-cell RNA-seq // Dev. 2015. V. 142. № 18. P. 3151–3165.

  13. Blasco M.A. The epigenetic regulation of mammalian telomeres // Nat. Rev. Genet. 2007. V. 84. 2007. V. 8. № 4. P. 299–309.

  14. Bourillot P.Y. et al. Novel STAT3 target genes exert distinct roles in the inhibition of mesoderm and endoderm differentiation in cooperation with Nanog // Stem Cells. 2009. V. 27. № 8. P. 1760–1771.

  15. Bradley A. et al. Formation of germ-line chimaeras from embryo-derived teratocarcinoma cell lines // Nat. 1984 3095965. 1984. V. 309. № 5965. P. 255–256.

  16. Brons I.G.M. et al. Derivation of pluripotent epiblast stem cells from mammalian embryos // Nat. 2007 4487150. 2007a. V. 448. № 7150. P. 191–195.

  17. Brons I.G.M. et al. Derivation of pluripotent epiblast stem cells from mammalian embryos // Nature. 2007b. V. 448. № 7150. P. 191–195.

  18. Burdon T. et al. Suppression of SHP-2 and ERK Signalling Promotes Self-Renewal of Mouse Embryonic Stem Cells // Dev. Biol. 1999. V. 210. № 1. P. 30–43.

  19. Carey B.W. et al. Reprogramming of murine and human somatic cells using a single polycistronic vector // Proc. Natl. Acad. Sci. USA. 2009. V. 106. № 1. P. 157–162.

  20. Chambers I., Smith A. Self-renewal of teratocarcinoma and embryonic stem cells // Oncogene. 2004. V. 23. № 43 REV. ISS. 6. P. 7150–7160.

  21. Cheng S. et al. Single-Cell RNA-Seq Reveals Cellular Heterogeneity of Pluripotency Transition and X Chromosome Dynamics during Early Mouse Development // Cell Rep. 2019. V. 26. № 10. P. 2593–2607.e3.

  22. Christodoulou N. et al. Sequential formation and resolution of multiple rosettes drive embryo remodelling after implantation // Nat. Cell Biol. 2018. 2011. 2018. V. 20. № 11. P. 1278–1289.

  23. Coucouvanis E., Martin G.R. BMP signaling plays a role in visceral endoderm differentiation and cavitation in the early mouse embryo // Development. 1999. V. 126. № 3. P. 535–546.

  24. Damjanov I. Teratocarcinoma: neoplastic lessons about normal embryogenesis // Int. J. Dev. Biol. 1993. V. 37. № 1. P. 39–46.

  25. Damjanov I., Andrews P.W. Pluripotent human stem cells: Standing on the shoulders of giants // Int. J. Dev. Biol. 2016. V. 60. № 10-11–12. P. 321–325.

  26. Dan J. et al. Zscan4 Inhibits Maintenance DNA Methylation to Facilitate Telomere Elongation in Mouse Embryonic Stem Cells // Cell Rep. 2017. V. 20. № 8. P. 1936–1949.

  27. Deglincerti A. et al. Self-organization of the in vitro attached human embryo // Nat. 2016 5337602. 2016. V. 533. № 7602. P. 251–254.

  28. Dokmegang J. Modeling Epiblast Shape in Implanting Mammalian Embryos // Methods Mol. Biol. 2022. V. 2490. P. 281–296.

  29. Ducibella T., Anderson E. Cell shape and membrane changes in the eight-cell mouse embryo: Prerequisites for morphogenesis of the blastocyst // Dev. Biol. 1975. V. 47. № 1. P. 45–58.

  30. Evans M.J., Kaufman M.H. Establishment in culture of pluripotential cells from mouse embryos // Nat. 1981 2925819. 1981. V. 292. № 5819. P. 154–156.

  31. Falco G. et al. Zscan4: A novel gene expressed exclusively in late 2-cell embryos and embryonic stem cells // Dev. Biol. 2007. V. 307. № 2. P. 539–550.

  32. Finch B.W., Ephrussi B. Retention of multiple developmental potentialities by cells of a mouse testicular teratocarcinoma during prolonged culture in vitro and their extinction upon hybridization with cells of permanent lines // Proc. Natl. Acad. Sci. 1967. V. 57. № 3. P. 615–621.

