Российский физиологический журнал им. И.М. Сеченова, 2023, T. 109, № 11, стр. 1522-1546

Молекулярно-генетические механизмы регуляции циркадных ритмов и их роль в психопатологиях

К. В. Смирнова 12*, Н. Д. Чижова 12, Е. В. Герасимова 3, А. В. Калуев 123456, Т. Г. Амстиславская 12**

1 Научно-исследовательский институт нейронаук и медицины
Новосибирск, Россия

2 Новосибирский государственный университет
Новосибирск, Россия

3 Научно-технологический университет “Сириус”
Сочи, Россия

4 Санкт-Петербургский государственный университет
Санкт-Петербург, Россия

5 Уральский федеральный университет
Екатеринбург, Россия

6 Национальный медицинский исследовательский центр им. В.А. Алмазова МЗ РФ
Санкт-Петербург, Россия

* E-mail: vedelina@mail.ru
** E-mail: amstislavskayatg@neuronm.ru

Поступила в редакцию 07.12.2022
После доработки 12.01.2023
Принята к публикации 14.01.2023

Аннотация

Циркадные (циркадианные) ритмы представляют собой циклические колебания интенсивности биологических процессов, связанные со сменой дня и ночи, к которым в ходе эволюции приспособились многие живые организмы. Нарушения циркадных ритмов провоцируются как факторами среды (смена часового пояса или продолжительности дня и ночи), так и поломками во внутренней регуляции циклов (мутации ключевых “часовых” генов). Эти изменения могут приводить к патогенезу различных заболеваний, в том числе психопатологий. Поскольку механизмы, лежащие в основе циркадной регуляции, достаточно консервативны, для большего понимания этих процессов и их связи с психопатологиями активно используют экспериментальные модели in vivo. В настоящем обзоре рассмотрены вопросы регуляции циркадных ритмов, а также их межтаксонные сходства и различия у млекопитающих и костных рыб (на примере широко используемых в биомедицине рыб зебраданио, Danio rerio). В работе обсуждаются современные представления о молекулярно-генетических механизмах, лежащих в основе регуляции циркадных ритмов, и их взаимосвязь с патогенезом психических расстройств у человека и модельных организмов.

Ключевые слова: циркадные ритмы, аффективные расстройства, моделирование психопатологии, экспериментальные модели, грызуны, зебраданио

Список литературы

  1. Bhadra U, Thakkar N, Das P, Pal Bhadra M (2017) Evolution of circadian rhythms: from bacteria to human. Sleep Med 35: 49–61. https://doi.org/10.1016/j.sleep.2017.04.008

  2. Herzog ED, Hermanstyne T, Smyllie NJ, Hastings MH (2017) Regulating the Suprachiasmatic Nucleus (SCN) Circadian Clockwork: Interplay between Cell-Autonomous and Circuit-Level Mechanisms. Cold Spring Harb Perspect Biol 9: a027706. https://doi.org/10.1101/cshperspect.a027706

  3. Lee A, Myung S-K, Cho JJ, Jung Y-J, Yoon JL, Kim MY (2017) Night Shift Work and Risk of Depression: Meta-analysis of Observational Studies. J Korean Med Sci 32: 1091. https://doi.org/10.3346/jkms.2017.32.7.1091

  4. Lu Z, Klein-Cardeña K, Lee S, Antonsen TM, Girvan M, Ott E (2016) Resynchronization of circadian oscillators and the east-west asymmetry of jet-lag. Chaos An Interdiscip J Nonlinear Sci 26: 094811. https://doi.org/10.1063/1.4954275

  5. Haesemeyer M, Schier AF (2015) The study of psychiatric disease genes and drugs in zebrafish. Curr Opin Neurobiol 30: 122–130. https://doi.org/10.1016/j.conb.2014.12.002

  6. Fontana BD, Mezzomo NJ, Kalueff AV, Rosemberg DB (2018) The developing utility of zebrafish models of neurological and neuropsychiatric disorders: A critical review. Exp Neurol 299: 157–171. https://doi.org/10.1016/j.expneurol.2017.10.004

  7. Aranda ML, Schmidt TM (2021) Diversity of intrinsically photosensitive retinal ganglion cells: circuits and functions. Cell Mol Life Sci 78: 889–907. https://doi.org/10.1007/s00018-020-03641-5

  8. Do MTH (2019) Melanopsin and the Intrinsically Photosensitive Retinal Ganglion Cells: Biophysics to Behavior. Neuron 104: 205–226. https://doi.org/10.1016/j.neuron.2019.07.016

  9. Davies WIL, Zheng L, Hughes S, Tamai TK, Turton M, Halford S, Foster RG, Whitmore D, Hankins MW (2011) Functional diversity of melanopsins and their global expression in the teleost retina. Cell Mol Life Sci 68: 4115–4132. https://doi.org/10.1007/s00018-011-0785-4

  10. Matsuyama T, Yamashita T, Imamoto Y, Shichida Y (2012) Photochemical Properties of Mammalian Melanopsin. Biochemistry 51: 5454–5462. https://doi.org/10.1021/bi3004999

  11. Walmsley L, Hanna L, Mouland J, Martial F, West A, Smedley AR, Bechtold DA, Webb AR, Lucas RJ, Brown TM (2015) Colour As a Signal for Entraining the Mammalian Circadian Clock. PLoS Biol 13: e1002127. https://doi.org/10.1371/journal.pbio.1002127

  12. Steindal IAF, Whitmore D (2020) Zebrafish Circadian Clock Entrainment and the Importance of Broad Spectral Light Sensitivity. Front Physiol 11. https://doi.org/10.3389/fphys.2020.01002

