Поверхность. Рентгеновские, синхротронные и нейтронные исследования, 2023, № 6, стр. 27-31

Полиметилметакрилат с молекулярной массой 107 г/моль для рентгеновской литографии

В. П. Назьмов ab*, А. В. Варанд a, М. А. Михайленко b**, Б. Г. Гольденберг ac, И. Ю. Просанов b, К. Б. Герасимов b

a Институт ядерной физики им Г.И. Будкера СО РАН
630090 Новосибирск, Россия

b Институт химии твердого тела и механохимии СО РАН
630090 Новосибирск, Россия

c Центр коллективного пользования “СКИФ”, Институт катализа им. Г.К. Борескова СО РАН
630559 Новосибирск, Россия

* E-mail: V.P.Nazmov@inp.nsk.su
** E-mail: mikhailenkoma79@gmail.com

Поступила в редакцию 16.10.2022
После доработки 22.12.2022
Принята к публикации 22.12.2022

Аннотация

Представлены результаты исследования синдиотактического полиметилметакрилата с молекулярной массой 107 г/моль, синтезированного методом ионной полимеризации с радиационным инициированием. Изменение химической структуры полимерного материала анализировали методом ИК-спектроскопии, дифференциального термического анализа, гель-проникающей хроматографии. При термическом разложении исходного полимера процесс потери массы можно разделить на три этапа: низкотемпературный, среднетемпературный и высокотемпературный. Исчезает ярко выраженный тепловой эффект плавления полимера даже после воздействия минимальных доз ионизирующего излучения. Обнаружено сравнительно быстрое снижение молекулярной массы под действием рентгеновского излучения в диапазоне доз до 100 Дж/см3 и разброс размеров молекул. Полидисперсность при малых дозах приблизительно в 3.5 раза выше, чем при дозах порядка 10 кДж/см3. Достигнута скорость проявления изображения, примерно в пять раз большая, чем в случае полимера с молекулярной массой 106 г/моль в стандартных условиях. Контраст составил величину 3.4. С помощью синхротронного излучения рентгеновского диапазона на источнике ВЭПП-3 осуществлено микроструктурирование методом рентгеновской литографии. Получены микроструктуры высотой до 5 мкм и диаметром около 2 мкм.

Ключевые слова: полиметилметакрилат, ИК-спектроскопия, гельпроникающая хроматография, дифференциально-термический анализ, контраст, рентгеновское излучение, чувствительность, микроструктуры, рентгеновская литография.

Список литературы

  1. Haller I., Hatzakis M., Srinivasan R. // IBM J. Res. Devel. 1968. V. 12. P. 251. https://doi.org/10.1147/rd.123.0251

  2. Spears D.L., Smith H.I. // Electron. Lett. 1972. V. 8. P. 102. https://doi.org/10.1049/el:19720074

  3. Vladimirsky Y., Vladimirsky O., Morris K.J., M. Klopf J., Calderon G.M., Saile V. // Microelectron. Eng. 1996. V. 30. № 1–4. P. 543. https://doi.org/10.1016/0167-9317(95)00305-3

  4. Greeneich J.S. // J. Electrochem. Soc. 1975. V. 122. P. 970.

  5. Charlesby A. Atomic Radiation and Polymers. N.Y.: Pergamon, 1960. 556 p.

  6. Hiraoka H. // IBM J. Res. Devel. 1977. V. 21. P. 121. https://doi.org/10.1147/rd.212.0121

  7. De Carlo F., Mancini D.C., Lai B., Song J.J. // Microsyst. Technol. 1998. V. 4. P. 86. https://doi.org/10.1007/s005420050102

  8. Nazmov V.P., Mezentseva L.A., Pindyurin V.F., Petrov V.V., Yakovleva E.N. // Nucl. Instrum. Methods Phys. Res. A. 2000. V. 448. P. 493. https://doi.org/10.1016/S0168-9002(00)00238-2

  9. Pantenburg F.J., Achenbach S., Mohr J. // J. Vac. Sci. Technol. B. 1998. V. 16. № 6. P. 3547. https://doi.org/10.1116/1.590494

  10. Moreau W.M. Semiconductor Lithography: Principles, Practices, and Materials. N.Y.: Plenum Press, 1988. 986 p.

  11. Yan M., Choi S., Subramanian K.R.V., Adesida I. // J. Vac. Sci. Technol. B. 2008. V. 26. № 6. P. 2306. https://doi.org/1.0.1116/1.3002562

  12. Khoury M., Ferry D.K. // J. Vac. Sci. Technol. B. 1996. V. 14. № 1. P. 75. https://doi.org/10.1116/1.588437

  13. Nagai H. // J. Appl. Pol. Sci. 1963. V. 7. № 5. P. 1697 https://doi.org/10.1002/app.1963.070070512

  14. Willis H.A., Zichy V.J.I., Hendra P.J. // Polymer. 1969. V. 10. P.737. https://doi.org/10.1016/0032-3861(69)90101-3

  15. Patent No. 3039110 (DE). Verfahren fur Die Spannungsfreie Entwicklung von Bestrahlten Polymethylmethacrylatschichten / Siemens AG, Munich. Glasha- user W., Ghica G.-V. 16.10.1980.

  16. Goldenberg B.G., Lemzyakov A.G., Nazmov V.P., Pindyurin V.F. // Phys. Procedia. 2016. V. 84. P. 205. https://doi.org/10.1016/j.phpro.2016.11.036

  17. Piminov P.A., Baranov G.N., Bogomyagkov A.V., Berkaev D.E., Borin V.M., Dorokhov V.L., Karnaev S.E., Kiselev V.A., Levichev E.B., Meshkov O.I., Mishnev S.I., Nikitin S.A., Nikolaev I.B., Sinyatkin S.V., Vobly P.D., Zolotarev K.V., Zhuravlev A.N. // Phys. Procedia. 2016. V. 84. P. 19. https://doi.org/10.1016/j.phpro.2016.11.005

  18. Nazmov V., Goldenberg B., Vasiliev A., Asadchikov V. // J. Micromech. Microeng. 2021. V. 31. P. 055011. https://doi.org/10.1088/1361-6439/abf331

  19. El-Kholi A., Mohr J., Nazmov V. // Nucl. Instrum. Methods Phys. Res. A. 2000. V. 448. № 1–2. P. 497. https://doi.org/10.1016/S0168-9002(00)00239-4

  20. Kunka D., Mohr J., Nazmov V., Meiser J., Meyer P., Amberger M., Koch F., Schulz J., Walter M., Duttenhofer T., Voigt A., Ahrens G., Grützner G. // Microsyst. Technol. 2014. V. 20. № 10–11. P. 2023. https://doi.org/10.1007/s00542-013-2055-x

  21. McNamara S. // J. Micromech. Microeng. 2011. V. 21. P. 015002. https://doi.org/10.1088/0960-1317/21/1/015002

Дополнительные материалы отсутствуют.