  33. Gao R. et al. Inhibition of Aberrant DNA Re-methylation Improves Post-implantation Development of Somatic Cell Nuclear Transfer Embryos // Cell Stem Cell. 2018. V. 23. № 3. P. 426–435.e5.

  34. Gardner R.L., Rossant J. Investigation of the fate of 4–5 day post-coitum mouse inner cell mass cells by blastocyst injection // Development. 1979. V. 52. № 1. P. 141–152.

  35. Gharibi B. et al. A FGF2-mediated incoherent feedforward loop induces Erk inhibition and promotes naïve pluripotency // bioRxiv. 2020. P. 2020.11.11.378869.

  36. Gough N.M. et al. LIF: a molecule with divergent actions on myeloid leukaemic cells and embryonic stem cells // Reprod. Fertil. Dev. 1989. V. 1. № 4. P. 281–288.

  37. Graham S.J.L. et al. BMP signalling regulates the pre-implantation development of extra-embryonic cell lineages in the mouse embryo // Nat. Commun. 2014 51. 2014. V. 5. № 1. P. 1–11.

  38. Gurdon J.B. Adult frogs derived from the nuclei of single somatic cells // Dev. Biol. 1962a. V. 4. № 2. P. 256–273.

  39. Gurdon J.B. The Developmental Capacity of Nuclei taken from Intestinal Epithelium Cells of Feeding Tadpoles // Development. 1962b. V. 10. № 4. P. 622–640.

  40. Gurdon J.B. From Nuclear Transfer to Nuclear Reprogramming: The Reversal of Cell Differentiation // 2006. V. 22. P. 1–22.https://doi.org/10.1146/annurev.cellbio.22.090805.140144

  41. Haegel H. et al. Lack of beta-catenin affects mouse development at gastrulation // Development. 1995. V. 121. № 11. P. 3529–3537.

  42. Hanna J. et al. Human embryonic stem cells with biological and epigenetic characteristics similar to those of mouse ESCs // Proc. Natl. Acad. Sci. 2010. V. 107. № 20. P. 9222–9227.

  43. Harwood B.N. et al. Members of the WNT signaling pathways are widely expressed in mouse ovaries, oocytes, and cleavage stage embryos // Dev. Dyn. 2008. V. 237. № 4. P. 1099–1111.

  44. Hayashi K. et al. Dynamic Equilibrium and Heterogeneity of Mouse Pluripotent Stem Cells with Distinct Functional and Epigenetic States // Cell Stem Cell. 2008. V. 3. № 4. P. 391–401.

  45. Heidari Khoei H. et al. Generating human blastoids modeling blastocyst-stage embryos and implantation // Nat. Protoc. 2023.

  46. Hertig A.T., Rock J., Adams E.C. A description of 34 human ova within the first 17 days of development // Am. J. Anat. 1956. V. 98. № 3. P. 435–493.

  47. Hirschi K.K., Li S., Roy K. Induced Pluripotent Stem Cells for Regenerative Medicine // Annu. Rev. Biomed. Eng. 2014. V. 16. № 1. P. 277–294.

  48. Ho L. et al. An embryonic stem cell chromatin remodeling complex, esBAF, is an essential component of the core pluripotency transcriptional network // Proc. Natl. Acad. Sci. USA. 2009. V. 106. № 13. P. 5187–5191.

  49. Hoogland S.H.A., Marks H. Developments in pluripotency: a new formative state // Cell Res. 2021. V. 31. № 5. P. 493–494.

  50. Huang Y. et al. In Vivo Differentiation Potential of Epiblast Stem Cells Revealed by Chimeric Embryo Formation // Cell Rep. 2012. V. 2. № 6. P. 1571–1578.

  51. Huelsken J. et al. Requirement for β-Catenin in Anterior-Posterior Axis Formation in Mice // J. Cell Biol. 2000. V. 148. № 3. P. 567–578.

  52. Ishitani T. et al. The TAK1–NLK–MAPK-related pathway antagonizes signalling between β-catenin and transcription factor TCF // Nat. 1999 3996738. 1999. V. 399. № 6738. P. 798–802.