  13. Jones JR, Simon T, Lones L, Herzog ED (2018) SCN VIP Neurons Are Essential for Normal Light-Mediated Resetting of the Circadian System. J Neurosci 38: 7986–7995. https://doi.org/10.1523/JNEUROSCI.1322-18.2018

  14. Ono D, Honma K, Yanagawa Y, Yamanaka A, Honma S (2018) Role of GABA in the regulation of the central circadian clock of the suprachiasmatic nucleus. J Physiol Sci 68: 333–343. https://doi.org/10.1007/s12576-018-0604-x

  15. Ukraintseva YV, Kovalzon VM (2016) Circadian regulation and its disorders in Parkinson’s disease patients. Part 2: Experimental models, alpha-synuclein, and melatonin. Hum Physiol 42: 559–570. https://doi.org/10.1134/S0362119716050170

  16. Mazuski C, Abel JH, Chen SP, Hermanstyne TO, Jones JR, Simon T, Doyle FJ, Herzog ED (2018) Entrainment of Circadian Rhythms Depends on Firing Rates and Neuropeptide Release of VIP SCN Neurons. Neuron 99: 555–563.e5. https://doi.org/10.1016/j.neuron.2018.06.029

  17. Kalsbeek A, Fliers E, Hofman MA, Swaab DF, Buijs RM (2010) Vasopressin and the Output of the Hypothalamic Biological Clock. J Neuroendocrinol 22: 362–372. https://doi.org/10.1111/j.1365-2826.2010.01956.x

  18. Mieda M, Ono D, Hasegawa E, Okamoto H, Honma K, Honma S, Sakurai T (2015) Cellular Clocks in AVP Neurons of the SCN Are Critical for Interneuronal Coupling Regulating Circadian Behavior Rhythm. Neuron 85: 1103–1116. https://doi.org/10.1016/j.neuron.2015.02.005

  19. An K, Zhao H, Miao Y, Xu Q, Li Y-F, Ma Y-Q, Shi Y-M, Shen J-W, Meng J-J, Yao Y-G, Zhang Z, Chen J-T, Bao J, Zhang M, Xue T (2020) A circadian rhythm-gated subcortical pathway for nighttime-light-induced depressive-like behaviors in mice. Nat Neurosci 23: 869–880. https://doi.org/10.1038/s41593-020-0640-8

  20. Campos LMG, Cruz-Rizzolo RJ, Watanabe IS, Pinato L, Nogueira MI (2014) Efferent projections of the suprachiasmatic nucleus based on the distribution of vasoactive intestinal peptide (VIP) and arginine vasopressin (AVP) immunoreactive fibers in the hypothalamus of Sapajus apella. J Chem Neuroanat 57–58: 42–53. https://doi.org/10.1016/j.jchemneu.2014.03.004

  21. Malek ZS, Labban LM (2021) Photoperiod regulates the daily profiles of tryptophan hydroxylase-2 gene expression the raphe nuclei of rats. Int J Neurosci 131: 1155–1161. https://doi.org/10.1080/00207454.2020.1782903

  22. Buijs FN, Guzmán-Ruiz M, León-Mercado L, Basualdo MC, Escobar C, Kalsbeek A, Buijs RM (2017) Suprachiasmatic Nucleus Interaction with the Arcuate Nucleus; Essential for Organizing Physiological Rhythms. Eneuro 4: ENEURO.0028-17.2017. https://doi.org/10.1523/ENEURO.0028-17.2017

  23. Ni R-J, Shu Y-M, Luo P-H, Zhou J-N (2021) Whole-brain mapping of afferent projections to the suprachiasmatic nucleus of the tree shrew. Tissue Cell 73: 101620. https://doi.org/10.1016/j.tice.2021.101620

  24. Brancaccio M, Patton AP, Chesham JE, Maywood ES, Hastings MH (2017) Astrocytes Control Circadian Timekeeping in the Suprachiasmatic Nucleus via Glutamatergic Signaling. Neuron 93: 1420–1435.e5. https://doi.org/10.1016/j.neuron.2017.02.030

  25. Ortinski P, Reissner K, Turner J, Anderson TA, Scimemi A (2022) Control of complex behavior by astrocytes and microglia. Neurosci Biobehav Rev 137: 104651. https://doi.org/10.1016/j.neubiorev.2022.104651

  26. Hang CY, Kitahashi T, Parhar IS (2014) Localization and characterization of val-opsin isoform-expressing cells in the brain of adult zebrafish. J Comp Neurol 522: 3847–3860. https://doi.org/10.1002/cne.23645

  27. Moore HA, Whitmore D (2014) Circadian Rhythmicity and Light Sensitivity of the Zebrafish Brain. PLoS One 9: e86176. https://doi.org/10.1371/journal.pone.0086176

  28. Horstick EJ, Bayleyen Y, Sinclair JL, Burgess HA (2017) Search strategy is regulated by somatostatin signaling and deep brain photoreceptors in zebrafish. BMC Biol 15: 4. https://doi.org/10.1186/s12915-016-0346-2

  29. Fernandes AM, Fero K, Arrenberg AB, Bergeron SA, Driever W, Burgess HA (2012) Deep Brain Photoreceptors Control Light-Seeking Behavior in Zebrafish Larvae. Curr Biol 22: 2042–2047. https://doi.org/10.1016/j.cub.2012.08.016

