Записки Российского минералогического общества, 2020, T. 149, № 3, стр. 1-17

Arsmirandite, Na18Cu12Fe3+O8(AsO4)8Cl5, and lehmannite, Na18Cu12TiO8(AsO4)8FCl5, new mineral species from fumarole exhalations of the Tolbachik volcano, Kamchatka, Russia

I. V. Pekov 1*, S. N. Britvin 23, V. O. Yapaskurt 1, N. N. Koshlyakova 1, Yu. S. Polekhovsky 2, J. Göttlicher 4, N. V. Chukanov 5, M. F. Vigasina 1, S. V. Krivovichev 23, A. G. Turchkova 1, E. G. Sidorov 6

1 Faculty of Geology, Moscow State University
119991 Moscow, Vorobievy Gory, Russia

2 Institute of Earth Sciences, Saint Petersburg State University
199034 Saint Petersburg, University emb., 7/9, Russia

3 Kola Science Center RAS
184209 Apatity, Fersman st., 14, Russia

4 Karlsruhe Institute of Technology, Institute for Synchrotron Radiation
D-76344 Eggenstein-Leopoldshafen, Hermann-von-Helmholtz-Platz 1, Germany

5 Institute of Problems of Chemical Physics RAS
142432 Moscow region, Chernogolovka, Russia

6 Institute of Volcanology and Seismology, Far Eastern Branch RAS
683006 Petropavlovsk-Kamchatsky, Piip Boulevard, 9, Russia

* E-mail: igorpekov@mail.ru

Поступила в редакцию 8.04.2020
После доработки 8.04.2020
Принята к публикации 16.04.2020

Аннотация

Two closely related new minerals arsmirandite Na18Cu12Fe3+O8(AsO4)8Cl5 and lehmannite Na18Cu12Ti4+O8(AsO4)8FCl5 were discovered in sublimates of the Arsenatnaya fumarole at the Second scoria cone of the Northern Breakthrough of the Great Tolbachik Fissure Eruption, Tolbachik volcano, Kamchatka, Russia. They are associated with one another and with hematite, sanidine, sylvite, halite, tenorite, cassiterite, rutile, and various arsenates and sulfates. Arsmirandite and lehmannite are visually indistinguishable and occur as equant crystals up to 20 × 20 × 30 μm3, typically combined in thin crusts up to 2 × 3 cm. The minerals are dark greyish green to olive-greenish black and have strong vitreous lustre. Dcalc = 3.715 (arsmirandite) and 3.676 (lehmannite) g cm–3. The empirical formula of arsmirandite is (Na17.06K0.51Pb0.08Ca0.06)Σ17.71(Cu11.73Mg0.11Zn0.08Mn0.01)Σ12.93(${\text{Fe}}_{{0.92}}^{{3 + }}$ Ti0.10Al0.02)Σ1.04(As7.91S0.08P0.03Si0.02V0.01)Σ8.05O40.23Cl4.77. The empirical formula of lehmannite is (Na17.92K0.18Ca0.24)Σ18.34(Cu11.59${\text{Fe}}_{{0.21}}^{{3 + }}$)Σ11.80(Ti0.85Sn0.11)Σ0.96 (As7.74S0.14P0.09Si0.03)Σ8O40.10F0.75Cl5.42. Both minerals are monoclinic, space group C2/m, Z = 2. Unit-cell parameters (arsmirandite/lehmannite) are: a = = 10.742(2)/10.8236(15), b = 21.019(3)/21.1077(17), c = 11.787(2)/11.8561(11) Å, β = = 117.06(3)/117.195(8)°, and V = 2370.0(7)/2409.2(5) Å3. The crystal structures of arsmirandite and lehmannite were solved by means of single-crystal X-ray diffraction analysis. The minerals have two unique structural features: (1) they contain Fe3+ and Ti4+ in cubic coordination for arsmirandite and lehmannite, respectively; (2) their structures are built up by packing of unusual nanoscale (~1.5 nm across) clusters with the composition {[MCu12O8](AsO4)8} (M = Fe3+ in arsmirandite and Ti4+ in lehmannite). Each nanocluster contains (MO8) cube surrounded by twelve flat squares (CuO4) linked with eight (AsO4) tetrahedra. Sodium and halogen atoms are located in between the nanoclusters. The name arsmirandite reflects the presence of arsenic and the unusual crystal structure (from the Latin mirandus, marvellous). Lehmannite is named in honour of the outstanding German and Russian mineralogist and geologist Johann Gottlob Lehmann (1719–1767).

Keywords: arsmirandite, lehmannite, new mineral, arsenate, crystal structure, nanocluster, polyoxometalate, polyoxocuprate, iron in cubic coordination, titanium in cubic coordination, fumarole, Tolbachik volcano, Kamchatka

DOI: 10.31857/S0869605520030077

Список литературы

  1. Britvin S.N., Dolivo-Dobrovolsky D.V., Krzhizhanovskaya M.G. Software for processing the X-ray powder diffraction data obtained from the curved image plate detector of Rigaku RAXIS Rapid II diffractometer. Zapiski RMO (Proc. Russian Miner. Soc.). 2017. Vol. 146. N 3. P. 104–107 (in Russian).