  53. Ishitani T., Ninomiya-Tsuji J., Matsumoto K. Regulation of Lymphoid Enhancer Factor 1/T-Cell Factor by Mitogen-Activated Protein Kinase-Related Nemo-Like Kinase-Dependent Phosphorylation in Wnt/β-Catenin Signaling // Mol. Cell. Biol. 2003. V. 23. № 4. P. 1379–1389.

  54. Johnson M.H., Ziomek C.A. The foundation of two distinct cell lineages within the mouse morula // Cell. 1981. V. 24. № 1. P. 71–80.

  55. Kang M., Garg V., Hadjantonakis A.K. Lineage Establishment and Progression within the Inner Cell Mass of the Mouse Blastocyst Requires FGFR1 and FGFR2 // Dev. Cell. 2017. V. 41. № 5. P. 496–510.e5.

  56. Kemler R. From cadherins to catenins: cytoplasmic protein interactions and regulation of cell adhesion // Trends Genet. 1993. V. 9. № 9. P. 317–321.

  57. Khoo T.S. et al. Retention of Somatic Memory Associated with Cell Identity, Age and Metabolism in Induced Pluripotent Stem (iPS) Cells Reprogramming // Stem Cell Rev. Reports. 2020. V. 16. № 2. P. 251–261.

  58. Kinoshita M. et al. Capture of Mouse and Human Stem Cells with Features of Formative Pluripotency // Cell Stem Cell. 2021. V. 28. № 3. P. 453–471.e8.

  59. Kinoshita M., Smith A. Pluripotency Deconstructed // Dev. Growth Differ. 2018. V. 60. № 1. P. 44–52.

  60. Kojima Y. et al. The Transcriptional and Functional Properties of Mouse Epiblast Stem Cells Resemble the Anterior Primitive Streak // Cell Stem Cell. 2014. V. 14. № 1. P. 107–120.

  61. Korotkevich E. et al. The Apical Domain Is Required and Sufficient for the First Lineage Segregation in the Mouse Embryo // Dev. Cell. 2017. V. 40. № 3. P. 235–247.e7.

  62. Kuan I. et al. EpEX/EpCAM and Oct4 or Klf4 alone are sufficient to generate induced pluripotent stem cells through STAT3 and HIF2α OPEN // 2017.

  63. Kunath T. et al. FGF stimulation of the Erk1/2 signalling cascade triggers transition of pluripotent embryonic stem cells from self-renewal to lineage commitment // Development. 2007. V. 134. № 16. P. 2895–2902.

  64. Kurimoto K. et al. Complex genome-wide transcription dynamics orchestrated by Blimp1 for the specification of the germ cell lineage in mice // Genes Dev. 2008. V. 22. № 12. P. 1617–1635.

  65. Le R. et al. Dcaf11 activates Zscan4-mediated alternative telomere lengthening in early embryos and embryonic stem cells // Cell Stem Cell. 2021. V. 28. № 4. P. 732–747.e9.

  66. Li M. et al. A cut above the rest: Targeted genome editing technologies in human pluripotent stem cells // J. Biol. Chem. 2014. V. 289. № 8. P. 4594–4599.

  67. Li M., Belmonte J.C.I. Ground rules of the pluripotency gene regulatory network // Nat. Rev. Genet. 2017 183. 2017. V. 18. № 3. P. 180–191.

  68. Lim H.Y.G. et al. Keratins are asymmetrically inherited fate determinants in the mammalian embryo // Nat. 2020 5857825. 2020. V. 585. № 7825. P. 404–409.

  69. Lim H.Y.G., Plachta N. Cytoskeletal control of early mammalian development // Nat. Rev. Mol. Cell Biol. 2021 228. 2021. V. 22. № 8. P. 548–562.

  70. Liu G. et al. Advances in Pluripotent Stem Cells: History, Mechanisms, Technologies, and Applications // Stem Cell Rev. Reports. 2020. V. 16. № 1.

  71. Liu Z. et al. Cloning of Macaque Monkeys by Somatic Cell Nuclear Transfer // Cell. 2018. V. 172. № 4. P. 881–887.e7.

  72. Lloyd S., Fleming T.P., Collins J.E. Expression of Wnt genes during mouse preimplantation development // Gene Expr. Patterns. 2003. V. 3. № 3. P. 309–312.

  73. Lyashenko N. et al. Differential requirement for the dual functions of β-catenin in embryonic stem cell self-renewal and germ layer formation // Nat. Cell Biol. 2011 137. 2011. V. 13. № 7. P. 753–761.