  30. Hang CY, Kitahashi T, Parhar IS (2015) Brain area-specific diurnal and photic regulation of val-opsinA and val-opsinB genes in the zebrafish. J Neurochem 133: 501–510. https://doi.org/10.1111/jnc.13084

  31. Ben-Moshe Livne Z, Alon S, Vallone D, Bayleyen Y, Tovin A, Shainer I, Nisembaum LG, Aviram I, Smadja-Storz S, Fuentes M, Falcón J, Eisenberg E, Klein DC, Burgess HA, Foulkes NS, Gothilf Y (2016) Genetically Blocking the Zebrafish Pineal Clock Affects Circadian Behavior. PLoS Genet 12: e1006445. https://doi.org/10.1371/journal.pgen.1006445

  32. Krylov VV, Izvekov EI, Pavlova VV, Pankova NA, Osipova EA (2021) Circadian rhythms in zebrafish (Danio rerio) behavour and the sources of their variability. Biol Rev 96: 785–797. https://doi.org/10.1111/brv.12678

  33. Landgraf D, Achten C, Dallmann F, Oster H (2015) Embryonic development and maternal regulation of murine circadian clock function. Chronobiol Int 32: 416–427. https://doi.org/10.3109/07420528.2014.986576

  34. Laurà R, Magnoli D, Zichichi R, Guerrera MC, De Carlos F, Suárez AÁ, Abbate F, Ciriaco E, Vega JA, Germanà A (2012) The photoreceptive cells of the pineal gland in adult zebrafish (Danio rerio). Microsc Res Tech 75: 359–366. https://doi.org/10.1002/jemt.21064

  35. Yáñez J, Busch J, Anadón R, Meissl H (2009) Pineal projections in the zebrafish (Danio rerio): overlap with retinal and cerebellar projections. Neuroscience 164: 1712–1720. https://doi.org/10.1016/j.neuroscience.2009.09.043

  36. Sato F, Kohsaka A, Bhawal U, Muragaki Y (2018) Potential Roles of Dec and Bmal1 Genes in Interconnecting Circadian Clock and Energy Metabolism. Int J Mol Sci 19: 781. https://doi.org/10.3390/ijms19030781

  37. Gompf HS, Fuller PM, Hattar S, Saper CB, Lu J (2015) Impaired Circadian Photosensitivity in Mice Lacking Glutamate Transmission from Retinal Melanopsin Cells. J Biol Rhythms 30: 35–41. https://doi.org/10.1177/0748730414561545

  38. Koyanagi S, Hamdan AM, Horiguchi M, Kusunose N, Okamoto A, Matsunaga N, Ohdo S (2011) cAMP-response Element (CRE)-mediated Transcription by Activating Transcription Factor-4 (ATF4) Is Essential for Circadian Expression of the Period 2 Gene. J Biol Chem 286: 32416–32423. https://doi.org/10.1074/jbc.M111.258970

  39. Lindberg PT, Mitchell JW, Burgoon PW, Beaulé C, Weihe E, Schäfer MK-H, Eiden LE, Jiang SZ, Gillette MU (2019) Pituitary Adenylate Cyclase-Activating Peptide (PACAP)-Glutamate Co-transmission Drives Circadian Phase-Advancing Responses to Intrinsically Photosensitive Retinal Ganglion Cell Projections by Suprachiasmatic Nucleus. Front Neurosci 13: 1281. https://doi.org/10.3389/fnins.2019.01281

  40. Yu W, Nomura M, Ikeda M (2002) Interactivating Feedback Loops within the Mammalian Clock: BMAL1 Is Negatively Autoregulated and Upregulated by CRY1, CRY2, and PER2. Biochem Biophys Res Commun 290: 933–941. https://doi.org/10.1006/bbrc.2001.6300

  41. Schmutz I, Ripperger JA, Baeriswyl-Aebischer S, Albrecht U (2010) The mammalian clock component PERIOD2 coordinates circadian output by interaction with nuclear receptors. Genes Dev 24: 345–357.https://doi.org/10.1101/gad.564110

  42. Cao X, Yang Y, Selby CP, Liu Z, Sancar A (2021) Molecular mechanism of the repressive phase of the mammalian circadian clock. Proc Natl Acad Sci U S A 118. https://doi.org/10.1073/pnas.2021174118

  43. Bozek K, Relógio A, Kielbasa SM, Heine M, Dame C, Kramer A, Herzel H (2009) Regulation of Clock-Controlled Genes in Mammals. PLoS One 4: e4882. https://doi.org/10.1371/journal.pone.0004882

  44. Crumbley C, Burris TP (2011) Direct Regulation of CLOCK Expression by REV-ERB. PLoS One 6: e17290. https://doi.org/10.1371/journal.pone.0017290

  45. Takeda Y, Jothi R, Birault V, Jetten AM (2012) RORγ directly regulates the circadian expression of clock genes and downstream targets in vivo. Nucleic Acids Res 40: 8519–8535. https://doi.org/10.1093/nar/gks630

  46. Ye R, Selby CP, Chiou Y-Y, Ozkan-Dagliyan I, Gaddameedhi S, Sancar A (2014) Dual modes of CLOCK:BMAL1 inhibition mediated by Cryptochrome and Period proteins in the mammalian circadian clock. Genes Dev 28: 1989–1998. https://doi.org/10.1101/gad.249417.114

  47. Kwon I, Lee J, Chang SH, Jung NC, Lee BJ, Son GH, Kim K, Lee KH (2006) BMAL1 Shuttling Controls Transactivation and Degradation of the CLOCK/BMAL1 Heterodimer. Mol Cell Biol 26: 7318–7330. https://doi.org/10.1128/MCB.00337-06

