Поверхность. Рентгеновские, синхротронные и нейтронные исследования, 2023, № 6, стр. 3-14

Спин-орбитальные взаимодействия в комплексах осмия

И. П. Асанов a*, А. Д. Федоренко a, Д. Б. Васильченко a, М. А. Гребенкина a, А. Н. Лавров a, И. В. Корольков a, В. В. Кривенцов b, С. В. Трубина a, Т. И. Асанова a

a Институт неорганической химии им. А.В. Николаева СО РАН
630090 Новосибирск, Россия

b Федеральный исследовательский центр “Институт катализа им. Г.К. Борескова СО РАН”
630090 Новосибирск, Россия

* E-mail: asan@niic.nsc.ru

Поступила в редакцию 14.09.2022
После доработки 10.11.2022
Принята к публикации 10.11.2022

Аннотация

Соединения осмия с электронной конфигурацией 5d 4 в октаэдрическом окружении соседними атомами привлекают большое внимание в связи с влиянием спин-орбитального взаимодействия на возникновение магнитных свойств в материалах. Спектроскопия XANES дает возможность получать информацию о величине спин-орбитального взаимодействия из измерения отношения интенсивностей линий вблизи краев поглощения. Исследовано влияние спин-орбитального взаимодействия на спектры XANES OsL2,3 в соединениях осмия, находящегося в октаэдрическом окружении атомами галогенов. Изучены системы двух типов – изолированные кластеры осмия в комплексных соединениях и соединения OsCl4, содержащие полимерные цепочки Os, соединенного мостиковыми атомами Cl. Измерения магнитной восприимчивости показывают немагнитное основное состояние и ванфлековский парамагнетизм в случае изолированных кластеров и ненулевой магнитный момент во всем интервале температуре в OsCl4. В результате измерений XANES-спектров получены высокие значения отношения интенсивностей линий вблизи краев поглощения OsL3/L2, что связано с сильным влиянием спин-орбитального взаимодействия на электронную структуру. Теоретический анализ XANES-спектров соединений Os с различным составом лигандов и внешнесферных катионов показывает, что электронная структура и магнитные свойства зависят от спин-орбитального взаимодействия, величины расщепления уровней в кристаллическом поле, энергии спаривания электронов и некубических искажений окружения Os.

Ключевые слова: спин-орбитальное взаимодействие, комплексные соединения осмия, спектроскопия рентгеновского поглощения, магнитные свойства, хлорид осмия, октаэдрические комплексы, электронная структура, рентгеновская фотоэлектронная спектроскопия, квантовая химия, электронные корреляции.

Список литературы

  1. Martins C., Aichhorn M., Biermann S. // J. Phys.: Condens. Matter. 2017. V. 29. P. 263001. https://doi.org/10.1088/1361-648X/aa648f

  2. Gotfryd D., Paerschke E.M., Chaloupka J., Oles A.M., Wohlfeld K. // Phys. Rev. Res. 2020. V. 2. P. 013353. https://doi.org/10.1103/PhysRevResearch.2.013353

  3. Khomskii D.I., Streltsov S.V. // Chem. Rev. 2021. V. 121. P. 2992. https://doi.org/10.1021/acs.chemrev.0c00579

  4. Kim B.J., Jin H., Moon S.J., Kim J.-Y., Park B.-G., Leem C.S., Yu J., Noh T.W., Kim C., Oh S.-J., Park J.-H., Durairaj V., Cao G., Rotenberg E. // Phys. Rev. Lett. 2008. V. 101. P. 076402. https://doi.org/10.1103/PhysRevLett.101.076402

  5. Jackeli G., Khaliullin G. // Phys. Rev. Lett. 2009. V. 102. P. 017205. https://doi.org/10.1103/PhysRevLett.102.017205

  6. Khaliullin G. // Phys. Rev. Lett. 2013. V.111. P. 197201. https://doi.org/10.1103/PhysRevLett. 111.197201

  7. Синтез комплексных соединений металлов платиновой группы. Справочник / Ред. Черняев И.И. М.: Наука, 1964. 340 с.

  8. Громилов С.А., Коренев С.В., Храненко С.П., Алексеев В.И. // ЖСХ. 1997. Т. 38. № 1. С. 120. https://doi.org/10.1007/BF02768813

  9. Губанов А.И., Коренев С.В., Громилов С.А., Байдина И.А., Венедиктов А.Б. // ЖСХ. 2000. Т. 41. № 2. С. 417. https://doi.org/10.1007/BF02741603

  10. Корольков И.В., Губанов А.И., Юсенко К.В., Байдина И.А., Громилов С.А. // ЖСХ. 2007. Т. 48. № 3. С. 530. https://doi.org/10.1007/s10947-007-0073-1

  11. Колбин Н.И., Семенов И.Н., Шутов Ю.М. // ЖНХ. 1963. Т. 8. № 11. С. 2422.