  74. Martello G. et al. Esrrb Is a Pivotal Target of the Gsk3/Tcf3 Axis Regulating Embryonic Stem Cell Self-Renewal // Cell Stem Cell. 2012. V. 11. № 4. P. 491–504.

  75. Martin G.R. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. // Proc. Natl. Acad. Sci. 1981. V. 78. № 12. P. 7634–7638.

  76. Masaki H. et al. Inhibition of Apoptosis Overcomes Stage-Related Compatibility Barriers to Chimera Formation in Mouse Embryos // Cell Stem Cell. 2016. V. 19. № 5. P. 587–592.

  77. Meharwade T. et al. Cross-activation of the FGF, TGF-β and WNT pathways constrains BMP4-mediated induction of the Totipotent state in mouse embryonic stem cells // bioRxiv. 2022. P. 2022.04.15.488509.

  78. Mishina Y. et al. Bmpr encodes a type I bone morphogenetic protein receptor that is essential for gastrulation during mouse embryogenesis. // Genes Dev. 1995. V. 9. № 24. P. 3027–3037.

  79. Mohamed O.A., Clarke H.J., Dufort D. β-catenin signaling marks the prospective site of primitive streak formation in the mouse embryo // Dev. Dyn. 2004. V. 231. № 2. P. 416–424.

  80. Molè M.A. et al. Integrin β1 coordinates survival and morphogenesis of the embryonic lineage upon implantation and pluripotency transition // Cell Rep. 2021. V. 34. № 10. P. 108834.

  81. Molotkov A. et al. Distinct Requirements for FGFR1 and FGFR2 in Primitive Endoderm Development and Exit from Pluripotency // Dev. Cell. 2017. V. 41. № 5. P. 511–526.e4.

  82. Morata Tarifa C. et al. Chimeras for the twenty-first century // Crit. Rev. Biotechnol. 2020. V. 40. № 3. P. 283–291.

  83. Mossahebi-Mohammadi M. et al. FGF Signaling Pathway: A Key Regulator of Stem Cell Pluripotency // Front. Cell Dev. Biol. 2020. V. 8. P. 79.

  84. Muhr J., Ackerman K.M. Embryology, Gastrulation. StatPearls Publishing. 2022.

  85. Murray P., Edgar D. Regulation of Programmed Cell Death by Basement Membranes in Embryonic Development // J. Cell Biol. 2000. V. 150. № 5. P. 1215–1221.

  86. Neagu A. et al. In vitro capture and characterization of embryonic rosette-stage pluripotency between naive and primed states // Nat. Cell Biol. 2020 225. 2020. V. 22. № 5. P. 534–545.

  87. Neavin D. et al. Single cell eQTL analysis identifies cell type-specific genetic control of gene expression in fibroblasts and reprogrammed induced pluripotent stem cells // Genome Biol. 2021. V. 22. № 1. P. 1–19.

  88. Nichols J. et al. Formation of pluripotent stem cells in the mammalian embryo dependes on the POU transcription factor Oct4 // Cell. 1998. V. 95. № 3. P. 379–391.

  89. Nichols J., Gardner R.L. Heterogeneous differentiation of external cells in individual isolated early mouse inner cell masses in culture // Development. 1984. V. 80. № 1. P. 225–240.

  90. Niwa H. et al. A parallel circuit of LIF signalling pathways maintains pluripotency of mouse ES cells // Nat. 2009 4607251. 2009. V. 460. № 7251. P. 118–122.

  91. Ohtsuka S., Nakai-Futatsugi Y., Niwa H. LIF signal in mouse embryonic stem cells // JAK-STAT. 2015. V. 4. № 2. P. 1–9.

  92. Okae H. et al. Derivation of Human Trophoblast Stem Cells // Cell Stem Cell. 2018. V. 22. № 1. P. 50- 63.e6.

  93. Okano M. et al. DNA Methyltransferases Dnmt3a and Dnmt3b Are Essential for De Novo Methylation and Mammalian Development // Cell. 1999. V. 99. № 3. P. 247–257.

  94. Okita K., Yamanaka S. Induced pluripotent stem cells: opportunities and challenges. // Philos. Trans. R. Soc. Lond. B. Biol. Sci. 2011. V. 366. № 1575. P. 2198–207.