  48. Ono D, Honma K, Schmal C, Takumi T, Kawamoto T, Fujimoto K, Kato Y, Honma S (2021) CHRONO and DEC1/DEC2 compensate for lack of CRY1/CRY2 in expression of coherent circadian rhythm but not in generation of circadian oscillation in the neonatal mouse SCN. Sci Rep 11: 19240. https://doi.org/10.1038/s41598-021-98532-5

  49. Li Y, Li G, Wang H, Du J, Yan J (2013) Analysis of a Gene Regulatory Cascade Mediating Circadian Rhythm in Zebrafish. PLoS Comput Biol 9: e1002940. https://doi.org/10.1371/journal.pcbi.1002940

  50. West AC, Iversen M, Jørgensen EH, Sandve SR, Hazlerigg DG, Wood SH (2020) Diversified regulation of circadian clock gene expression following whole genome duplication. PLoS Genet 16: e1009097. https://doi.org/10.1371/journal.pgen.1009097

  51. Wang M, Zhong Z, Zhong Y, Zhang W, Wang H (2015) The Zebrafish Period2 Protein Positively Regulates the Circadian Clock through Mediation of Retinoic Acid Receptor (RAR)-related Orphan Receptor α (Rorα). J Biol Chem 290: 4367–4382. https://doi.org/10.1074/jbc.M114.605022

  52. Sloin HE, Ruggiero G, Rubinstein A, Smadja Storz S, Foulkes NS, Gothilf Y (2018) Interactions between the circadian clock and TGF-β signaling pathway in zebrafish. PLoS One 13: e0199777. https://doi.org/10.1371/journal.pone.0199777

  53. Finger A-M, Jäschke S, del Olmo M, Hurwitz R, Granada AE, Herzel H, Kramer A (2021) Intercellular coupling between peripheral circadian oscillators by TGF-β signaling. Sci Adv 7. https://doi.org/10.1126/sciadv.abg5174

  54. Mure LS, Le HD, Benegiamo G, Chang MW, Rios L, Jillani N, Ngotho M, Kariuki T, Dkhissi-Benyahya O, Cooper HM, Panda S (2018) Diurnal transcriptome atlas of a primate across major neural and peripheral tissues. Science (80): 359. https://doi.org/10.1126/science.aao0318

  55. Koike N, Yoo S-H, Huang H-C, Kumar V, Lee C, Kim T-K, Takahashi JS (2012) Transcriptional Architecture and Chromatin Landscape of the Core Circadian Clock in Mammals. Science (80) 338: 349–354. https://doi.org/10.1126/science.1226339

  56. Terajima H, Yoshitane H, Ozaki H, Suzuki Y, Shimba S, Kuroda S, Iwasaki W, Fukada Y (2017) ADARB1 catalyzes circadian A-to-I editing and regulates RNA rhythm. Nat Genet 49: 146–151. https://doi.org/10.1038/ng.3731

  57. Fustin J-M, Doi M, Yamaguchi Y, Hida H, Nishimura S, Yoshida M, Isagawa T, Morioka MS, Kakeya H, Manabe I, Okamura H (2013) RNA-Methylation-Dependent RNA Processing Controls the Speed of the Circadian Clock. Cell 155: 793–806. https://doi.org/10.1016/j.cell.2013.10.026

  58. Mohamed HMA, Takahashi A, Nishijima S, Adachi S, Murai I, Okamura H, Yamamoto T (2022) CNOT1 regulates circadian behaviour through Per2 mRNA decay in a deadenylation-dependent manner. RNA Biol 19: 703–718. https://doi.org/10.1080/15476286.2022.2071026

  59. Avitabile D, Genovese L, Ponti D, Ranieri D, Raffa S, Calogero A, Torrisi MR (2014) Nucleolar localization and circadian regulation of Per2S, a novel splicing variant of the Period 2 gene. Cell Mol Life Sci 71: 2547–2559. https://doi.org/10.1007/s00018-013-1503-1

  60. Fan J-Y, Preuss F, Muskus MJ, Bjes ES, Price JL (2009) Drosophila and Vertebrate Casein Kinase Iδ Exhibits Evolutionary Conservation of Circadian Function. Genetics 181: 139–152. https://doi.org/10.1534/genetics.108.094805

  61. Etchegaray J-P, Machida KK, Noton E, Constance CM, Dallmann R, Di Napoli MN, DeBruyne JP, Lambert CM, Yu EA, Reppert SM, Weaver DR (2009) Casein Kinase 1 Delta Regulates the Pace of the Mammalian Circadian Clock. Mol Cell Biol 29: 3853–3866. https://doi.org/10.1128/MCB.00338-09

  62. Smadja Storz S, Tovin A, Mracek P, Alon S, Foulkes NS, Gothilf Y (2013) Casein Kinase 1δ Activity: A Key Element in the Zebrafish Circadian Timing System. PLoS One 8: e54189. https://doi.org/10.1371/journal.pone.0054189

  63. Masuda S, Narasimamurthy R, Yoshitane H, Kim JK, Fukada Y, Virshup DM (2020) Mutation of a PER2 phosphodegron perturbs the circadian phosphoswitch. Proc Natl Acad Sci U S A 117: 10888–10896. https://doi.org/10.1073/pnas.2000266117

  64. Shanware NP, Hutchinson JA, Kim SH, Zhan L, Bowler MJ, Tibbetts RS (2011) Casein Kinase 1-dependent Phosphorylation of Familial Advanced Sleep Phase Syndrome-associated Residues Controls PERIOD 2 Stability. J Biol Chem 286: 12766–12774. https://doi.org/10.1074/jbc.M111.224014