  12. Powder Diffraction File (2022) International Centre for Diffraction Data, Pennsylvania, USA.

  13. Clancy J.P., Chen N., Kim C.Y., Chen W.F., Plumb K.W., Jeon B.C., Noh T.W., Kim Y.-J. // Phys. Rev. B. 2012. V. 86. P. 195131. https://doi.org/10.1103/PhysRevB.86.195131

  14. Bunau O., Joly Y. // J. Phys.: Condens. Matter. 2009. V. 21. P. 345501. https://doi.org/10.1088/0953-8984/21/34/345501

  15. Neese F. // WIREs Comput. Mol. Sci. 2018. V. 8. P. e1327. https://doi.org/10.1002/wcms.1327

  16. Weigend F., Ahlrichs R. // Phys. Chem. Chem. Phys. 2005. V. 7. P. 3297. https://doi.org/10.1039/B508541A

  17. Stoychev G.L., Auer A.A., Neese F. // J. Chem. Theory Comput. 2017. V. 13. P. 554. https://doi.org/10.1021/acs.jctc.6b01041

  18. Noro T., Sekiya M., Koga T. // Theo. Chem. Acc. 2013. V. 132. P. 1363. https://doi.org/10.1007/s00214-013-1363-7

  19. Hess B.A. // Phys. Rev. A. 1986. V. 33. P. 3742. https://doi.org/10.1103/PhysRevA.33.3742

  20. Angeli C., Cimiraglia R., Malrieu J.-P. // Chem. Phys. Lett. 2001. V. 350. P. 297. https://doi.org/10.1016/S0009-2614(01)01303-3

  21. Ganyushin D., Neese F. // J. Chem. Phys. 2013. V. 138. P. 104113. https://doi.org/10.1063/1.4793736

  22. Kohlmann H. // Z. Anorg. Allg. Chem. 2022. V. 648. P. e202100375. https://doi.org/10.1002/zaac.202100375

  23. Ivlev S.I., Malin A.V., Karttunen A.J., Ostvald R.V., Kraus F. // J. Fluorine Chem. 2019. V. 218. P. 11. https://doi.org/10.1016/j.jfluchem.2018.11.010

  24. Asanova T.I., Asanov I.P., Yusenko K.V., La Fontaine C., Gerasimov E.Yu., Zadesenets A.V., Korenev S.V. // Mat. Res. Bull. 2021. V. 144. P. 111511. https://doi.org/10.1016/j.materresbull.2021.111511

  25. Громилов С.А., Шубин Ю.В., Губанов А.И., Максимовский Е.А., Коренев С.В. // ЖСХ. 2009. Т. 50. № 6. С. 1174. https://doi.org/10.1007/s10947-009-0164-2

  26. Габуда С.П., Гагаринский Ю.В., Полищук С.А. ЯМР в неорганических фторидах, структура и химическая связь. М.: Атомиздат, 1978. 208 с.

  27. Machmer P. // Z. Naturforsch. B. 1969. V. 24. P. 200. https://doi.org/10.1515/znb-1969-0209

  28. Cotton F.A., Rice C.E. // Inorg. Chem. 1977. V. 16. P. 1865. https://doi.org/10.1021/ic50174a008

  29. Асанова Т.И., Асанов И.П., Ким М.-Г., Коренев С.В. // ЖСХ. 2017. Т. 58. № 5. С. 936. https://doi.org/10.1134/S0022476617050079

  30. Asanova T., Asanov I., Zadesenets A., Filatov E., Plyusnin P., Gerasimov E., Korenev S. // J. Therm. Anal. Calorim. 2016. V. 123. P. 1183. https://doi.org/10.1007/s10973-015-5002-5

  31. Nefedov V.I. // J. Electron Spectrosc. Relat. Phen. 1977. V. 12. P. 459. https://doi.org/10.1016/0368-2048(77)85097-4

  32. Falconer W.E., Disalvo F.J., Griffiths J.E., Stevie F.A., Sunder W.A., Vasile M.J. // J. Fluor. Chem. 1975. V. 6. № 6. P. 499. https://doi.org/10.1002/chin.197604027

  33. Blundell S. Magnetism in Condensed Matter. Oxford: Oxford University Press, 2001. 238 p.

  34. Paramekanti A., Singh D.J., Yuan B., Casa D., Said A., Kim Y.-J., Christianson A.D. // Phys. Rev. B. 2018. V. 97. P. 235119.https://doi.org/10.1103/PhysRevB.97.235119

  35. Stamokostas G.L., Fiete G.A. // Phys. Rev. B. 2018. V. 97. P. 085150. https://doi.org/10.1103/PhysRevB.97.085150

Дополнительные материалы отсутствуют.

Инструменты

Поверхность. Рентгеновские, синхротронные и нейтронные исследования