  95. Oshima R.G. et al. Intermediate filament protein synthesis in preimplantation murine embryos // Dev. Biol. 1983. V. 99. № 2. P. 447–455.

  96. Pachnis V., Mankoo B., Costantini F. Expression of the c-ret proto-oncogene during mouse embryogenesis // Development. 1993. V. 119. № 4.

  97. Papaioannou V.E., Gardner R.L., McBurney M.W. Participation of cultured teratocarcinoma cells in mouse embryogenesis // J. Embryol. Exp. Morphol. 1978. V. 44.

  98. Pauken C.M., Capco D.G. Regulation of cell adhesion during embryonic compaction of mammalian embryos: Roles for PKC and ?-catenin // Mol. Reprod. Dev. 1999. V. 54. № 2. P. 135–144.

  99. Pierce G.B. Teratocarcinoma // Cancer Markers. Totowa, NJ: Humana Press, 1980. P. 1–36.

  100. Pierce G.B. The cancer cell and its control by the embryo. Rous-Whipple Award lecture. // Am. J. Pathol. 1983. V. 113. № 1. P. 117.

  101. Qiu D. et al. Klf2 and Tfcp2l1, Two Wnt/β-Catenin Targets, Act Synergistically to Induce and Maintain Naive Pluripotency // Stem Cell Reports. 2015. V. 5. № 3. P. 314–322.

  102. Raz R. et al. Essential role of STAT3 for embryonic stem cell pluripotency // Proc. Natl. Acad. Sci. USA. 1999. V. 96. № 6. P. 2846–2851.

  103. Reiner J.M. Organisers and Genes. By C.H. Waddington. 1940. Cambridge: at The University Press; N.Y.: The Macmillan Company // Philos. Sci. 1941. V. 8. № 3.

  104. Reyes de Mochel N.S. et al. BMP signaling is required for cell cleavage in preimplantation-mouse embryos // Dev. Biol. 2015. V. 397. № 1. P. 45–55.

  105. Rivera-Pérez J.A., Magnuson T. Primitive streak formation in mice is preceded by localized activation of Brachyury and Wnt3 // Dev. Biol. 2005. V. 288. № 2. P. 363–371.

  106. Rodda D.J. et al. Transcriptional regulation of Nanog by OCT4 and SOX2 // J. Biol. Chem. 2005. V. 280. № 26.

  107. Saitou M., Yamaji M. Primordial Germ Cells in Mice // Cold Spring Harb. Perspect. Biol. 2012. V. 4. № 11. P. a008375–a008375.

  108. Sato N. et al. Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor // Nat. Med. 2004 101. 2003. V. 10. № 1. P. 55–63.

  109. Schindler M. et al. Agarose microgel culture delineates lumenogenesis in naive and primed human pluripotent stem cells // Stem Cell Reports. 2021. V. 16. № 5. P. 1347–1362.

  110. Schoeftner S., Blasco M.A. A “higher order” of telomere regulation: telomere heterochromatin and telomeric RNAs // EMBO J. 2009. V. 28. № 16. P. 2323–2336.

  111. Seoane J., Le H. Van, Massagué J. Myc suppression of the p21Cip1 Cdk inhibitor influences the outcome of the p53 response to DNA damage // Nature. 2002. V. 419. № 6908. P. 729–734.

  112. Shahbazi M.N. et al. Self-organization of the human embryo in the absence of maternal tissues // Nat. Cell Biol. 2016 186. 2016. V. 18. № 6. P. 700–708.

  113. Shahbazi M.N. et al. Pluripotent state transitions coordinate morphogenesis in mouse and human embryos // Nat. 2017 5527684. 2017. V. 552. № 7684. P. 239–243.

  114. Shakiba N. et al. CD24 tracks divergent pluripotent states in mouse and human cells // Nat. Commun. 2015 61. 2015. V. 6. № 1. P. 1–11.

  115. Shao Y. et al. A pluripotent stem cell-based model for post-implantation human amniotic sac development // Nat. Commun. 2017 81. 2017. V. 8. № 1. P. 1–15.

  116. Shelby H., Shelby T., Wernig M. Somatic Lineage Reprogramming // Cold Spring Harb. Perspect. Biol. 2022. V. 14. № 10. P. a040808.