  65. Zhou M, Kim JK, Eng GWL, Forger DB, Virshup DM (2015) A Period2 Phosphoswitch Regulates and Temperature Compensates Circadian Period. Mol Cell 60: 77–88. https://doi.org/10.1016/j.molcel.2015.08.022

  66. Narasimamurthy R, Virshup DM (2017) Molecular Mechanisms Regulating Temperature Compensation of the Circadian Clock. Front Neurol 8. https://doi.org/10.3389/fneur.2017.00161

  67. Vielhaber EL, Duricka D, Ullman KS, Virshup DM (2001) Nuclear Export of Mammalian PERI-OD Proteins. J Biol Chem 276: 45921–45927. https://doi.org/10.1074/jbc.M107726200

  68. Takano A, Isojima Y, Nagai K (2004) Identification of mPer1 phosphorylation sites responsible for the nuclear entry. J Biol Chem 279: 32578–32585. https://doi.org/10.1074/jbc.M403433200

  69. Aryal RP, Kwak PB, Tamayo AG, Gebert M, Chiu PL, Walz T, Weitz CJ (2017) Macromolecular Assemblies of the Mammalian Circadian Clock. Mol Cell 67: 770–782. https://doi.org/10.1016/j.molcel.2017.07.017

  70. Eng GWL, Edison, Virshup DM (2017) Site-specific phosphorylation of casein kinase 1 δ (CK1δ) regulates its activity towards the circadian regulator PER2. PLoS One 12. https://doi.org/10.1371/journal.pone.0177834

  71. Paul JR, McKeown AS, Davis JA, Totsch SK, Mintz EM, Kraft TW, Cowell RM, Gamble KL (2017) Glycogen synthase kinase 3 regulates photic signaling in the suprachiasmatic nucleus. Eur J Neurosci 45: 1102–1110. https://doi.org/10.1111/ejn.13549

  72. Leloup J-C, Goldbeter A (2011) Modelling the dual role of Per phosphorylation and its effect on the period and phase of the mammalian circadian clock. IET Syst Biol 5: 44–49. https://doi.org/10.1049/iet-syb.2009.0068

  73. Yin L, Wang J, Klein PS, Lazar MA (2006) Nuclear Receptor Rev-erbα Is a Critical Lithium-Sensitive Component of the Circadian Clock. Science (80) 311: 1002–1005. https://doi.org/10.1126/science.1121613

  74. Kurabayashi N, Hirota T, Sakai M, Sanada K, Fukada Y (2010) DYRK1A and Glycogen Synthase Kinase 3β, a Dual-Kinase Mechanism Directing Proteasomal Degradation of CRY2 for Circadian Timekeeping. Mol Cell Biol 30: 1757–1768. https://doi.org/10.1128/MCB.01047-09

  75. Sahar S, Zocchi L, Kinoshita C, Borrelli E, Sassone-Corsi P (2010) Regulation of BMAL1 Protein Stability and Circadian Function by GSK3β-Mediated Phosphorylation. PLoS One 5: e8561. https://doi.org/10.1371/journal.pone.0008561

  76. Spengler ML, Kuropatwinski KK, Schumer M, Antoch M (2009) A serine cluster mediates BMAL1-dependent CLOCK phosphorylation and degradation. Cell Cycle 8: 4138–4146. https://doi.org/10.4161/cc.8.24.10273

  77. Asher G, Gatfield D, Stratmann M, Reinke H, Dibner C, Kreppel F, Mostoslavsky R, Alt FW, Schibler U (2008) SIRT1 Regulates Circadian Clock Gene Expression through PER2 Deacetylation. Cell 134: 317–328. https://doi.org/10.1016/j.cell.2008.06.050

  78. Wang R-H, Zhao T, Cui K, Hu G, Chen Q, Chen W, Wang X-W, Soto-Gutierrez A, Zhao K, Deng C-X (2016) Negative reciprocal regulation between Sirt1 and Per2 modulates the circadian clock and aging. Sci Rep 6: 28633. https://doi.org/10.1038/srep28633

  79. Nakahata Y, Kaluzova M, Grimaldi B, Sahar S, Hirayama J, Chen D, Guarente LP, Sassone-Corsi P (2008) The NAD+-Dependent Deacetylase SIRT1 Modulates CLOCK-Mediated Chromatin Remodeling and Circadian Control. Cell 134: 329–340. https://doi.org/10.1016/j.cell.2008.07.002

  80. Nakahata Y, Sahar S, Astarita G, Kaluzova M, Sassone-Corsi P (2009) Circadian Control of the NAD + Salvage Pathway by CLOCK-SIRT1. Science (80)324: 654–657. https://doi.org/10.1126/science.1170803

  81. Ramsey KM, Yoshino J, Brace CS, Abrassart D, Kobayashi Y, Marcheva B, Hong H-K, Chong JL, Buhr ED, Lee C, Takahashi JS, Imai S, Bass J (2009) Circadian Clock Feedback Cycle Through NAMPT-Mediated NAD+ Biosynthesis. Science (80) 324: 651–654. https://doi.org/10.1126/science.1171641

  82. Chang H-C, Guarente L (2013) SIRT1 Mediates Central Circadian Control in the SCN by a Mechanism that Decays with Aging. Cell 153: 1448–1460. https://doi.org/10.1016/j.cell.2013.05.027