  2. Britvin S.N., Pekov I.V., Yapaskurt V.O., Koshlyakova N.N., Göttlicher J., Krivovichev S.V., Turchkova A.G., Sidorov E.G. Polyoxometalate chemistry at volcanoes: discovery of a novel class of polyoxocuprate nanoclusters in fumarolic minerals. Sci. Rep. 2020. Vol. 10. Paper 6345.

  3. Brooke H.J., Miller W.H. An Elementary Introduction to Mineralogy by the late William Phillips. New Edition with extensive alterations and additions. Longman, Brown, Green and Longmans, London, 1852.

  4. Brugger J., Meisser N., Krivovichev S., Armbruster T., Favreau G. Mineralogy and crystal structure of bouazzerite from Bou Azzer, Anti-Atlas, Morocco: Bi-As-Fe nanoclusters containing Fe3+ in trigonal prismatic coordination. Amer. Miner. 2007. Vol. 92. P. 1630–1639.

  5. Chukanov N.V., Chervonnyi A.D. Infrared Spectroscopy of Minerals and Related Compounds. Springer Verlag, Cham, 2016. 1109 pp.

  6. Fedotov S.A., Markhinin Y.K., eds. The Great Tolbachik Fissure Eruption. Cambridge University Press, New York, 1983. 341 pp.

  7. Krivovichev S.V. Polyoxometalate clusters in minerals: review and complexity analysis. Acta Crystallogr. 2020. Vol. B76 (in press).

  8. Krivovichev S.V., Mentré O., Siidra O.I., Colmont M., Filatov S.K. Anion-centered tetrahedra in inorganic compounds. Chem. Rev. 2013. Vol. 113. P. 6459–6535.

  9. Paar W.H., Cooper M.A., Hawthorne F.C., Moffatt E., Gunther M.E., Roberts A.C., Dunn P.J. Braithwaiteite, NaCu5(TiSb)2O2(AsO4)[AsO3(OH)]2 ⋅ 8H2O, a new mineral species from Laurani, Bolivia. Canad. Miner. 2009. Vol. 47. P. 947–952.

  10. Pekov I.V., Zubkova N.V., Yapaskurt V.O., Belakovskiy D.I., Lykova I.S., Vigasina M.F., Sidorov E.G., Pushcharovsky D.Yu. New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. I. Yurmarinite, Na7(Fe3+,Mg,Cu)4(AsO4)6. Miner. Mag. 2014a. Vol. 78. P. 905–917.

  11. Pekov I.V., Zubkova N.V., Göttlicher J., Yapaskurt V.O., Chukanov N.V., Lykova I.S., Belakovskiy D.I., Jensen, M.C., Leising J.F., Nikischer A.J., Pushcharovsky D.Yu. Whitecapsite, a new hydrous iron and trivalent antimony arsenate mineral from the White Caps mine, Nevada, USA. Eur. J. Miner. 2014b. Vol. 26. P. 577–587.

  12. Pekov I.V., Yapaskurt V.O., Britvin S.N., Zubkova N.V., Vigasina M.F., Sidorov E.G. New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. V. Katiarsite, KTiO(AsO4). Miner. Mag. 2016. Vol. 80. P. 639–646.

  13. Pekov I.V., Koshlyakova N.N., Zubkova N.V., Lykova I.S., Britvin S.N., Yapaskurt V.O., Agakhanov A.A., Shchipalkina N.V., Turchkova A.G., Sidorov E.G. Fumarolic arsenates – a special type of arsenic mineralization. Eur. J. Miner. 2018. Vol. 30. P. 305–322.

  14. Pekov I.V., Zubkova N.V., Agakhanov A.A., Belakovskiy D.I., Vigasina M.F., Yapaskurt V.O., Sidorov E.G., Britvin S.N., Pushcharovsky D.Yu. New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. IX. Arsenatrotitanite, NaTiO(AsO4). Miner. Mag. 2019. Vol. 83. P. 453–458.

  15. Ravel B., Newville M. ATHENA, ARTEMIS, HEPHAESTUS: Data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchr. Rad. 2005. Vol. 12. P. 537–541.

  16. Rinaldi R., Pluth J.J., Smith J.V. Zeolites of the phillipsite family. Refinement of the crystal structures of phillipsite and harmotome. Acta Crystallogr. 1974. Vol. B30. P. 2426–2433.

  17. Shannon R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. 1976. Vol. A32. P. 751–767.

  18. Sheldrick G.M. A short history of SHELX. Acta Crystallogr. 2008. Vol. A64. P. 112–122.

  19. Siidra O.I., Vladimirova V.A., Tsirlin A.A., Chukanov N.V., Ugolkov V.L. Cu9O2(VO4)4Cl2, a first copper oxychloride vanadate: mineralogically inspired synthesis and magnetic behaviour. Inorg. Chem. 2020. Vol. 59. P. 2136–2143.

  20. Steinfink H. The crystal structure of the zeolite, phillipsite. Acta Crystallogr. 1962. Vol. 15. P. 644–651.

  21. Vernadsky V.I. On the discovery of crocoite. Lomonosovskii Sbornik. Saint Petersburg, 1911. P. 345–354 (in Russian).

Дополнительные материалы отсутствуют.