  117. Smith A. Formative pluripotency: the executive phase in a developmental continuum // Development. 2017. V. 144. № 3. P. 365–373.

  118. Smith A.G. et al. Inhibition of pluripotential embryonic stem cell differentiation by purified polypeptides // Nature. 1988. V. 336. № 6200. P. 688–690.

  119. Sokol S.Y. Maintaining embryonic stem cell pluripotency with Wnt signaling // Development. 2011. V. 138. № 20. P. 4341–4350.

  120. Stadtfeld M. et al. A reprogrammable mouse strain from gene-targeted embryonic stem cells // Nat. Methods. 2010. V. 7. № 1. P. 53-55.

  121. Stadtfeld M., Hochedlinger K. Induced pluripotency: history, mechanisms, and applications // Genes Dev. 2010. V. 24. № 20. P. 2239–2263.

  122. Stavridis M.P. et al. A discrete period of FGF-induced Erk1/2 signalling is required for vertebrate neural specification // Development. 2007. V. 134. № 16. P. 2889–2894.

  123. Stevens L.C. The development of transplantable teratocarcinomas from intratesticular grafts of pre- and postimplantation mouse embryos // Dev. Biol. 1970a. V. 21. № 3. P. 364–382.

  124. Stevens L.C. Experimental Production of Testicular Teratomas in Mice of Strains 129, A/He, and Their F1 Hybrids // JNCI J. Natl. Cancer Inst. 1970b. V. 44. № 4. P. 923–929.

  125. Stevens L.C. Experimental Production of Testicular Teratomas in Mice // Proc. Natl. Acad. Sci. United States. 1964. V. 52. P. 654–661.

  126. Stevens L.C., Little C.C. Spontaneous Testicular Teratomas in an Inbred Strain of Mice // Proc. Natl. Acad. Sci. 1954. V. 40. № 11. P. 1080–1087.

  127. Storm M.P. et al. Regulation of nanog expression by phosphoinositide 3-kinase-dependent signaling in murine embryonic stem cells // J. Biol. Chem. 2007. V. 282. № 9. P. 6265–6273.

  128. Storm M.P. et al. Characterization of the Phosphoinositide 3-Kinase-Dependent Transcriptome in Murine Embryonic Stem Cells: Identification of Novel Regulators of Pluripotency // Stem Cells. 2009. V. 27. № 4. P. 764–775.

  129. Sugimoto M. et al. A Simple and Robust Method for Establishing Homogeneous Mouse Epiblast Stem Cell Lines by Wnt Inhibition // Stem Cell Reports. 2015. V. 4. № 4. P. 744–757.

  130. Tabar V., Studer L. Pluripotent stem cells in regenerative medicine: challenges and recent progress // Nat. Rev. Genet. 2014. V. 15. № 2. P. 82–92.

  131. Takahashi K. et al. Induction of Pluripotent Stem Cells from Adult Human Fibroblasts by Defined Factors // Cell. 2007. V. 131. № 5. P. 861–872.

  132. Takahashi K., Yamanaka S. Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors // Cell. 2006. V. 126. № 4. P. 663–676.

  133. Tam P.P., Loebel D.A., Tanaka S.S. Building the mouse gastrula: signals, asymmetry and lineages // Curr. Opin. Genet. Dev. 2006. V. 16. № 4. P. 419–425.

  134. Tanaka S.S. et al. IFITM/mil/fragilis family proteins IFITM1 and IFITM3 play distinct roles in mouse primordial germ cell homing and repulsion // Dev. Cell. 2005. V. 9. № 6. P. 745–756.

  135. Tang F. et al. Tracing the Derivation of Embryonic Stem Cells from the Inner Cell Mass by Single-Cell RNA-Seq Analysis // Cell Stem Cell. 2010. V. 6. № 5. P. 468–478.

  136. Taniguchi K. et al. Lumen Formation Is an Intrinsic Property of Isolated Human Pluripotent Stem Cells // Stem Cell Reports. 2015. V. 5. № 6. P. 954–962.

  137. Tesar P.J. et al. New cell lines from mouse epiblast share defining features with human embryonic stem cells // Nat. 2007 4487150. 2007. V. 448. № 7150. P. 196–199.