  83. Orozco-Solis R, Ramadori G, Coppari R, Sassone-Corsi P (2015) SIRT1 relays nutritional inputs to the circadian clock through the Sf1 neurons of the ventromedial hypothalamus. Endocrinology (United States) 156: 2174–2184. https://doi.org/10.1210/en.2014-1805

  84. Schibler U (2021) BMAL1 dephosphorylation determines the pace of the circadian clock. Genes Dev 35: 1076–1078. https://doi.org/10.1101/gad.348801.121

  85. DiTacchio L, Le HD, Vollmers C, Hatori M, Witcher M, Secombe J, Panda S (2011) Histone Lysine Demethylase JARID1a Activates CLOCK-BMAL1 and Influences the Circadian Clock. Science (80) 333: 1881–1885.https://doi.org/10.1126/science.1206022

  86. Gareau JR, Lima CD (2010) The SUMO pathway: emerging mechanisms that shape specificity, conjugation and recognition. Nat Rev Mol Cell Biol 11: 861–871. https://doi.org/10.1038/nrm3011

  87. Chen L-C, Hsieh Y-L, Tan GYT, Kuo T-Y, Chou Y-C, Hsu P-H, Hwang-Verslues WW (2021) Differential effects of SUMO1 and SUMO2 on circadian protein PER2 stability and function. Sci Rep 11: 14431. https://doi.org/10.1038/s41598-021-93933-y

  88. Fernandez DC, Fogerson PM, Lazzerini Ospri L, Thomsen MB, Layne RM, Severin D, Zhan J, Singer JH, Kirkwood A, Zhao H, Berson DM, Hattar S (2018) Light Affects Mood and Learning through Distinct Retina-Brain Pathways. Cell 175: 71–84. https://doi.org/10.1016/j.cell.2018.08.004

  89. Falchi F, Cinzano P, Duriscoe D, Kyba CCM, Elvidge CD, Baugh K, Portnov BA, Rybnikova NA, Furgoni R (2016) The new world atlas of artificial night sky brightness. Sci Adv 2. https://doi.org/10.1126/sciadv.1600377

  90. Tähkämö L, Partonen T, Pesonen A-K (2019) Systematic review of light exposure impact on human circadian rhythm. Chronobiol Int 36: 151–170. https://doi.org/10.1080/07420528.2018.1527773

  91. Faulkner SM, Bee PE, Meyer N, Dijk D-J, Drake RJ (2019) Light therapies to improve sleep in intrinsic circadian rhythm sleep disorders and neuro-psychiatric illness: A systematic review and meta-analysis. Sleep Med Rev 46: 108–123. https://doi.org/10.1016/j.smrv.2019.04.012

  92. Al-Karawi D, Jubair L (2016) Bright light therapy for nonseasonal depression: Meta-analysis of clinical trials. J Affect Disord 198: 64–71. https://doi.org/10.1016/j.jad.2016.03.016

  93. Zee PC, Goldstein CA (2010) Treatment of Shift Work Disorder and Jet Lag. Curr Treat Options Neurol 12: 396–411. https://doi.org/10.1007/s11940-010-0090-9

  94. Rundle AG, Revenson TA, Friedman M (2018) Business Travel and Behavioral and Mental Health. J Occup Environ Med 60: 612–616. https://doi.org/10.1097/JOM.0000000000001262

  95. Li Y, Androulakis IP (2021) Light entrainment of the SCN circadian clock and implications for personalized alterations of corticosterone rhythms in shift work and jet lag. Sci Rep 11: 17929. https://doi.org/10.1038/s41598-021-97019-7

  96. Castilhos Beauvalet J, Luísa Quiles C, Alves Braga de Oliveira M, Vieira Ilgenfritz CA, Hidalgo MP, Comiran Tonon A (2017) Social jetlag in health and behavioral research: a systematic review. Chron Physiol Ther 7: 19–31. https://doi.org/10.2147/CPT.S108750

  97. Knapen SE, Riemersma-van der Lek RF, Antypa N, Meesters Y, Penninx BWJH, Schoevers RA (2018) Social jetlag and depression status: Results obtained from the Netherlands Study of Depression and Anxiety. Chronobiol Int 35: 1–7. https://doi.org/10.1080/07420528.2017.1374966

  98. Benedetti F, Riccaboni R, Dallaspezia S, Locatelli C, Smeraldi E, Colombo C (2015) Effects of CLOCK gene variants and early stress on hopelessness and suicide in bipolar depression. Chronobiol Int 32: 1156–1161. https://doi.org/10.3109/07420528.2015.1060603

  99. Rybakowski JK, Dmitrzak-Weglarz M, Dembinska-Krajewska D, Hauser J, Akiskal KK, Akiskal HH (2014) Polymorphism of circadian clock genes and temperamental dimensions of the TEMPS-A in bipolar disorder. J Affect Disord 159: 80–84. https://doi.org/10.1016/j.jad.2014.02.024

  100. Jankowski KS, Dmitrzak-Weglarz M (2017) ARNTL, CLOCK and PER3 polymorphisms – links with chronotype and affective dimensions. Chronobiol Int 34: 1105–1113. https://doi.org/10.1080/07420528.2017.1343341

  101. Kim H-I, Lee H-J, Cho C-H, Kang S-G, Yoon H-K, Park Y-M, Lee S-H, Moon J-H, Song H-M, Lee E, Kim L (2015) Association of CLOCK, ARNTL, and NPAS2 gene polymorphisms and seasonal variations in mood and behavior. Chronobiol Int 32: 785–791. https://doi.org/10.3109/07420528.2015.1049613

