Радиотехника и электроника, 2023, T. 68, № 10, стр. 973-979

Влияние условий формирования пленок оксида гафния на структурные и электрофизические свойства гетероструктур

М. С. Афанасьев a, Д. А. Белорусов a, Д. А. Киселев a, В. А. Лузанов a, Г. В. Чучева a*

a Фрязинский филиал Института радиотехники и электроники им. В.А. Котельникова РАН
141190 Фрязино, Московской обл., пл. Введенского, 1, Российская Федерация

* E-mail: gvc@ms.ire.rssi.ru

Поступила в редакцию 17.05.2023
После доработки 17.05.2023
Принята к публикации 25.05.2023

Аннотация

Пленки оксида гафния (HfO2) синтезированы на кремниевые подложки методом магнетронного распыления при различных технологических режимах. Представлены результаты исследований структурного состава пленок HfO2 и электрофизических свойств гетероструктур металл–диэлектрик–полупроводник (Ni–HfO2–Si) на их основе.

Список литературы

  1. Wang Y., Chen W.-J., Wang B., Zheng Yu. // Materials. 2014. V. 7. P. 6377. https://doi.org/10.3390/ma7096377

  2. Khosla R., Sharma S.K. // ACS Appl. Electronic Mater. 2021. V. 3. № 7. P. 2862. https://doi.org/10.1021/acsaelm.0c00851

  3. Chou Ch.-P., Lin Y.-X., Huang Y.-K. et al. // ACS Appl. Mater. & Interfaces. 2020. V. 12. № 1. P. 1014. https://doi.org/10.1021/acsami.9b16231

  4. Воротилов К.А., Мухортов В.М., Сигов А.С. Интегрированные сегнетоэлектрические устройства. М.: Энергоатомиздат, 2011.

  5. Yuan G., Wang Ch., Tang W. et al. // Acta Physica Sinica. 2023. Article ASAP. https://doi.org/10.7498/aps.72.20222221

  6. Setter N., Damjanovic D., Eng L. et al. // J. Appl. Phys. 2006. V. 100. P. 051606. https://doi.org/10.1063/1.2336999

  7. Scott J.F. // Science. 2007. V. 315. № 5814. P. 954. https://doi.org/10.1126/science.1129564

  8. Ihlefeld J.F., Jaszewski S.T., Fields S.S. // Appl. Phys. Lett. 2022. V. 121. № 24. P. 240502. https://doi.org/10.1063/5.0129546

  9. Fujimoto K., Sato Y., Fuchikami Y. et al. // J. Amer. Ceramic Soc. 2022. V. 105. № 4. P. 2823. https://doi.org/10.1111/jace.18242

  10. Hsain H.A., Lee Y., Materano M. et al. // J. Vacuum Science & Technol. A. 2022. V. 40. № 1. P. 010803. https://doi.org/10.1116/6.0001317

  11. Chouprik A., Negrov D., Tsymbal E.Y., Zenkevich A. // Nanoscale. 2021. V. 13. № 27. P. 11635. https://doi.org/10.1039/D1NR01260F

  12. Lee D.H., Lee Y., Yang K. et al. // Appl. Phys. Rev. 2021. V. 8. № 2. P. 021312. https://doi.org/10.1063/5.0047977

  13. Nukala P., Ahmadi M., Wei Y. et al. // Science. 2021. V. 372. № 6542. P. 630. https://doi.org/10.1126/science.abf3789

  14. Jiang P., Luo Q., Xu X. et al. // Advanced Electronic Mater. 2021. V. 7. № 1. P. 2000728. https://doi.org/10.1002/aelm.202000728

  15. Aldrigo M., Dragoman M., Iordanescu S. et al. // Nanomaterials. 2020. V. 10. № 10. P. 2057. https://doi.org/10.3390/nano10102057

  16. Lomenzo P.D., Jachalke S., Stoecker H. et al. // Nano Energy. 2020. V. 74. P. 104733. https://doi.org/10.1016/j.nanoen.2020.104733

  17. Quan Zh., Wang M., Zhang X. et al. // AIP Advances. 2020. V. 10. № 8. P. 085024. https://doi.org/10.1063/5.0013511

  18. Zhang Y., Yang Q., Tao L. et al. // Phys. Rev. Appl. 2020. V. 14. № 1. P. 014068. https://doi.org/10.1103/PhysRevApplied.14.014068

  19. Schenk T., Pešić M., Slesazeck S. et al. // Reports on Progress in Physics. 2020. V. 83. № 8. P. 086501. https://doi.org/10.1088/1361-6633/ab8f86

  20. Locatelli N., Diez L.H., Mikolajick T. Memristive Devices for Brain-Inspired Computing. Cambridge: Woodhead Publ., 2020. P. 97. https://doi.org/10.1016/B978-0-08-102782-0.00004-6

  21. Черникова А.Г., Красников Г.Я., Горнев Е.С. и др. // Наноиндустрия. 2018. № 8. С. 281. https://doi.org/10.22184/1993-8578.2018.82.281

  22. Gannepalli A., Yablon D.G., Tsou A.H., Proksch R. // Nanotechnology. 2013. V. 24. P. 159501. https://doi.org/10.1088/0957-4484/24/15/159501

  23. Bian J., Xue P., Zhu R. et al. // Appl. Mater. Today. 2020. V. 21. P. 100789. https://doi.org/10.1016/j.apmt.2020.100789

  24. Гольдман Е.И., Ждан А.Г., Чучева Г.В. // ПТЭ. 1997. № 6. С. 110.

  25. Афанасьев М.С., Киселев Д.А., Левашов С.А. и др. // ФТТ. 2019. Т. 61. № 10. С. 1948.

Дополнительные материалы отсутствуют.