  138. Theunissen T.W. et al. Systematic Identification of Culture Conditions for Induction and Maintenance of Naive Human Pluripotency // Cell Stem Cell. 2014. V. 15. № 4. P. 471–487.

  139. Thomson J.A. et al. Embryonic Stem Cell Lines Derived from Human Blastocysts // Science (80-.) . 1998. V. 282. № 5391. P. 1145–1147.

  140. Toyooka Y. et al. Identification and characterization of subpopulations in undifferentiated ES cell culture // Development. 2008. V. 135. № 5. P. 909–918.

  141. Toyooka Y. Trophoblast lineage specification in the mammalian preimplantation embryo // Reprod. Med. Biol. 2020. V. 19. № 3. P. 209–221.

  142. Vallier L., Alexander M., Pedersen R.A. Activin/Nodal and FGF pathways cooperate to maintain pluripotency of human embryonic stem cells // J. Cell Sci. 2005. V. 118. № 19. P. 4495–4509.

  143. Veillard A.-C. et al. Stable Methylation at Promoters Distinguishes Epiblast Stem Cells from Embryonic Stem Cells and the In Vivo Epiblasts // Stem Cells Dev. 2014. V. 23. № 17. P. 2014–2029.

  144. Waddington C.H. The strategy of the genes. A discussion of some aspects of theoretical biology. With an appendix by H. Kacser. // Strateg. genes A Discuss. some some Asp. Theor. Biol. With an Append. by H. Kacser. 1957. V. 8. № 3.

  145. Wallingford M.C., Angelo J.R., Mager J. Morphogenetic analysis of peri-implantation development // Dev. Dyn. 2013. V. 242. № 9. P. 1110–1120.

  146. Wang X. et al. Epigenetic Reprogramming During Somatic Cell Nuclear Transfer: Recent Progress and Future Directions // Front. Genet. 2020. V. 11. № March. P. 1–13.

  147. Wang X. et al. Formative pluripotent stem cells show features of epiblast cells poised for gastrulation // Cell Res. 2021. V. 31. № 5. P. 526–541.

  148. Weberling A., Zernicka-Goetz M. Trophectoderm mechanics direct epiblast shape upon embryo implantation // Cell Rep. 2021. V. 34. № 3. P. 108655.

  149. Wernig M. et al. c-Myc Is Dispensable for Direct Reprogramming of Mouse Fibroblasts // Cell Stem Cell. 2008. V. 2. № 1. P. 10–12.

  150. Wilmut I. et al. Viable offspring derived from fetal and adult mammalian cells // Nat. 1997 3856619. 1997. V. 385. № 6619. P. 810–813.

  151. Wobus A.M. et al. Characterization of a pluripotent stem cell line derived from a mouse embryo // Exp. Cell Res. 1984. V. 152. № 1. P. 212–219.

  152. Yamamoto M. et al. Nodal antagonists regulate formation of the anteroposterior axis of the mouse embryo // Nat. 2004 4286981. 2004. V. 428. № 6981. P. 387–392.

  153. Yamanaka Y., Lanner F., Rossant J. FGF signal-dependent segregation of primitive endoderm and epiblast in the mouse blastocyst // Development. 2010. V. 137. № 5. P. 715–724.

  154. Yanagida A. et al. Naive stem cell blastocyst model captures human embryo lineage segregation // Cell Stem Cell. 2021. V. 28. № 6. P. 1016–1022.e4.

  155. Ye S. et al. Embryonic stem cell self-renewal pathways converge on the transcription factor Tfcp2l1 // EMBO J. 2013. V. 32. № 19. P. 2548–2560.

  156. Yeh C.Y. et al. Capturing Pluripotency and Beyond // Cells. 2021. V. 10. P. 3558. 2021. V. 10. № 12. P. 3558.

  157. Yu L. et al. Blastocyst-like structures generated from human pluripotent stem cells // Nat. 2021 5917851. 2021. V. 591. № 7851. P. 620–626.

  158. Zalzman M. et al. Zscan4 regulates telomere elongation and genomic stability in ES cells // Nat. 2010 4647290. 2010. V. 464. № 7290. P. 858–863.

  159. Zhou H. et al. Cell Stem Cell Brief Report Generation of Induced Pluripotent Stem Cells Using Recombinant Proteins // Stem Cell. V. 4. P. 381–384.

Дополнительные материалы отсутствуют.