  102. Liberman AR, Halitjaha L, Ay A, Ingram KK (2018) Modeling Strengthens Molecular Link between Circadian Polymorphisms and Major Mood Disorders. J Biol Rhythms 33: 318–336. https://doi.org/10.1177/0748730418764540

  103. Melhuish Beaupre L, Brown GM, Kennedy JL (2020) Circadian genes in major depressive disorder. World J Biol Psychiatry 21: 80–90. https://doi.org/10.1080/15622975.2018.1500028

  104. Hua P, Liu W, Chen D, Zhao Y, Chen L, Zhang N, Wang C, Guo S, Wang L, Xiao H, Kuo S-H (2014) Cry1 and Tef gene polymorphisms are associated with major depressive disorder in the Chinese population. J Affect Disord 157: 100–103. https://doi.org/10.1016/j.jad.2013.11.019

  105. Drago A, Monti B, De Ronchi D, Serretti A (2015) CRY1 Variations Impacts on the Depressive Relapse Rate in a Sample of Bipolar Patients. Psychiatr Invest 12: 118. https://doi.org/10.4306/pi.2015.12.1.118

  106. D’Souza T, Rajkumar AP (2020) Systematic review of genetic variants associated with cognitive impairment and depressive symptoms in Parkinson’s disease. Acta Neuropsychiatr 32: 10–22. https://doi.org/10.1017/neu.2019.28

  107. Fiedorowicz JG, Coryell WH, Akhter A, Ellingrod VL (2012) Cryptochrome 2 variants, chronicity, and seasonality of mood disorders. Psychiatr Genet 22: 305–306. https://doi.org/10.1097/YPG.0b013e3283539594

  108. Kovanen L, Kaunisto M, Donner K, Saarikoski ST, Partonen T (2013) CRY2 Genetic Variants Associate with Dysthymia. PLoS One 8: e71450. https://doi.org/10.1371/journal.pone.0071450

  109. Kovanen L, Donner K, Kaunisto M, Partonen T (2017) PRKCDBP (CAVIN3) and CRY2 associate with major depressive disorder. J Affect Disord 207: 136–140. https://doi.org/10.1016/j.jad.2016.09.034

  110. Parekh PK, Becker-Krail D, Sundaravelu P, Ishigaki S, Okado H, Sobue G, Huang Y, McClung CA (2018) Altered GluA1 (Gria1) Function and Accumbal Synaptic Plasticity in the ClockΔ19 Model of Bipolar Mania. Biol Psychiatry 84: 817–826. https://doi.org/10.1016/j.biopsych.2017.06.022

  111. Kozikowski AP, Gunosewoyo H, Guo S, Gaisina IN, Walter RL, Ketcherside A, McClung CA, Mesecar AD, Caldarone B (2011) Identification of a Glycogen Synthase Kinase-3β Inhibitor that Attenuates Hyperactivity in CLOCK Mutant Mice. Chem Med Chem 6: 1593–1602. https://doi.org/10.1002/cmdc.201100188

  112. Arey R, McClung CA (2012) An inhibitor of casein kinase 1 ε/δ partially normalizes the manic-like behaviors of the ClockΔ19 mouse. Behav Pharmacol 23: 392–396. https://doi.org/10.1097/FBP.0b013e32835651fd

  113. Mukherjee S, Coque L, Cao J-L, Kumar J, Chakravarty S, Asaithamby A, Graham A, Gordon E, Enwright JF, DiLeone RJ, Birnbaum SG, Cooper DC, McClung CA (2010) Knockdown of Clock in the Ventral Tegmental Area Through RNA Interference Results in a Mixed State of Mania and Depression-Like Behavior. Biol Psychiatry 68: 503–511. https://doi.org/10.1016/j.biopsych.2010.04.031

  114. Qiu P, Jiang J, Liu Z, Cai Y, Huang T, Wang Y, Liu Q, Nie Y, Liu F, Cheng J, Li Q, Tang Y-C, Poo M, Sun Q, Chang H-C (2019) BMAL1 knockout macaque monkeys display reduced sleep and psychiatric disorders. Natl Sci Rev 6: 87–100. https://doi.org/10.1093/nsr/nwz002

  115. Landgraf D, Long JE, Proulx CD, Barandas R, Malinow R, Welsh DK (2016) Genetic Disruption of Circadian Rhythms in the Suprachiasmatic Nucleus Causes Helplessness, Behavioral Despair, and Anxiety-like Behavior in Mice. Biol Psychiatry 80: 827–835. https://doi.org/10.1016/j.biopsych.2016.03.1050

  116. Leliavski A, Shostak A, Husse J, Oster H (2014) Impaired Glucocorticoid Production and Response to Stress in Arntl-Deficient Male Mice. Endocrinology 155: 133–142. https://doi.org/10.1210/en.2013-1531

  117. Jager J, O’Brien WT, Manlove J, Krizman EN, Fang B, Gerhart-Hines Z, Robinson MB, Klein PS, Lazar MA (2014) Behavioral Changes and Dopaminergic Dysregulation in Mice Lacking the Nuclear Receptor Rev-erbα. Mol Endocrinol 28: 490–498. https://doi.org/10.1210/me.2013-1351

  118. Spencer S, Falcon E, Kumar J, Krishnan V, Mukherjee S, Birnbaum SG, McClung CA (2013) Circadian genes Period 1 and Period 2 in the nucleus accumbens regulate anxiety-related behavior. Eur J Neurosci 37: 242–250. https://doi.org/10.1111/ejn.12010

  119. Li Y, Li G, Li J, Cai X, Sun Y, Zhang B, Zhao H (2021) Depression-like behavior is associated with lower Per2 mRNA expression in the lateral habenula of rats. Genes, Brain Behav 20. https://doi.org/10.1111/gbb.12702

  120. Zhang L, Hirano A, Hsu P-K, Jones CR, Sakai N, Okuro M, McMahon T, Yamazaki M, Xu Y, Saigoh N, Saigoh K, Lin S-T, Kaasik K, Nishino S, Ptáček LJ, Fu Y-H (2016) A PERIOD3 variant causes a circadian phenotype and is associated with a seasonal mood trait. Proc Natl Acad Sci U S A 113. https://doi.org/10.1073/pnas.1600039113

  121. Huang J, Zhong Z, Wang M, Chen X, Tan Y, Zhang S, He W, He X, Huang G, Lu H, Wu P, Che Y, Yan Y-L, Postlethwait JH, Chen W, Wang H (2015) Circadian Modulation of Dopamine Levels and Dopaminergic Neuron Development Contributes to Attention Deficiency and Hyperactive Behavior. J Neurosci 35: 2572–2587. https://doi.org/10.1523/JNEUROSCI.2551-14.2015

  122. De Bundel D, Gangarossa G, Biever A, Bonnefont X, Valjent E (2013) Cognitive dysfunction, elevated anxiety, and reduced cocaine response in circadian clock-deficient cryptochrome knockout mice. Front Behav Neurosci 7. https://doi.org/10.3389/fnbeh.2013.00152

  123. Tapia-Osorio A, Salgado-Delgado R, Angeles-Castellanos M, Escobar C (2013) Disruption of circadian rhythms due to chronic constant light leads to depressive and anxiety-like behaviors in the rat. Behav Brain Res 252: 1–9. https://doi.org/10.1016/j.bbr.2013.05.028

  124. Walker WH, Borniger JC, Gaudier-Diaz MM, Hecmarie Meléndez-Fernández O, Pascoe JL, Courtney DeVries A, Nelson RJ (2020) Acute exposure to low-level light at night is sufficient to induce neurological changes and depressive-like behavior. Mol Psychiatry 25: 1080–1093. https://doi.org/10.1038/s41380-019-0430-4

  125. Borniger JC, McHenry ZD, Abi Salloum BA, Nelson RJ (2014) Exposure to dim light at night during early development increases adult anxiety-like responses. Physiol Behav 133: 99–106. https://doi.org/10.1016/j.physbeh.2014.05.012

  126. Bedrosian TA, Galan A, Vaughn CA, Weil ZM, Nelson RJ (2013) Light at Night Alters Daily Patterns of Cortisol and Clock Proteins in Female Siberian Hamsters. J Neuroendocrinol 25: 590–596. https://doi.org/10.1111/jne.12036

  127. Karatsoreos IN, Bhagat S, Bloss EB, Morrison JH, McEwen BS (2011) Disruption of circadian clocks has ramifications for metabolism, brain, and behavior. Proc Natl Acad Sci U S A 108: 1657–1662. https://doi.org/10.1073/pnas.1018375108

  128. Valvassori SS, Resende WR, Dal-Pont G, Sangaletti-Pereira H, Gava FF, Peterle BR, Carvalho AF, Varela RB, Dal-Pizzol F, Quevedo J (2017) Lithium ameliorates sleep deprivation-induced mania-like behavior, hypothalamic-pituitary-adrenal (HPA) axis alterations, oxidative stress and elevations of cytokine concentrations in the brain and serum of mice. Bipolar Disord 19: 246–258. https://doi.org/10.1111/bdi.12503

  129. Wells AM, Ridener E, Bourbonais CA, Kim W, Pantazopoulos H, Carroll FI, Kim K-S, Cohen BM, Carlezon WA (2017) Effects of Chronic Social Defeat Stress on Sleep and Circadian Rhythms Are Mitigated by Kappa-Opioid Receptor Antagonism. J Neurosci 37: 7656–7668.https://doi.org/10.1523/JNEUROSCI.0885-17.2017

  130. Henderson F, Vialou V, El Mestikawy S, Fabre V (2017) Effects of Social Defeat Stress on Sleep in Mice. Front Behav Neurosci 28(11): 227. https://doi.org/10.3389/fnbeh.2017.00227

  131. Ota SM, Suchecki D, Meerlo P (2018) Chronic social defeat stress suppresses locomotor activity but does not affect the free-running circadian period of the activity rhythm in mice. Neurobiol Sleep Circadian Rhythm 5: 1–7. https://doi.org/10.1016/j.nbscr.2018.03.002

  132. Olejníková L, Polidarová L, Sumová A (2018) Stress affects expression of the clock gene Bmal1 in the suprachiasmatic nucleus of neonatal rats via glucocorticoid-dependent mechanism. Acta Physiol 223: e13020. https://doi.org/10.1111/apha.13020

  133. Levitas-Djerbi T, Appelbaum L (2017) Modeling sleep and neuropsychiatric disorders in zebrafish. Curr Opin Neurobiol 44: 89–93. https://doi.org/10.1016/j.conb.2017.02.017

  134. Tang Y-Q, Li Z-R, Zhang S-Z, Mi P, Chen D-Y, Feng X-Z (2019) Venlafaxine plus melatonin ameliorate reserpine-induced depression-like behavior in zebrafish. Neurotoxicol Teratol 76: 106835. https://doi.org/10.1016/j.ntt.2019.106835

Дополнительные материалы отсутствуют.